Skip to main content

Electrochemical DNA Biosensors Based on Carbon Nanomaterials

  • Chapter
  • First Online:
Carbon Related Materials

Abstract

Nowadays, it has become clear that the critical demands of biosensor development can only be achieved with advanced nanoscale materials. The unique electronic and structural properties of carbon nanomaterials (CNs) and the recent advances in their design and synthesis methodology have enabled new high-performance electrochemical sensing platforms. Furthermore, the progress made towards the functionalization of these nanomaterials led to successful interfacing of biomolecules, such as DNA, and thus to an extensive development of CNs-based electrochemical DNA sensors. The transduction of DNA hybridization events into electrical signals has facilitated the development of rapid, highly sensitive, and highly specific sensing devices employed in important fields such as medical diagnosis, food analysis, and environmental monitoring. A broad range of CNs such as two-dimensional graphene, one-dimensional carbon nanotubes, and zero-dimensional graphene or carbon quantum dots are being explored for designing high-performance DNA-sensing devices. This chapter provides a comprehensive overview of the recent strategies for CNs incorporation into novel DNA-sensing schemes for medical, food, and environmental applications. Likewise, the issues required for an extensive implementation of CNs-based electrochemical DNA sensors in POC technology are critically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q. Feng, X. Zhao, Y. Guo, M. Liu, P. Wang, Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons. Biosens. Bioelectron. 108, 97–102 (2018)

    Article  CAS  Google Scholar 

  2. R. Shamagsumova, A. Porfireva, V. Stepanova, Y. Osin, G. Evtugyn, T. Hianik, Polyaniline-DNA based sensor for the detection of anthracycline drugs. Sens. Actuat. B Chem. 220, 573–582 (2015)

    Article  CAS  Google Scholar 

  3. D. Kahanda, N. Singh, D.A. Boothman, J.D. Slinker, Following anticancer drug activity in cell lysates with DNA devices. Biosens. Bioelectron. 119(July), 1–9 (2018)

    Article  CAS  Google Scholar 

  4. F. Long, A. Zhu, H. Shi, H. Wang, J. Liu, Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 3, 1–7 (2013)

    Article  Google Scholar 

  5. M. Ligaj, M. Tichoniuk, D. Gwiazdowska, M. Filipiak, Electrochimica Acta Electrochemical DNA biosensor for the detection of pathogenic bacteria Aeromonas hydrophila. Electrochim. Acta 128, 67–74 (2014)

    Article  CAS  Google Scholar 

  6. R.M. Mazhabi, M. Arvand, Disposable electrochemical DNA biosensor for environmental monitoring of toxicant 2-aminoanthracene in the presence of chlorine in real samples. J. Chem. Sci. 126, 4, 1031–1037 (2014)

    Google Scholar 

  7. M. Debnath, G.B.K.S. Prasad, P.S. Bisen, Molecular diagnostics: promises and possibilities. Mol. Diagnost. Promises Possibilities 1–520 (2005)

    Google Scholar 

  8. J.I.A. Rashid, N.A. Yusof, The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sensing Res. 16, 19–31 (2017)

    Article  Google Scholar 

  9. M. Freitas, H.P.A. Nouws, C. Delerue-Matos, Electrochemical biosensing in cancer diagnostics and follow-up. Electroanalysis 30(8), 1584–1603 (2018)

    Article  CAS  Google Scholar 

  10. G.E. Jan Labuda, A.M. Oliveira Brett, I.P. Miroslav Fojta, M. Mascini, M. Ozsoz, J.W. Emil Paleček, Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (2010)

    Google Scholar 

  11. M. Ozsoz, Electrochemical DNA Biosensors. Taylor & Francis Group, LLC (2012)

    Google Scholar 

  12. A.A. Saeed, J.L.A. Sánchez, C.K. O’Sullivan, M.N. Abbas, DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118, 91–99 (2017)

    Article  CAS  Google Scholar 

  13. T. Pasinszki, M. Krebsz, T.T. Tung, D. Losic, Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors (Switzerland) 17(8), 1–32 (2017)

    Article  CAS  Google Scholar 

  14. G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018)

    Google Scholar 

  15. H. Sun, J. Ren, X. Qu, Carbon nanomaterials and DNA: from molecular recognition to applications. Acc. Chem. Res. 49(3), 461–470 (2016)

    Article  CAS  Google Scholar 

  16. M. Rezaee, B. Behnam, M. Banach, A. Sahebkar, The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol. Adv. 36(8), 2232–2247 (2018)

