Skip to main content

Endophytic Bacterial Applications in Phytoremediation of Organic Pollutants and Toxic Metals

  • Chapter
  • First Online:
Microbial Enzymes and Biotechniques

Abstract

The rising concentration of organic pollutants in soil and water matrices has always posed a global concern of health hazards, including humans. In the process of bioremediation, phytoremediation is supposed to be the best eco-friendly process. With the endophytes, phytoremediation promises efficient removal of organic pollutants and heavy metals. The mutual interaction of endophytes and plants provides shelter to microbes and growth promotion of plants with many more benefits. Their interaction leads to accumulation and removal of pollutants with minimum external chemical entities leaving wastewater. Although phytoremediation is a slow and time-consuming process, many plants showed excellent results in removing the organic pollutants and heavy metals combined with their endophytic communities. The enzymes of endophytes can change the chemical moieties of contaminants and make them less toxic to the environment, and hence they may be explored more with the help of ‘Omics.’ The Omics and systems biology approach may be useful in future applications on the contaminated sites. This chapter provides collective information about the endophytic bacteria assisted phytoremediation and updates us to create an eco-friendly environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186(2):1568–1575

    CAS  PubMed  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14(1):35–47

    PubMed  Google Scholar 

  • Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegrad 85:331–336

    CAS  Google Scholar 

  • Aken BV, Stahl JD, Naveau H, Agathos SN, Aust SD (2000) Transformation of 2, 4, 6-trinitrotoluene (TNT) reduction products by lignin peroxidase (H8) from the white-rot basidiomycete Phanerochaetechrysosporium. Biorem J 4(2):135–145

    Google Scholar 

  • Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manag 93(1):113–120

    CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Mol Biol Rev 54(4):450–472

    CAS  Google Scholar 

  • Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92(6):688–694

    CAS  PubMed  Google Scholar 

  • Andreote FD, da Rocha UN, Araújo WL, Azevedo JL, van Overbeek LS (2010) Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek 97(4):389–399

    PubMed  PubMed Central  Google Scholar 

  • Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157(12):3347–3350

    CAS  PubMed  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47(3):229–236

    PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362

    Article  CAS  PubMed  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2015) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 2015:1–15

    Google Scholar 

  • Babu AG, Reddy MS (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219(1-4):3–10

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnusfirma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Bacon CW, Hinton DM (2007) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Plant-associated bacteria. Springer, Cham, pp 155–194

    Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588

    Article  CAS  PubMed  Google Scholar 

  • Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediation 11(5):416–424

    Article  CAS  PubMed  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47(7):729–743

    Article  CAS  Google Scholar 

  • Basu S, Rabara RC, Negi S, Shukla P (2018) Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol 36(5):499–510

    Article  CAS  PubMed  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41(1):46–53

    Article  CAS  Google Scholar 

  • Bell TH, Hassan SED, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M (2014a) Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J 8(2):331–343

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014b) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280

    Article  CAS  PubMed  Google Scholar 

  • Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R (2009) Auto-and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74(10):1321–1326

    Article  CAS  PubMed  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Boer SD, Copeman RJ (1974) Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Can J Plant Sci 54(1):115–122

    Article  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaetelaevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62(5):1597–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2(2):e00012–e00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns INA, Sutter K, Menge S, Neumann D, Krauss GJ (2001) Cadmium lets increase the glutathione pool in bryophytes. J Plant Physiol 158(1):79–89

    Article  CAS  Google Scholar 

  • Caballero A, Lázaro JJ, Ramos JL, Esteve-Núñez A (2005) PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7(8):1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobiumchlorophenolicum ATCC 39723. J Bacteriol 184(17):4672–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderón-Preciado D, Renault Q, Matamoros V, Cañameras N, Bayona JM (2012) Uptake of organic emergent contaminants in spath and lettuce: an in vitro experiment. J Agric Food Chem 60(8):2000–2007

    Article  CAS  PubMed  Google Scholar 

  • Cang L (2004) Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. J Environ Sci 16(3):371–374

    CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environ Sci Pollut Res 12(1):34–48

