Skip to main content

Nanomaterials for Agriculture Input Use Efficiency

  • Chapter
  • First Online:
Resources Use Efficiency in Agriculture

Abstract

Nanotechnology is an interdisciplinary stream of science which deals with the synthesis and application of nanoparticles (NPs) ranging from 1 to 100 nm. Nanotechnology is seen as a new tool for the various problems faced in agriculture and other allied sectors. Agriculture system is facing problems like generation of resistance among microbes due to excessive use of pesticides and deteriorating soil health by the abundant use of fertilizers, exhibiting damaging effect on the environment. A large quantum of applied fertilizers and pesticides get lost in the surrounding and not consumed by plants which limit the use of conventional methods. Nanoscience could be the potential solution to these limitations because bioactive compounds are encapsulated here and release at a controlled rate, providing input use efficiency. Diseases could be easily detected by the use of nanosensors at an early stage and thus also be controlled at the earliest for better productivity. Various disease controlling products are in use, such as nano-pesticides, nano-fungicides and nano-bactericides, to protect the crops from various kinds of biological stresses caused by different microorganisms. Small surface area to volume ratio of NPs contributes to their better absorption ability. Post-harvest techniques using nanosensors help check food quality with better packaging and transport which results in reduced post-harvest losses. The agriculture sector also contributes to a large amount of agriculture waste which is being transformed using nanomaterials and put into efficient use. Productivity in agriculture has been improved using nanobiotechnology by the use of nanocarriers to transfer the DNA (deoxyribonucleic acid) fragment at the proper site and to bring the desired result. Thus, nanomaterials contribute to improved nutrients use efficiency. This chapter entails the use of nanomaterials in improving soil health, plant productivity, disease detection, control and treatment, genetic transformation, post-harvest value addition, and reducing agriculture waste. Along with these benefits, nanomaterials may cause harm to the environment, so proper hazard assessment and regulations should be brought in for the optimal use of nanotechnology. Use of nanomaterials can result in the achievement of sustainable agriculture, thus, could be promoted with proper regulation in place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Silver

Au:

Gold

CaO:

Calcium oxide

CO2:

Carbon dioxide

Cu:

Copper

DNA:

Deoxyribonucleic acid

Fe:

Iron

FeO:

Iron oxide

Gt:

Gigatons

LDH:

Layered double hydroxide

MgO:

Magnesium oxide

MWCNTs:

Multi-walled carbon nanotubes

NBS:

Nano-biosensor

Ni:

Nickel

nm:

Nanometer

NPs:

Nanoparticles

QDs:

Quantum dots

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

RUE:

Resource use efficiency

Si:

Silicon

SiO2:

Silicon dioxide

SWCNTs:

Single-walled carbon nanotubes

TiO2:

Titanium dioxide

Zn:

Zinc

ZnO:

Zinc oxide

References

  • Accenture Technology Labs (2004) Remote sensor network: Accenture prototype helps Pickberry vineyard improve crop management. Accenture, New York, p 2004

    Google Scholar 

  • Afsharinejad A, Davy A, Jennings B, Brennan C (2016) Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet Things J 3:59–69

    Article  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  PubMed  CAS  Google Scholar 

  • Alvarado MA, Guzmán ON, Solís NM, Vega-Baudrit J (2017) Recycling and elimination of wastes obtained from agriculture by using nanotechnology: nanosensors. Int J Biosen Bioelectron 3(5):368–375

    Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    Article  PubMed  CAS  Google Scholar 

  • Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D (2012) Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antivir Res 96:363–375

    Article  PubMed  CAS  Google Scholar 

  • AZoNano.com (2003) Nanofibers to be used in drug delivery, gene therapy, crop engineering and environmental monitoring (webpage on the internet). AZoM.com Pty. Ltd, Manchester. (updated June 11, 2013). Available from: http://www.azonano.com/article.aspx?ArticleID=114

    Google Scholar 

  • Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, Das S, Nandy P (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surfaces B Biointerfaces 108:358–365

    Article  PubMed  CAS  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7(3):191–204

    Article  CAS  Google Scholar 

  • Baruwati B, Varma RS (2009) High value products from waste: grape pomace extract-a three-in-one package for the synthesis of metal nanoparticles. Chem Sus Chem 2(11):1041–1044