    Article  CAS  Google Scholar 

  17. Z. Zhu, An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. Nano-Micro Lett. 9(3), 1–24 (2017)

    Article  CAS  Google Scholar 

  18. J.N. Tiwari, V. Vij, K.C. Kemp, K.S. Kim, Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10(1), 46–80 (2016)

    Article  CAS  Google Scholar 

  19. N. Wongkaew, M. Simsek, C. Griesche, A. J. Baeumner, Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem. Rev. (2018)

    Google Scholar 

  20. A.C. Power, B. Gorey, S. Chandra, J. Chapman, Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev. 7(1), 19–41 (2018)

    Article  CAS  Google Scholar 

  21. B. Wang, U. Akiba, J. I. Anzai, Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: a review. Molecules 22(7) (2017)

    Google Scholar 

  22. M. Pumera, Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39(11), 4146–4157 (2010)

    Article  CAS  Google Scholar 

  23. H. Li, Z. Kang, Y. Liu, S.T. Lee, Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22(46), 24230–24253 (2012)

    Article  CAS  Google Scholar 

  24. Y. Dong, J. Lin, Y. Chen, F. Fu, Y. Chi, G. Chen, Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6(13), 7410–7415 (2014)

    Article  CAS  Google Scholar 

  25. Y. Yang, X. Yang, Y. Yang, Q. Yuan, Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon N. Y. 129, 380–395 (2018)

    Article  CAS  Google Scholar 

  26. M. Tuerhong, Y. Xu, X. B. Yin, Review on carbon dots and their applications. Chin. J. Anal. Chem. 45(1), 139–150 (2017)

    Google Scholar 

  27. S. Pilehvar, K. De Wael, Recent advances in electrochemical biosensors based on fullerene-C60nano-structured platforms. Biosensors 5(4), 712–735 (2015)

    Article  CAS  Google Scholar 

  28. C. Ye, X. Zhong, R. Yuan, Y. Chai, Sensors and actuators B : chemical a novel ECL biosensor based on C 60 embedded in tetraoctylammonium bromide for the determination of glucose. Sens. Actuat. B. Chem. 199, 101–107 (2014)

    Article  CAS  Google Scholar 

  29. J. Han et al., Multi-labeled functionalized C60 nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing. Biosens. Bioelectron. 46, 74–79 (2013)

    Article  CAS  Google Scholar 

  30. S. Iijima et al., Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(August), 165–170 (1999)

    Article  CAS  Google Scholar 

  31. B. He et al., Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat. Commun. 9(1) (2018)

    Google Scholar 

  32. X. Liu, H. Li, F. Wang, S. Zhu, Y. Wang, G. Xu, Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosens. Bioelectron. 25(10), 2194–2199 (2010)

    Article  CAS  Google Scholar 

  33. P. Yáñez-Sedeño, S. Campuzano, J. Pingarrón, Carbon nanostructures for tagging in electrochemical biosensing: a review. C 3(1), 3 (2017)

    Google Scholar 

  34. M. Yang, M.E. McGovern, M. Thompson, Genosensor technology and the detention of interfacial nucleic acid chemistry. Anal. Chim. Acta 346(3), 259–275 (1997)

    CAS  Google Scholar 

  35. S. Eissa, M. Zourob, Selection and characterization of DNA aptamers for electrochemical biosensing of carbensdazim. Anal. Chem. 89(5), 3138–3145 (2017)

    Article  CAS  Google Scholar 

  36. A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)

    Article  CAS  Google Scholar 

  37. M. Giovanni, A. Bonanni, M. Pumera, Detection of DNA hybridization on chemically modified graphene platforms. Analyst 137(3), 580–583 (2012)

    Article  CAS  Google Scholar 

  38. B. Cardenas-Benitez, I. Djordjevic, S. Hosseini, M.J. Madou, S.O. Martinez-Chapa, Review—covalent functionalization of carbon nanomaterials for biosensor applications: an update. J. Electrochem. Soc. 165(3), B103–B117 (2018)

    Article  CAS  Google Scholar 

  39. J. Ping et al., Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens. Bioelectron. 64, 373–385 (2015)

    Article  CAS  Google Scholar 

  40. H. Kj, L. Yj, W. Hb, W. Yy, A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochim. Acta 118, 130–137 (2014)

    Article  CAS  Google Scholar 

  41. S. Gupta, C.N. Murthy, C.R. Prabha, Recent advances in carbon nanotube based electrochemical biosensors. Int. J. Biol. Macromol. 108, 687–703 (2018)

    Article  CAS  Google Scholar 

  42. L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19(7), 801–810 (2009)

    Article  CAS  Google Scholar 

  43. S. Sabater, J.A. Mata, Catalytic Applications of Metal Complexes Immobilized by Non‐Covalent Interactions onto Chemically Derived Graphenes and Related Materials. Wiley, New York (2016)