    Article  CAS  Google Scholar 

  • Chen SY, Lin JG (2001) Effect of substrate concentration on bioleaching of metal-contaminated sediment. J Hazard Mater 82(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Cline LC, Zak DR (2014) Dispersal limitation structures fungal community assembly in a long-term glacial chronosequence. Environ Microbiol 16(6):1538–1548

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry—glutathione–protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39(1):79–98

    Article  CAS  PubMed  Google Scholar 

  • Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    Article  CAS  PubMed  Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31(2):233–241

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    CAS  Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105(4):1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179(2):318–333

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59(3):405–413

    Article  CAS  PubMed  Google Scholar 

  • Fisher PJ, Petrini O, Scott HL (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol 122(2):299–305

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056–1071

    Article  CAS  Google Scholar 

  • Gagné S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa roots. Can J Microbiol 33(11):996–1000

    Article  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43(6):1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T, Campbell CD (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, Seib AM (1998) Phenotypic plasticity of Pseudomonas aureofaciens (lacZY) introduced into and recovered from field and laboratory microcosm soils. FEMS Microbiol Ecol 27(2):133–139

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72(7):1020–1026

    CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91(4):415–422

    CAS  PubMed  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Havelcová M, Melegy A, Rapant S (2014) Geochemical distribution of polycyclic aromatic hydrocarbons in soils and sediments of El-Tabbin, Egypt. Chemosphere 95:63–74

    Article  CAS  PubMed  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90(6):1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100(6):593–599

    Article  CAS  PubMed  Google Scholar 

  • Ho YN, Shih CH, Hsiao SC, Huang CC (2009) A novel endophytic bacterium, Achromobacter xylosoxidans, helps plants against pollutant stress and improves phytoremediation. J Biosci Bioeng 108(1):9

    Google Scholar 

  • Ho YN, Hsieh JL, Huang CC (2013) Construction of a plant–microbe phytoremediation system: Combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47

    CAS  PubMed  Google Scholar 

  • Hollis JP (1949) Bacteria in healthy potato tissue

    Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson SL, Banks MK, Schwab AP (2001) Phytoremediation of aged petroleum sludge. J Environ Qual 30(2):395–403

    CAS  PubMed  Google Scholar 

  • Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol 7:1488

    PubMed  PubMed Central  Google Scholar 

  • Imam J, Shukla P, Prasad Mandal N, Variar M (2017) Microbial interactions in plants: perspectives and applications of proteomics. Curr Protein Pept Sci 18(9):956–965

    CAS  PubMed  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21(2):125–131

    CAS  PubMed  Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265

    Google Scholar 

  • Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87

    PubMed  PubMed Central  Google Scholar 

  • Jutsz AM, Gnida A (2015) Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Arch Environ Protect\ 41(4):104–114

    Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78(9):3504–3507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Křen V (2006) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73(3):567–575

    CAS  PubMed  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13(3):241–248

    CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA (2007) Food web–specific biomagnification of persistent organic pollutants. Science 317(5835):236–239

    CAS  PubMed  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    CAS  PubMed  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013a) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    CAS  PubMed  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Mirza MS, Khan QM (2013b) Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil. Chemosphere 91(5):663–668

    CAS  PubMed  Google Scholar 

  • Khindaria A, Grover TA, Aust SD (1995) Reductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaetechrysosporium. Environ Sci Technol 29(3):719–725

    CAS  PubMed  Google Scholar 

  • Konlechner C, Türktaş M, Langer I, Vaculík M, Wenzel WW, Puschenreiter M, Hauser MT (2013) Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environ Pollut 178:121–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182(1-4):83–90

    CAS  Google Scholar 

  • Kumar V, Baweja M, Singh PK, Shukla P (2016) Recent developments in systems biology and metabolic engineering of plant–microbe interactions. Front Plant Sci 7:1421

    PubMed  PubMed Central  Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342

    CAS  Google Scholar 

  • Kumar M, Jaiswal S, Sodhi KK, Shree P, Singh DK, Agrawal PK, Shukla P (2019a) Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environ Int 124:448–461