    Article  CAS  Google Scholar 

  • Berekaa MM (2015) Review Article; nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    CAS  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: Nano-antimicrobial materials. Evid-Based complementary Altern Med 2015:246012. https://doi.org/10.1155/2015/246012

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal Nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713. https://doi.org/10.1038/nphoton.2012.266

    Article  CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (2013) Semiconductor nanocrystals as fluorescent biological labels. Science 281:6

    Google Scholar 

  • Bumbudsanpharoke N, Ko S (2015) Nano-Food Packaging: An Overview of Market, Migration Research, and Safety Regulations. J Food Sci 80(5):R910–R923

    Article  PubMed  CAS  Google Scholar 

  • Campos EV, Proença PL, Oliveira JL, Melville CC, Vechia JF, Andrade DJ, Fraceto LF (2018) Chitosan nanoparticles functionalized with-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 8:2067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carchi D (2014) Aprovechamiento de los Residuos Agrícolas provenientes del cultivo de Banano para obtener Nanocelulosa. Universidad de Cuenca, Cuenca

    Google Scholar 

  • Cardoso CS, Licea YE, Huang X, Willinger M, Louis B, Pereira MM (2015) Improving textural properties of γ-alumina by using second generation biomass in conventional hydrothermal method. Micropor Mesopor Mater 207:134–141

    Article  CAS  Google Scholar 

  • Castro L, Blazquez M, Munoz J, González F, García C (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46(5):1076–1082

    Article  CAS  Google Scholar 

  • Chai W, Zakrzewski SS, Günzel D, Pieper R, Wang Z, Twardziok S, Janczyk P, Osterrieder N, Burwinkel M (2014) High dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in piglets. BMC Vet Res 10:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5685):2016–2018

    Article  PubMed  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew and Sustain Energy Rev 16(3):1462–1476

    Article  CAS  Google Scholar 

  • Chen H, Wang W, Martin JC, Oliphant AJ, Doerr PA, Xu JF, DeBorn KM, Chen C, Sun L (2013) Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. Sustainable Chem Eng 1:254–259

    Article  CAS  Google Scholar 

  • Cheng HN, Klasson KT, Asakura T, Wu Q (2016) Nanotechnology in agriculture. In: Cheng HN, Doemeny L, Geraci CL, Schmidt DG (eds) Nanotechnology: delivering on the promise, vol 2. ACS, Washington, DC, pp 233–242

    Chapter  Google Scholar 

  • Chevillard A, Angellier-Coussy H, Guillard V, Gontard N, Gastaldi E (2012) Controlling pesticide release via structuring agropolymer and nanoclays based materials. J Hazard Mater 20:32–39. https://doi.org/10.1016/j.jhazmat.2011.11.093

    Article  CAS  Google Scholar 

  • Chidambaram R (2016) Application of rice husk nanosorbents containing 2, 4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng 63:318–326

    Article  CAS  Google Scholar 

  • Choy J, Choi S, Oh J et al (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Das S, Sen B, Debnath N (2015) Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ Sci Pollut Res Int 22(23):18333–18344

    Article  PubMed  Google Scholar 

  • De Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira JL, Campos ENVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432

    Article  PubMed  CAS  Google Scholar 

  • Dekkers S, Oomen AG, Bleeker EAJ, Vandebriel RJ, Micheletti C (2016) Towards a nanospecific approach for risk assessment. Regul Toxicol Pharmacol 80:46–59

    Article  PubMed  Google Scholar 

  • Di Gianvincenzo P, Marradi M, Martínez-Ávila OM, Bedoya LM, Alcamí J, Penadés S (2010) Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents. Bioorg Med Chem Lett 20:2718–2721

    Article  PubMed  CAS  Google Scholar 

  • Dilbaghi N, Kaur H, Ahuja M, Kumar S (2013) Evaluation of tropicamide loaded tamarind seed xyloglucan nanoaggregates for ophthalmic delivery. Carbohydr Polym 94:286–291. https://doi.org/10.1016/j.carbpol.2013.01.054

    Article  PubMed  CAS  Google Scholar 

  • Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province. China Chem Geol 218:41–50

    Article  CAS  Google Scholar 

  • Dos Santos Silva M, Cocenza DS, Grillo R, de Melo NFS, Tonello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Article  CAS  Google Scholar 

  • Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sustainable Agriculture Reviews, vol 19. Springer, Cham, pp 307–330

    Chapter  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092. https://doi.org/10.1002/(SICI)1097-4628(20000628)76:143.0.CO;2-U

    Article  CAS  Google Scholar 

  • Edmundson M, Thanh NT, Song B (2013) Nanoparticles based stem cell tracking in regenerative medicine. Theranostics 3(8):573–582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Shanshoury AERR, ElSilk SE, Ebeid ME (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Streptococcus thermophilus ESh1 and their antimicrobial activities. Nanotechnology 10:1–7

    Google Scholar 

  • Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2015) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23(1):837–852. https://doi.org/10.1007/s10570-015-0807-8

    Article  CAS  Google Scholar 

  • Farrell D, Hoover M, Chen H, Friedersdorf L (2013) Overview of resources and support for nanotechnology for sensors and sensors for nanotechnology: improving and protecting health, safety, and the environment. US National Nanotechnology Initiative, Arlington

    Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88:576–582

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, Europe (2013) Food wastage footprint-impacts on natural resources: Summary report, (available at http://www.fao.org/3/i3347e/i3347e.pdf)

  • Gao FQ, Liu C, Qu CX, Zheng L, Yang F, Su MG, Hong FH (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 21:211–217. https://doi.org/10.1007/s10534-007-9110-y

    Article  PubMed  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  PubMed  CAS  Google Scholar 

  • Gil-Tomas J, Tubby S, Parkin IP, Narband N, Dekker L et al (2007) Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem 17:3739–3746

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM (2014a) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408. https://doi.org/10.1038/nmat3890

    Article  PubMed  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson MN, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew J, Strano MS (2014b) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Ortiz N, De la Rosa-Garcia S, Gonzalez-Gomez W, Soria-Castro M, Quintana P, Oskam G (2013) Antifungal coatings based on Ca (OH) 2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments, ACS Appl. Mater Interfaces 5:1556–1565

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Grillo R, dos Santos NZP, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly (ε-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9

    Article  PubMed  CAS  Google Scholar 

  • Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R (2014a) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 27:163–171. https://doi.org/10.1016/j.jhazmat.2014.05.079

    Article  CAS  Google Scholar 

  • Grillo R, Rosa A, Fraceto LF (2014b) Poly (ε-caprolactone) nanocapsules carrying the herbicide atrazine: effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int J Environ Sci Technol 11:1691–1700

    Article  CAS  Google Scholar 

  • Grillo R, Clemente Z, de Oliveira JL, Campos EVR, Chalupe VC, Jonsson CM, de Lima R, Sanches G, Nishisaka CS, Rosa AH (2015) Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. J Hazard Mater 286:562–572

    Article  PubMed  CAS  Google Scholar 

  • Gruère G, Clare N, Linda A (2011) Agricultural, food and water nanotechnologies for the poor opportunities, constraints and role of the consultative group on international agricultural research. J Int Food Policy Res Inst 1:35

    Google Scholar 

  • Gupta A, Kumar A (2018) Climate resilient agro-technologies for enhanced crop and water productivity under water deficit agro-ecologies. In: Meena RS (ed) Sustainable agriculture. Scientific Publisher, Jodhpur, pp 339–356

    Google Scholar 

  • Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15(1):177–185. https://doi.org/10.1007/s10570-007-9179-z

    Article  CAS  Google Scholar 

  • Hager H (2011) Nanotechnology in agriculture. http://www.topcropmanager.com

  • Hajirostamlo B, Mirsaeedghazi N, Arefnia M (2015) The role of research and development in agriculture and its dependent concepts in agriculture [short review]. Asian J Appl Sci Eng 4. https://doi.org/10.1016/j.cocis.2008.01.005

  • Hajkova P, Spatenka P, Horsky J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process Polym 4:S397–S401

    Article  Google Scholar 

  • Han YS, Lee SY, Yang JH, Hwang HS, Park I (2010) Paraquat release control using intercalated montmorillonite compounds. J Phys Chem Solids 71:460–463

    Article  CAS  Google Scholar 

  • Haydel SE, Remenih CM, Williams LB (2007) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chem 61(2):353–361

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • Hochella MF, Jr Spencer MG, Jones KL (2015) Nanotechnology: nature’s gift or scientists’ brainchild? Environ Sci Nano 2:114–119. https://doi.org/10.1039/C4EN00145A