    Google Scholar 

  44. A. Hirsch, J.M. Englert, F. Hauke, Wet chemical functionalization of graphene. Acc. Chem. Res. 46(1), 87–96 (2013)

    Article  CAS  Google Scholar 

  45. Y. Lee, K.E. Geckeler, Carbon nanotubes in the biological interphase: the relevance of noncovalence. Adv. Mater. 22(36), 4076–4083 (2010)

    Article  CAS  Google Scholar 

  46. V. Georgakilas et al., Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016)

    Article  CAS  Google Scholar 

  47. S. Akca, A. Foroughi, D. Frochtzwajg, H.W.C. Postma, Competing interactions in DNA assembly on graphene. PLoS ONE 6(4), 4–7 (2011)

    Article  CAS  Google Scholar 

  48. B. Liu, S. Salgado, V. Maheshwari, J. Liu, DNA adsorbed on graphene and graphene oxide: fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 26, 41–49 (2016)

    Article  CAS  Google Scholar 

  49. H. Zhang, H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron. 89, 96–106 (2017)

    Article  CAS  Google Scholar 

  50. M. Wu, R. Kempaiah, P.-J.J.J.J. Huang, V. Maheshwari, J. Liu, Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6), 2731–2738 (2011)

    Article  CAS  Google Scholar 

  51. L. Cui et al., Graphene oxide protected nucleic acid probes for bioanalysis and biomedicine. Chem. A Eur. J., 19(32), 10442–10451 (2013)

    Google Scholar 

  52. X. Zhang, Y. Qu, G. Piao, J. Zhao, K. Jiao, Reduced working electrode based on fullerene C60 nanotubes@DNA: characterization and application. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 175(2), 159–163 (2010)

    Google Scholar 

  53. M. Gholivand, A.R. Jalalvand, H. C. Goicoechea, Multivariate analysis for resolving interactions of carbidopa with dsDNA at a fullerene-C60/GCE. Int. J. Biol. Macromol., 1–13 (2014)

    Google Scholar 

  54. H. Shiraishi et al., Electrochemical detection of E. coli 16S rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry 70(2), 481–487 (2007)

    Article  CAS  Google Scholar 

  55. V. Kavita, DNA biosensors—a review. J. Bioeng. Biomed. Sci. 07(02) (2017)

    Google Scholar 

  56. T. Terse-Thakoor, S. Badhulika, A. Mulchandani, Graphene based biosensors for healthcare. J. Mater. Res. 32(15), 2905–2929 (2017)

    Article  CAS  Google Scholar 

  57. B. Liu, P.J.J. Huang, E.Y. Kelly, J. Liu, Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnol. J. 11(6), 780–787 (2016)

    Article  CAS  Google Scholar 

  58. X. Zhang, H. Hu, DNA molecules site-specific immobilization and their applications. Cent. Eur. J. Chem. 12(10), 977–993 (2014)

    CAS  Google Scholar 

  59. P. Bollella et al., Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 89, 152–166 (2017)

    Article  CAS  Google Scholar 

  60. K.M. Millan, S.R. Miskkelsen, Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem. 65(17), 2317–2323 (1993)

    Article  CAS  Google Scholar 

  61. T. Hu, L. Zhang, W. Wen, X. Zhang, S. Wang, Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron. 77, 451–456 (2016)

    Article  CAS  Google Scholar 

  62. F. Li et al., Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens. Bioelectron. 54, 158–164 (2014)

    Article  CAS  Google Scholar 

  63. S.Z. Mousavisani, J.B. Raoof, A.P.F. Turner, R. Ojani, W.C. Mak, Label-free DNA sensor based on diazonium immobilisation for detection of DNA damage in breast cancer 1 gene. Sens. Actuat. B Chem. 264, 59–66 (2018)

    Article  CAS  Google Scholar 

  64. B.D. Ossonon, D. Bélanger, B. Daniel, D. Bélanger, Functionalization of graphene sheets by the diazonium chemistry during electrochemical exfoliation of graphite. Carbon N. Y. 111, 83–93 (2017)

    Article  CAS  Google Scholar 

  65. L. Pilan, M. Raicopol, A. Pruna, V. Branzoi, Polyaniline/carbon nanotube composite films electrosynthesis through diazonium salts electroreduction and electrochemical polymerization. Surf. Interface Anal. 44(8), 1198–1202 (2012)

    Article  CAS  Google Scholar 

  66. M. Raicopol, L. Necula, M. Ionita, L. Pilan, Electrochemical reduction of aryl diazonium salts: a versatile way for carbon nanotubes functionalisation. Surf. Interface Anal. 44(8), 1081–1085 (2012)