    CAS  PubMed  Google Scholar 

  • Kumar M, Sodhi KK, Singh DK (2019b) Bioremediation of Penicillin G by Serratia sp. R1, and enzymatic study through molecular docking. Environ Nanotechnol Monit Manage 12:100246

    Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115(1):7–11

    Google Scholar 

  • Liu L, Jiang CY, Liu XY, Wu JF, Han JG, Liu SJ (2007) Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9(2):465–473

    CAS  PubMed  Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618

    PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    CAS  PubMed  Google Scholar 

  • Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang FX (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek 103(2):299–312

    PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    CAS  PubMed  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34(3):210–223

    Article  CAS  PubMed  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    Article  CAS  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Mackelprang R (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6(9):1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6(8):2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcinroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173(2):337–342

    Article  CAS  Google Scholar 

  • McLean KJ, Sabri M, Marshall KR, Lawson RJ, Lewis DG, Clift D, Quinn AM (2005) Biodiversity of cytochrome P450 redox systems. Biochem Soc Trans 33(4):796–801

    Article  CAS  PubMed  Google Scholar 

  • Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu (I) into phytochelatins. Biochem J 307(Pt 3):697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mena-Benitez GL, Gandia-Herrero F, Graham S, Larson TR, McQueen-Mason SJ, French CE, Bruce NC (2008) Engineering a catabolic pathway in plants for the degradation of 1, 2-dichloroethane. Plant Physiol 147(3):1192–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165(1-4):195–209

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9):808–811

    Article  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Sessitsch A (2013) Comparative genome analysis of Burkholderiaphytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Van der Lelie D, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29(7):539–556

    Article  CAS  PubMed  Google Scholar 

  • Musson G, McInroy JA, Kloepper JW (1995) Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Sci Tech 5(4):407–416

    Article  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40(4):355–361

    Article  CAS  Google Scholar 

  • Novotný Č, Vyas BRM, Erbanova P, Kubatova A, Šašek V (1997) Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol 42(2):136–140

    Article  Google Scholar 

  • Oliveira V, Gomes N, Almeida A, Silva A, Simões MM, Smalla K, Cunha  (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 23(6):1392–1404

    Article  CAS  PubMed  Google Scholar 

  • Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33(2):324–375

    Article  CAS  PubMed  Google Scholar 

  • Pandotra P, Raina M, Salgotra RK, Ali S, Mir ZA, Bhat JA et al (2018) Plant-bacterial partnership: a major pollutants remediation approach. In: Modern age environmental problems and their remediation. Springer, Cham, pp 169–200

    Google Scholar 

  • Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333(1):19–39

    Article  CAS  PubMed  Google Scholar 

  • Pau-Roblot C, Lequart-Pillon M, Apanga L, Pilard S, Courtois J, Pawlicki-Jullian N (2013) Structural features and bioremediation activity of an exopolysaccharide produced by a strain of Enterobacter ludwigii isolated in the Chernobyl exclusion zone. Carbohydr Polym 93(1):154–162

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Liu J, Gao Y, Chen Z (2013) Distribution of endophytic bacteria in Alopecurus aequalis sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS One 8(12):e83054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40(12):3054–3064

    Article  CAS  Google Scholar 

  • Pieper DH, dos Santos VAM, Golyshin PN (2004) Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 15(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Quadt-Hallmann A, Kloepper JW, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, de Bruijn FJ (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Cham, pp 81–98

    Chapter  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1(8-9):708–717

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1997) Azoarcus spp. and their interactions with grass roots. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Cham, pp 57–64

    Chapter  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17(1):29–54

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 19(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Samish Z, Etinger-Tulczynska R, Bick M (1963) The microflora within the tissue of fruits and vegetables. J Food Sci 28(3):259–266

    Article  Google Scholar 

  • Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17(2):82–84

    Article  CAS  PubMed  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111(8):1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwitzguébel JP, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica 53(4):209–237

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Hurek T (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22

    Article  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere. Adv Appl Microbiol 53:1–60

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeterior Biodegradation 62(2):88–95

    Article  CAS  Google Scholar 

  • Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16(2):1409–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla P (2019) Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian J Microbiol 59(4):401–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Schwab P (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67(6):2469–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63(2):128–135