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279. https://doi.org/10.1385/BTER:105:1-3:269. http://www.geohumus.com/us/products.html. Accessed 20 Oct 2016

    Article  PubMed  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504. https://doi.org/10.1016/j.tcb.2004.07.012

    Article  PubMed  CAS  Google Scholar 

  • Jampilek J, Zaruba K, Oravec M, Kunes M, Babula P, Ulbrich P, Braziniova I, Opatrilova R, Triska J, Suchy P (2015) Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier. Biomed Res Int 2015:812673. https://doi.org/10.1155/2015/812673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jangir CK, Kumar S, Lakhran H, Meena RS (2017) Towards mitigating malnutrition in pulses through biofortification. Trends in Biosc 10(17):2999–3002

    Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  • Jenne M, Kambham M, Tollamadugu NP, Karanam HP, Tirupati MK, Balam RR, Shameer S, Yagireddy M (2018) The use of slow releasing nanoparticle encapsulated Azadirachtin formulations for the management of Caryedon serratus O. (groundnut bruchid). IET Nanobiotechnol 12:963–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer-based encapsulation of neem oil nanoemulsion for controlled release of Aza-a. Carbohydr Polym 90:1750–1756. https://doi.org/10.1016/j.carbpol.2012.07.064

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K (2010) Biosynthesis of metal and nanoparticles using lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291

    Article  PubMed  CAS  Google Scholar 

  • Jia LR, Xia J, Zhou N, Chen WY (2008) Preservation of fruits by hydrolyzed collagen/sodium alginate nanoparticles latex. Food Mach 1:46–50

    Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Zaliha RN (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pest Biochem Physiol 102:19–29. https://doi.org/10.1016/j.pestbp.2011.10.004

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Nanoforum Report. Institute of Nanotechnology, Evanston, pp 1–13

    Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurgon R, Seliger C, Hilpert A, Trahms L, Odenbach S, Alexiou C (2006) Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter 18:S2893–S2902

    Article  CAS  Google Scholar 

  • Kakraliya SK, Jat RD, Kumar S, Choudhary KK, Prakash J, Singh LK (2017a) Integrated nutrient management for improving, fertilizer use efficiency, soil biodiversity and productivity of wheat in irrigated rice wheat cropping system in indo-Gangetic Plains of India. J Curr Microb Appl Sci 6(3):152–163

    Article  CAS  Google Scholar 

  • Kakraliya SK, Kumar N, Dahiya S, Kumar S, Yadav DD, Singh M (2017b) Effect of integrated nutrient management on growth dynamics and productivity trend of wheat (Triticum aestivum L.) under irrigated cropping system. J Plant Develop Scie 9(1):11–15

    CAS  Google Scholar 

  • Kakraliya SK, Kumar S, Kakraliya SS, Choudhary KK, Singh LK (2018a) Remedial options for the sustainability of rice-wheat cropping system. J Pharma Phytochem 7(2):163–171

    CAS  Google Scholar 

  • Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018b) Nitrogen and legumes: a meta-analysis. In: Meena RS, Das A, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 277–314. https://doi.org/10.1007/978-981-13-0253-4_9

    Chapter  Google Scholar 

  • Kandasamy S, Prema RS (2015) Methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36

    Article  PubMed  CAS  Google Scholar 

  • Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Kang HS, Chu GJ, Hong SB (2008a) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008b) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, Mclaughlin MJ (1851) Lead JR (2008) Nanomaterials in the environment, bahaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825

    Article  Google Scholar 

  • Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 44:49–55

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng 142:210–220

    Article  CAS  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067. https://doi.org/10.1016/j.carbpol.2013.10.025

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015) Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Kumar D, Dilbaghi N (2017a) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res 24:926–937

    Article  CAS  Google Scholar 

  • Kumar S, Lakhran H, Meena RS, Jangir CK (2017b) Current need of sustainable food and forage production to eliminate food and forage insecurity under current climatic era. Forage Res 44(1):165–173

    Google Scholar 

  • Kumar S, Karaliya SK, Chaudhary S (2017c) Precision farming technologies towards enhancing productivity and sustainability of rice-wheat cropping system. J of Curr Microb Appl Scie s 6(3):142–151