    Article  CAS  Google Scholar 

  67. M.D. Raicopol et al., Organic layers via aryl diazonium electrochemistry: towards modifying platinum electrodes for interference free glucose biosensors. Electrochim. Acta 206, 226–237 (2016)

    Article  CAS  Google Scholar 

  68. C. Ott et al., Functionalized polypyrrole/sulfonated graphene nanocomposites: Improved biosensing platforms through aryl diazonium electrochemistry. Synth. Met. 235, 20–28 (2018)

    Google Scholar 

  69. J. Liu, Z. Liu, C.J. Barrow, W. Yang, Molecularly engineered graphene surfaces for sensing applications: A review. Anal. Chim. Acta 859, 1–19 (2015)

    Article  CAS  Google Scholar 

  70. G. Yang, L. Li, R.K. Rana, J.J. Zhu, Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon N. Y. 61, 357–366 (2013)

    Article  CAS  Google Scholar 

  71. M. Chen, C. Hou, D. Huo, J. Bao, H. Fa, C. Shen, An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosens. Bioelectron. 85, 684–691 (2016)

    Article  CAS  Google Scholar 

  72. W. Zhang, Application of Fe3O4 nanoparticles functionalized carbon nanotubes for electrochemical sensing of DNA hybridization. J Appl Electrochem 46(5):559–566 (2016)

    Google Scholar 

  73. S.B. Georgia-Paraskevi Nikoleli, S. Karapetis, V.N.P. Dimitrios, P. Nikolelis, N. Tzamtzis, Graphene-Based Electrochemical Biosensors: New Trends and Applications, 2nd edn. Scrivener Publishing LLC (2017)

    Google Scholar 

  74. A. Erdem, P. Papakonstantinou, H. Murphy, M. McMullan, H. Karadeniz, S. Sharma, Streptavidin modified carbon nanotube based graphite electrode for label-free sequence specific DNA detection. Electroanalysis 22(6), 611–617 (2010)

    Article  CAS  Google Scholar 

  75. S. Cosnier, Electrochem. Biosens. (2013)

    Google Scholar 

  76. L. Hu, Y., Li, F., Han, D., Niu, Graphene for DNA biosensing. In: Biocompatible Graphene for Bioanalytical Applications, vol. 2. (Springer, 2015), pp. 11–34

    Google Scholar 

  77. A. Benvidi, N. Rajabzadeh, H. Molaye Zahedi, M. Mazloum-Ardakani, M.M. Heidari, L. Hosseinzadeh, Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode. Talanta 137, 80–86 (2015)

    Google Scholar 

  78. M. Gebala, L. Stoica, S. Neugebauer, W. Schuhmann, Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21(3–5), 325–331 (2009)

    Article  CAS  Google Scholar 

  79. E.E. Ferapontova, Review—DNA electrochemistry and electrochemical sensors for nucleic acids. Annu. Rev. Anal. Chem. 11(1), 197–218 (2018)

    Article  CAS  Google Scholar 

  80. T. Yang, Q. Li, L. Meng, X. Wang, W. Chen, K. Jiao, Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. ACS Appl. Mater. Interfaces 5(9), 3495–3499 (2013)

    Article  CAS  Google Scholar 

  81. J. Park, S. Park, DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool, pp. 9513–9532 (2009)

    Google Scholar 

  82. E.R. Dorothee Grieshaber, R. MacKenzie, J. Voros, Electrochemical biosensors—sensor principles and architectures. Sensors (Switzerland), 8, 1400–1458 (2008)

    Google Scholar 

  83. E. Morales-Narváez, L. Baptista-Pires, A. Zamora-Gálvez, A. Merkoçi, Graphene-based biosensors: going simple. Adv. Mater. 29(7), 1604905 (2017)

    Google Scholar 

  84. S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, W. Zhang, Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 36(3), 465–481 (2016)

    CAS  Google Scholar 

  85. A. Umasankar Yogeswaran, S. Kumar and S.-M. Chen, Nanostructured Materials for Electrochemical Biosensors (2009)

    Google Scholar 

  86. E. Paleček, Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188, 656 (1960)

    Article  Google Scholar 

  87. E. Paleček, From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis 8(1), 7–14 (2018)

    Article  Google Scholar 

  88. K. Ghosal, K. Sarkar, Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 4(8), 2653–2703 (2018)

    Article  CAS  Google Scholar 

  89. M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81(14), 5603–5613 (2009)

    Article  CAS  Google Scholar 

  90. C.X. Lim, H.Y. Hoh, P.K. Ang, K.P. Loh, Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects. Anal. Chem. 82(17), 7387–7393 (2010)