    Google Scholar 

  • Kumar S, Meena RS, Jakhar SR, Jangir CK, Gupta A, Meena BL (2019) Adaptation strategies for enhancing agricultural and environmental sustainability under current climate. In: Meena RS (ed) Sustainable agriculture. Scientific Publisher, Jodhpur, pp 226–274

    Google Scholar 

  • Kuzma J (2007) Moving forward responsibly: oversight for the nanotechnology-biology interface. J Nanopart Res 9:165–182

    Article  Google Scholar 

  • Kwak SY, Giraldo JP, Wong MH, Tisdale WA (2017) A nanobionic light-emitting plant. Nano Lett 17:7951–7961

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L. essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7:E10

    Article  Google Scholar 

  • Lakhran H, Kumar S, Bajiya R (2017) Crop diversification: an option for climate change resilience. Trends in Biosci 10(2):516–518

    Google Scholar 

  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1

    Article  CAS  Google Scholar 

  • Layek J, Das A, Mitran T, Nath C, Meena RS, Yadav GS, Shivakumar BG, Kumar S, Lal R (2018) Cereal+legume intercropping: an option for improving productivity and sustaining soil health. In: Meena RS, Das A, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 347–386. https://doi.org/10.1007/978-981-13-0253-4_11

    Chapter  Google Scholar 

  • Le VH, Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:58–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 1191:68–76. https://doi.org/10.1007/s12011-007-0047-3

    Article  CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surfaces B Biointerfaces 36:81–90

    Article  PubMed  CAS  Google Scholar 

  • Li H, Shan C, Zhang Y, Cai J, Zhang W, Pan B (2016) Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl Mater Interfaces 8:3012–3020. https://doi.org/10.1021/acsami.5b09832

    Article  PubMed  CAS  Google Scholar 

  • Liakos I, Rizzello L, Hajiali H, Brunetti V, Carzino R, Pompa PP, Athanassiou A, Mele E (2015) Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J Mater Chem B 3:1583–1589

    Article  PubMed  CAS  Google Scholar 

  • Liakos IL, Holban AM, Carzino R, Lauciello S, Grumezescu AM (2017) Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nano 7:84

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed growth. Environ Pollut 150:243–250

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    PubMed  CAS  Google Scholar 

  • Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465

    Article  CAS  Google Scholar 

  • Liu XM, Zhang FD, Feng ZB, Zhang SQ, He XS, Wang RF, Wang YJ (2010) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Journal of Plant Nutrition and Fertilizer Sci 11(4):551

    CAS  Google Scholar 

  • Liu X, He B, Xu Z, Yin M, Yang W, Zhang H, Cao J (2015) A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control. Nanoscale 7:445–449

    Article  PubMed  CAS  Google Scholar 

  • Lizundia E, Goikuria U, Vilas JL, Cristofaro F, Bruni G, Fortunati E, Armentano I, Visai L, Torre L (2018) Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromolecules 19:2618–2628

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Sun R, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253

    PubMed  CAS  Google Scholar 

  • Lu W, Lu ML, Zhang QP, Tian YQ, Zhang ZX, Xu HH (2013) Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: synthesis, characterization, and in vitro evaluation. J Polym Sci Part A Polym Chem 51:3932–3940

    Article  CAS  Google Scholar 

  • Lyons K (2010) Nanotechnology: transforming food and the environment. Food First Backgr 16:1–4

    Google Scholar 

  • Ma L, Liu C, Qu C, Liu J, Gao F, Hong F (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 1222:168–178. https://doi.org/10.1007/s12011-007-8069-4

    Article  CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumonia. J Nanostr Chem 3:2013

    Article  Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash P, Fraceto LF, de Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:23854. https://doi.org/10.1038/srep23854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous sterilization system that uses photo semiconductor powders. Appl Environ Microbiol 54:1330–1333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maysinger D (2007) Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 5(15):2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016aa) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clea Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena RS, Gogoi N, Kumar S (2016bb) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena BL, Fagodiya RK, Parjapat K, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018) Legume green manuring: an option for soil sustainability. In: Meena RS, Das A, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 387–408. https://doi.org/10.1007/978-981-13-0253-4_12

    Chapter  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018a) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regula 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Bohra JS, Lal R, Yadav GS, Pandey A (2019) Response of alley cropping-grown sesame to lime and Sulphur on yield and available nutrient status in an acidic soil of eastern India. Energ Ecol Environ 4:65–74

    Article  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020a) Impact of agrochemicals on soil microbiota and management: a review. Land 9(34):1–22. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83. https://doi.org/10.1016/j.ecoenv.2014.05.009

    Article  PubMed  CAS  Google Scholar 

  • Moon R, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nakano R, Ishiguro H, Yao Y, Kajioka J, Fujishima A, Sunada K, Minoshimo M, Hashimoto K, Kubota Y (2012) Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci 11:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Ng EP, Chow JH, Mukti RR, Muraza O, Chuan Ling T, Wong KL (2017) Hydrothermal synthesis of zeolite from bamboo leaf biomass and its catalytic activity in cyanoethylation of methanol under autogenic pressure and air conditions. Mater Chem Phys 201:78–85

    Article  CAS  Google Scholar 

  • Nguyen TNQ, Le VA, Hua QC, Nguyen TT (2015) Enhancing insecticide activity of anacardic acid by intercalating it into mgal layered double hydroxides nanoparticles. Institut für Abfallwirtschaft und Altlasten, Fakultät Umweltwissenschaften, Technische Universität Dresden, Dresden

    Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K (2005) Report from the I.R.F.S.I.N.T.S.W. principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening. Toxicology 2:1–35

    Google Scholar 

  • Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558

    Article  CAS  Google Scholar 

  • Patil SA (2009) Economics of agriculture poverty: nano-bio solutions. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  CAS  Google Scholar 

  • Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, Wilson M (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    Article  PubMed  CAS  Google Scholar 

  • Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasanna BM (2007) Nanotechnology in agriculture. I.A.R.I, New Delhi, pp 111–118. ICAR National Fellow, Division of Genetics

    Google Scholar 

  • Prashanth P, Raveendra R, Krishna RH, Ananda S, Bhagya N, Nagabhushana B, Lingaraju K, Naika HR (2015) Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J Asian Cera Soc 3:345–351

    Article  Google Scholar 

  • Priester JH et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 0937:E2451–E2456

    Article  Google Scholar 

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57

    Article  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res Acta 46(3):834–843

    Article  CAS  Google Scholar 

  • Racuciu M, Creanga DE (2006) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52(3–4):395–402

    Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Zahir AA, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, Spectrochim. Acta Mol Biomol Spectrosc 91:23–29

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 12:1584–1594

    Article  CAS  Google Scholar 

  • Rangaraj S, Venkatachalam R (2017) A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Appl Nanosci 7:145–153

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  PubMed  CAS  Google Scholar 

  • Rizal G, Karki S, Thakur V, Chatterjee J, Coe RA, Wanchana S, Quick WP (2012) Towards a C4 rice. Asian J Cell Biol 7:13–31

    Article  CAS  Google Scholar 

  • Roberts TL (2009) The role of fertilizer in growing the world’s food. Better Crops Plant Food 93:12–15

    Google Scholar 

  • Roy A, Gauri SS, Bhattacharya M, Bhattacharya J (2013) Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol 9:1570–1578

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations., 2007, In: Ishaaya I, Nauen R, Horowitz AR, editors. Insecticides design using advanced technologies Netherlands: Springer-Verlag. p. 1-32. Schaad NW, Opgenn.

    Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Meth 54:177–182

    Article  CAS  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809

    Article  PubMed  CAS  Google Scholar 

  • Scholes GD, Sargent EH (2014) Bioinspired materials: boosting plant biology. Nat Mater 13(4):329–331

    Article  PubMed  CAS  Google Scholar 

  • Sharif Hossain AB, Ibrahim NA, Al Eissa MS (2016) Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass. Data Brief 8:286–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Meena RS, Kumar S, Gurjar DS, Yadav GS, Kumar S (2019) Growth, yield and quality of cluster bean (Cyamopsis tetragonoloba) as influenced by integrated nutrient management under alley cropping system. Indian J Agricul Sci 89(11):1876–1880

    CAS  Google Scholar 

  • Shevchenko S, Burkhardt M, Sheval EV, Natashina UA, Grosse C, Nikolaev AL, Gopin AV, Neugebauer U, Kudryavtsev AA, Sivakov V, Osminkina LA (2017) Antimicrobial effect of biocompatible silicon nanoparticles activated using therapeutic ultrasound. Langmuir 33(10):2603–2609