    Article  CAS  Google Scholar 

  91. A. Brotons, F.J. Vidal-Iglesias, J. Solla-Gullón, J. Iniesta, Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review. Anal. Methods 8(4), 702–715 (2016)

    Article  CAS  Google Scholar 

  92. J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis 16(1–2), 140–144 (2004)

    Article  CAS  Google Scholar 

  93. A. Erdem, P. Papakonstantinou, H. Murphy, Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal. Chem. 78(18), 6656–6659 (2006)

    Article  CAS  Google Scholar 

  94. T. Abdullin, O. Bondar’, A. Rizvanov, I. Nikitina, Carbon nanotube-based biosensors for DNA structure characterization. Appl. Biochem. Microbiol. 45(2), 229–232 (2009)

    Google Scholar 

  95. K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006)

    Article  CAS  Google Scholar 

  96. X. Zhang, K. Jiao, S. Liu, Y. Hu, Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 81(15), 6006–6012 (2009)

    Article  CAS  Google Scholar 

  97. G.A. Rivas et al., Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis 19(7–8), 823–831 (2007)

    Article  CAS  Google Scholar 

  98. S.M. Majd, A. Salimi, F. Ghasemi, An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens. Bioelectron. 105, 6–13 (2018)

    Google Scholar 

  99. I.O. K’Owino, S.K. Mwilu, O.A. Sadik, Metal-enhanced biosensor for genetic mismatch detection. Anal. Biochem. 369(1), 8–17 (2007)

    Article  CAS  Google Scholar 

  100. N.D. Popovich, H.H. Thorp, New strategies for electrochemical nucleic acid detection. Electrochem. Soc. Interface 11(4), 30–34 (2002)

    Google Scholar 

  101. I.P. Melis Asal, Ö. Özen, M. Sahinler, Recent developments in enzyme, DNA and immuno-based biosensors. Sensors 18, 1–16 (2018)

    Google Scholar 

  102. T. Kilic, M. Kaplan, S. Demiroglu, A. Erdem, M. Ozsoz, Label-free electrochemical detection of MicroRNA-122 in real samples by graphene modified disposable electrodes. J. Electrochem. Soc. 163(6), B227–B233 (2016)

    Article  CAS  Google Scholar 

  103. Q. Gong, H. Yang, Y. Dong, W. Zhang, A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide. Anal. Methods 7(6), 2554–2562 (2015)

    Article  CAS  Google Scholar 

  104. Z. Zhang, L. Luo, G. Chen, Y. Ding, D. Deng, C. Fan, Tryptamine functionalized reduced graphene oxide for label-free DNA impedimetric biosensing. Biosens. Bioelectron. 60, 161–166 (2014)

    Article  CAS  Google Scholar 

  105. J. Zhao, G. Chen, L. Zhu, G. Li, Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun. 13(1), 31–33 (2011)

    Article  CAS  Google Scholar 

  106. A. Smerald, Springer Theses, vol. 53, no. 9 (2013)

    Google Scholar 

  107. M. Du, T. Yang, X. Li, K. Jiao, Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88, 439–444 (2012)

    Article  CAS  Google Scholar 

  108. H. Teymourian, A. Salimi, S. Khezrian, Development of a new label-free, indicator-free strategy toward ultrasensitive electrochemical DNA biosensing based on Fe3O4 nanoparticles/reduced graphene oxide composite. Electroanalysis 29(2), 409–414 (2016)

    Article  CAS  Google Scholar 

  109. Y. Ye et al., A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon N. Y. 129, 730–737 (2018)

    Article  CAS  Google Scholar 

  110. S.B. Gayathri, P. Kamaraj, Development of electrochemical DNA biosensors—a review. Chem. Sci. Trans. 4(2), 303–311 (2015)

    CAS  Google Scholar 

  111. N. Zhu, Z. Chang, P. He, Y. Fang, Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal. Chim. Acta 545(1), 21–26 (2005)

    Article  CAS  Google Scholar 

  112. Q. Wang et al., DNA hybridization biosensor using chitosan-carbon nanotubes composite film as an immobilization platform and [Cu(bpy)(MBZ)2(H2O)] (bpy = 2,2′-bipyridine, MBZ = p-methylbenzoate) as a novel redox indicator. Electrochim. Acta 56(11), 3829–3834 (2011)

    Article  CAS  Google Scholar 

  113. J. Li, E.C. Lee, Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors. Biosens. Bioelectron. 71, 414–419 (2015)

    Article  CAS  Google Scholar 

  114. L. lan Xu et al., Perylenetetracarboxylic acid and carbon quantum dots assembled synergistic electrochemiluminescence nanomaterial for ultra-sensitive carcinoembryonic antigen detection. Biosens. Bioelectron. 103, 6–11 (2018)

    Google Scholar 

  115. D. Du, S. Guo, L. Tang, Y. Ning, Q. Yao, G.-J. Zhang, Graphene-modified electrode for DNA detection via PNA–DNA hybridization. Sens. Actuat. B Chem. 186, 563–570 (2013)

    Article  CAS  Google Scholar 

  116. X. Li et al., [Cu(phen)2]2+ acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor. Anal. Biochem. 492, 56–62 (2016)

    Article  CAS  Google Scholar 

  117. M.T. Martinez, Y.-C. Tseeng, N. Ormategui, I. Loinaz, R. Eritja, J. Bokor, Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9(2), 530–536 (2009)

    Article  CAS  Google Scholar 

  118. S. Liu, X. Guo, Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4(8), e23–e10 (2012)

    Article  CAS  Google Scholar 

  119. A. Star, E. Tu, J. Niemann, J.-C.P. Gabriel, C.S. Joiner, C. Valcke, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. 103(4), 921–926 (2006)

    Article  CAS  Google Scholar 

  120. B. R. Goldsmith, Conductance-controlled point. Science 315 77–81 (2007)

    Google Scholar 

  121. S. Sorgenfrei et al., Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126 (2011)

    Article  CAS  Google Scholar 

  122. X. Dong, Y. Shi, W. Huang, P. Chen, L.J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010)

    Article  CAS  Google Scholar 

  123. Y. Hu, F. Li, D. Han, L. Niu, Biocompatible Graphene for Bioanalytical Applications, vol. 2, pp. 11–34 (2015)

    Google Scholar 

  124. B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, G.-J. Zhang, Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3), 2632–2638 (2014)

    Article  CAS  Google Scholar 

  125. Z. Gao et al., Detection of sub-fM DNA with target recycling and self-assembly amplification on graphene field-effect biosensors. Nano Lett. 18(6), 3509–3515 (2018)

    Article  CAS  Google Scholar 

  126. J. Wang, A.N. Kawde, M.R. Jan, Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosens. Bioelectron. 20(5), 995–1000 (2004)

    Article  CAS  Google Scholar 

  127. F. Berti, L. Lozzi, I. Palchetti, S. Santucci, G. Marrazza, Aligned carbon nanotube thin films for DNA electrochemical sensing. Electrochim. Acta 54(22), 5035–5041 (2009)

    Article  CAS  Google Scholar 

  128. P. He, L. Dai, Aligned carbon nanotube–DNA electrochemical sensors. Chem. Commun. 4(3), 348–349 (2004)

    Article  Google Scholar 

  129. J. Filip, P. Kasák, J. Tkac, Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors. Chem. Pap. 69(1), 112–133 (2015)

    Article  CAS  Google Scholar 

  130. J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)

    Article  CAS  Google Scholar 

  131. X. Yang, Y. Lu, Y. Ma, Z. Liu, F. Du, Y. Chen, DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene. Biotechnol. Lett. 29(11), 1775–1779 (2007)

    Article  CAS  Google Scholar 

  132. Q. Wang, J. Lei, S. Deng, L. Zhang, H. Ju, Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem. Commun. 49(9), 916–918 (2013)

    Article  CAS  Google Scholar 

  133. T. Xue et al., Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chemie Int. Ed. 51(16), 3822–3825 (2012)

    Article  CAS  Google Scholar 

  134. H. Yamaguchi, K. Tsubouchi, K. Kawaguchi, E. Horita, A. Harada, Peroxidase Activity of cationic metalloporphyrin-antibody complexes. Chem. A Eur. J. 10(23), 6179–6186 (2004)

    Google Scholar 

  135. Z. Wang et al., A sequence-selective electrochemical dna biosensor based on HRP-labeled probe for colorectal cancer DNA detection. Anal. Lett. 41(1), 24–35 (2008)

    Article  CAS  Google Scholar 

  136. Y. Wu, R.D. Tilley, J.J. Gooding, The challenges and solutions in developing ultrasensitive biosensors. J. Am. Chem. Soc. 141(3), 1162–1170 (2018)

    Article  CAS  Google Scholar 

  137. J. Jeon, D.K. Lim, J.M. Nam, Functional nanomaterial-based amplified bio-detection strategies. J. Mater. Chem. 19(15), 2107–2117 (2009)