    Article  PubMed  CAS  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2(2):112–113

    Article  Google Scholar 

  • Silva Mdos S, Cocenza DS, Grillo R, de Melo NF, Tonello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Article  PubMed  CAS  Google Scholar 

  • Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR (2007) Silver as a disinfectant. Springer, Reviews of Environmental Contamination and Toxicology, pp 23–45

    Google Scholar 

  • Singh Nee Nigam P, Pandey A (2009) In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilisation. Springer, Dordrecht, p 466

    Chapter  Google Scholar 

  • Singh R, Singh R, Singh D, Mani JK, Karwasra SS, Beniwal MS (2010) Effect of weather parameters on Karnal bunt disease in wheat in Karnal region of Haryana. J Agrometeorol 12:99–101

    CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242

    Article  CAS  Google Scholar 

  • Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24:7457–7464

    Article  PubMed  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interf Sci 275(1):177–182

    Article  CAS  Google Scholar 

  • Song MR, Cui SM, Gao F, Liu YR, Fan CL, Lei TQ, Liu DC (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37:258–260

    Article  CAS  Google Scholar 

  • Stephenson GR (2003) Pesticide use and world food production: risks and benefits. ACS Publications, Washington, DC

    Google Scholar 

  • Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81:887–893

    CAS  Google Scholar 

  • Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y, Zheng H, He G, Yin Y (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114

    Article  PubMed  CAS  Google Scholar 

  • Sunkar S, Valli Nachiyar C (2012) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Glob J Med Res 12:43–49

    Google Scholar 

  • Sushil SN (2016) Emerging issues of plant protection in India. In: Natural resource management: ecological perspectives. International conference, SKUAST, Jammu

    Google Scholar 

  • Syngouna VI, Chrysikopoulos CV (2017) Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light. J Colloid Interface Sci 497:117–125

    Article  PubMed  CAS  Google Scholar 

  • Tepe O, Dursun AY (2014) Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environ Sci Pollut Res In 21(16):9911–9920

    Article  CAS  Google Scholar 

  • Thakur S, Thakur T, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12:1–5

    Google Scholar 

  • Torney F (2009) Nanoparticle mediated plant transformation. In: Emerging technologies in plant science research, Interdepartmental plant Physiol major fall seminar series physics. UBC Press, Vancouver, p 696

    Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  PubMed  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nanobiosensor. Biosens Bioelectron 22:2848–2853

    Article  PubMed  CAS  Google Scholar 

  • Viirlaid E, Riiberg R, Mäeorg U, Rinken T (2009) Glyphosate attachment on aminoactivated carriers for sample stabilization and concentration. Agron Res 13:1152–1159

    Google Scholar 

  • Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20:2416–2423. https://doi.org/10.1002/adfm.200901883

    Article  CAS  Google Scholar 

  • Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550

    Article  CAS  Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang JY, Dong XY, Yu JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cui H, Sun C, Zhao X, Cui B (2014) Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res Lett 9:2490

    PubMed  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wibowo D, Zhao CX, Peters BC, Middelberg AP (2014) Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62:12504–12511

    Article  PubMed  CAS  Google Scholar 

  • Xue H, Chen Y, Liu X, Qian Q, Luo Y, Cui M, Chen Y, Yang DP, Chen Q (2018) Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO2 hybrids. Mater Sci Eng C 82:197–203

    Article  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS (2020) Vehicular traffic effects on hydraulic properties of a Crosby silt loam under a long-term no-till farming in Central Ohio, USA. Soil and Till Res 202:104654

    Article  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  PubMed  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79(82):513–516

    Article  CAS  Google Scholar 

  • Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Zamani L, Mirjalili BBF, Zomorodian K (2014) Synthesis of benzimidazoles in the presence of nano-TiCl4. SiO2 as antifungal agents and tautomerism theoretical study of some products. Synthesis 62:3

    Google Scholar 

  • Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    Article  CAS  Google Scholar 

  • Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticles-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li M, Fan T, Xu Q, Wu Y, Chen C, Huang Q (2013) Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J Polym Res 20:107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, A. et al. (2020). Nanomaterials for Agriculture Input Use Efficiency. In: Kumar, S., Meena, R.S., Jhariya, M.K. (eds) Resources Use Efficiency in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6953-1_5

Download citation

Publish with us

Policies and ethics