    Article  CAS  Google Scholar 

  138. P. Krzyczmonik, E. Socha, S. Skrzypek, Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry 101, 8–13 (2015)

    Article  CAS  Google Scholar 

  139. M.H. Ghalehno, M. Mirzaei, M. Torkzadeh-Mahani, Double strand DNA-based determination of menadione using a Fe3O4 nanoparticle decorated reduced graphene oxide modified carbon paste electrode. Bioelectrochemistry 124, 165–171 (2018)

    Article  CAS  Google Scholar 

  140. H.F. Wang et al., A versatile label-free electrochemical biosensor for circulating tumor DNA based on dual enzyme assisted multiple amplification strategy. Biosens. Bioelectron. 122, 224–230 (2018)

    Article  CAS  Google Scholar 

  141. L. Tian, L. Liu, Y. Li, Q. Wei, W. Cao, Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA. Sci. Rep. 6(July), 1–8 (2016)

    Google Scholar 

  142. Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, Y. Lin, Biosensors and bioelectronics recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens 76, 195–212 (2016)

    Article  CAS  Google Scholar 

  143. J. Li et al., Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3(5), 597–602 (2003)

    Article  CAS  Google Scholar 

  144. M. Fojta, P. Kostečka, M. Trefulka, L. Havran, E. Paleček, ‘Multicolor’ electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes. Anal. Chem. 79(3), 1022–1029 (2007)

    Article  CAS  Google Scholar 

  145. J. Jiang, X. Lin, G. Diao, Smart combination of cyclodextrin polymer host-guest recognition and Mg2+-assistant cyclic cleavage reaction for sensitive electrochemical assay of nucleic acids. ACS Appl. Mater. Interfaces 9(42), 36688–36694 (2017)

    Article  CAS  Google Scholar 

  146. J.Y. Huang et al., A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens. Bioelectron. 99, 28–33 (2018)

    Google Scholar 

  147. H. Cai, X. Cao, Y. Jiang, P. He, Y. Fang, Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375(2), 287–293 (2003)

    Article  CAS  Google Scholar 

  148. J. Wang, A. Shi, X. Fang, X. Han, Y. Zhang, Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchim. Acta 181(9–10), 935–940 (2014)

    Article  CAS  Google Scholar 

  149. M. Liu, H. Ke, C. Sun, G. Wang, Y. Wang, G. Zhao, A simple, supersensitive and highly selective electrochemical label-free aptasensor of 17β-estradiol based on signal amplification of bi-functional grapheme. Talanta 194, 266–272 (2018)

    Google Scholar 

  150. B. Li, A.D. Ellington, X. Chen, Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucl. Acids Res. 39(16) (2011)

    Google Scholar 

  151. X. Miao, X. Ning, Z. Li, Z. Cheng, Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci. Rep. 6, 1–9 (2016)

    Article  CAS  Google Scholar 

  152. X. Wu, Y. Chai, R. Yuan, Y. Zhuo, Y. Chen, Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sens. Actuat. B Chem. 203, 296–302 (2014)

    Article  CAS  Google Scholar 

  153. H.L. Shuai, K.J. Huang, L.L. Xing, Y.X. Chen, Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. Biosens. Bioelectron. 86, 337–345 (2016)

    Article  CAS  Google Scholar 

  154. H.L. Shuai, X. Wu, K.J. Huang, Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J. Mater. Chem. B 5(27), 5362–5372 (2017)

    Article  CAS  Google Scholar 

  155. J. Wang, A. Shi, X. Fang, X. Han, Y. Zhang, An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide. Anal. Biochem. 469, 71–75 (2015)

    Article  CAS  Google Scholar 

  156. H. Huang, W. Bai, C. Dong, R. Guo, Z. Liu, An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 68, 442–446 (2015)

    Article  CAS  Google Scholar 

  157. K.-J. Huang, Y.-J. Liu, H.-B. Wang, Y.-Y. Wang, Y.-M. Liu, Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens. Bioelectron. 55, 195–202 (2014)

    Article  CAS  Google Scholar 

  158. K.-J. Huang, Y.-J. Liu, H.-B. Wang, Y.-Y. Wang, A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochim. Acta 118, 130–137 (2014)

    Article  CAS  Google Scholar 

  159. F.-F. Cheng, J.-J. Zhang, T.-T. He, J.-J. Shi, E.S. Abdel-Halim, J.-J. Zhu, Bimetallic Pd–Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates. Analyst 139(16), 3860–3865 (2014)

    Article  CAS  Google Scholar 

  160. X. Dong et al., Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors. Adv. Mater. 20(12), 2389–2393 (2008)

    Article  CAS  Google Scholar 

  161. B.C. Janegitz et al., The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens. Bioelectron. 89, 224–233 (2017)

    Article  CAS  Google Scholar 

  162. R. Forsyth, A. Devadoss, O.J. Guy, Graphene field effect transistors for biomedical applications: current status and future prospects (2017)

    Google Scholar 

  163. R. Laocharoensuk, Development of electrochemical immunosensors towards point-of-care cancer diagnostics: clinically relevant studies. Electroanalysis 28(8), 1716–1729 (2016)

    Article  CAS  Google Scholar 

  164. B. Zribi et al., A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of mycobacterium tuberculosis in clinical isolates, Biomicrofluidics 10(1), 014115, 1–12

    Google Scholar 

  165. J. Wu, M. Dong, C. Rigatto, Y. Liu, F. Lin, Lab-on-chip technology for chronic disease diagnosis, pp 1–11 (2018)

    Google Scholar 

  166. Z. Pu, C. Zou, R. Wang, X. Lai, H. Yu, In Microfluidic System: A Continuous Glucose Monitoring Device by Graphene Modified Electrochemical Sensor in Microfluidic System, vol. 011910 (2016)

    Google Scholar 

  167. A.J. Killard, 4—Screen Printing and Other Scalable Point of Care (POC) Biosensor Processing Technologies (Elsevier Ltd. , 2017)

    Google Scholar 

  168. L. Syedmoradi, M. Daneshpour, M. Alvandipour, F. A. Gomez, H. Hajghassem, K. Omidfar, Biosensors and bioelectronics point of care testing: the impact of nanotechnology. Biosens. Bioelectron. 87, 373–387 (2017)

    Google Scholar 

  169. C. Li, H. Karadeniz, E. Canavar, A. Erdem, Electrochimica acta electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes. Electrochim. Acta 82, 137–142 (2012)

    Article  CAS  Google Scholar 

  170. A.H. Loo, A. Bonanni, M. Pumera, Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143–147 (2012)

    Article  CAS  Google Scholar 

  171. B. Esteban-ferna et al., Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 Gene with Single Nucleotide Polymorphism Selectivity in Biological Samples. Anal. Chem. 87(4), 2290–2298 (2015)

    Google Scholar 

  172. L. Syedmoradi, M. Daneshpour, M. Alvandipour, F.A. Gomez, H. Hajghassem, K. Omidfar, Point of care testing: the impact of nanotechnology. Biosens. Bioelectron. 87, 373–387 (2017)

    Article  CAS  Google Scholar 

  173. W. Qiu et al., Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens. Bioelectron. 64, 367–372 (2015)

    Article  CAS  Google Scholar 

  174. E.P. Souto, Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4(4), 778–794 (2017)

    Google Scholar 

  175. C. Zhang, J. Xu, Y. Li, L. Huang, D. Pang, Photocatalysis-induced renewable field-effect transistor for protein detection photocatalysis-induced renewable field-effect transistor for protein detection. Anal. Chem. 88(7), 4048–4054 (2016)

    Google Scholar 

  176. C. Wang et al., OPEN a label-free and portable graphene FET aptasensor for children blood lead detection. Nat. Publ. Gr., 1–8 (2016)

    Google Scholar 

  177. S. Xu et al., Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun. 8, 1–10 (2017)

    CAS  Google Scholar 

  178. D.D. Ordinario et al., Sequence specific detection of restriction enzymes at DNA-modified carbon nanotube field effect transistors. Anal. Chem. 86(17), 8628–8633 (2014)

    Google Scholar 

  179. J.-Y. Choi, G. Ramachandran, M. Kandlikar, The impact of toxicity testing costs on nanomaterial regulation. Environ. Sci. Technol. 43(9), 3030–3034 (2009)

    Article  CAS  Google Scholar 

  180. M. Azimzadeh, M. Rahaie, N. Nasirizadeh, M. Daneshpour, H. Naderi-Manesh, E.T. Nanobiosensor ABSTRAC, “electrochemical miRNA biosensors: the benefits of nanotechnology. Nanomed. Res. J. 2(21), 36–4836 (2017)

    Google Scholar 

  181. S. Campuzano, P. Yáñez-Sedeño, J.M. Pingarrón, Tailoring sensitivity in electrochemical nucleic acid hybridization biosensing: role of surface chemistry and labeling strategies. ChemElectroChem (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2016-0629, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luisa Pilan or Matei Raicopol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilan, L., Raicopol, M. (2021). Electrochemical DNA Biosensors Based on Carbon Nanomaterials. In: Kaneko, S., et al. Carbon Related Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7610-2_10

Download citation

Publish with us

Policies and ethics