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Imam J, Shukla P (2014) In silico approach in bioremediation. In: Microbial biodegradation and bioremediation. Elsevier, London, pp 421–432

    Chapter  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140(2):613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99(3):279–293

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44(2):162–167

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Su YH, Zhu YG (2007) Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environ Pollut 148(1):94–100

    Article  CAS  PubMed  Google Scholar 

  • Sun JL, Zeng H, Ni HG (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90(6):1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Weyens N, Vangronsveld J, van der Lelie D (2011) Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees. In: Endophytes of forest trees. Springer, Cham, pp 205–216

    Chapter  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Yoon JM, Aken BV (2007) Analysis of gene expression in poplar trees (Populus deltoides× nigra, DN34) exposed to the toxic explosive hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). Int J Phytoremediation 9(1):15–30

    Article  CAS  PubMed  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:31

    Article  Google Scholar 

  • Tanprasert P, Reed BM (1997) Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cell Dev Biol Plant 33(3):221–226

    Article  Google Scholar 

  • Tervet IW, Hollis JP (1948) Bacteria in the storage organs of healthy plants. Phytopathology 38(12):960–967

    Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64(3):317–325

    Article  CAS  PubMed  Google Scholar 

  • van der Lelie D, Barac T, Taghavi S, Vangronsveld J (2005) Response to Newman: new uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol 23(1):8–9

    Article  CAS  Google Scholar 

  • van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Vangronsveld J (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28(5):346–358

    Article  CAS  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62(9):1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61(2):207–215

    CAS  Google Scholar 

  • Wania F, Mackay D (1999) The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ Pollut 100(1):223–240

    CAS  PubMed  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’callaghan KJ, Kothari SL, Cocking EC (1997) Interactions of rhizobia with rice and wheat. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Cham, pp 115–122

    Google Scholar 

  • Wei J, Liu X, Wang Q, Wang C, Chen X, Li H (2014) Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene–lead polluted soil. Chemosphere 97:92–97

    CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    CAS  PubMed  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Vangronsveld J (2009c) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16(7):830–843

    CAS  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010a) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158(7):2422–2427

    CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, Van Der Lelie D, Vangronsveld J (2010b) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158(9):2915–2919

    CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S, Vangronsveld J (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediation 13(3):244–255

    CAS  PubMed  Google Scholar 

  • Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, van der Lelie D, Vangronsveld J (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments 13(1):176–188

    CAS  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42(3):252–258

    CAS  PubMed  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia HP (2004) Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54(3):345–353

    CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    CAS  Google Scholar 

  • Yang L, Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol Biochem 43(5):915–922

    CAS  Google Scholar 

  • Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58(3):255–261

    CAS  PubMed  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Loliummultiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184(1):523–532

    CAS  PubMed  Google Scholar 

  • Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159(10):2675–2683

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2006) Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. J Hazard Mater 137(3):1417–1423

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2007a) Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz× alba L.) metabolism. Arch Environ Contam Toxicol 52(4):503–511

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2007b) Differences in Michaelis–Menten kinetics for different cultivars of maize during cyanide removal. Ecotoxicol Environ Saf 67(2):254–259

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2007c) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res Int 14(7):510–517

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2008a) Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environ Sci Pollut Res 15(6):499–508

    CAS  Google Scholar 

  • Yu XZ, Gu JD (2008b) Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz). Ecotoxicol Environ Saf 70(2):216–222

    CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2008c) Effects of available nitrogen on the uptake and assimilation of ferrocyanide and ferricyanide complexes in weeping willows. J Hazard Mater 156(1-3):300–307

    Article  CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2008d) The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17(3):143–152

    Article  CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD (2009) Uptake, accumulation and metabolic response of ferricyanide in weeping willows. J Environ Monit 11(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD, Liu S (2007) Biotransformation and metabolic response of cyanide in weeping willows. J Hazard Mater 147(3):838–844

    Article  CAS  PubMed  Google Scholar 

  • Yu XZ, Gu JD, Li TP (2008) Availability of ferrocyanide and ferricyanide complexes as a nitrogen source to cyanogenic plants. Arch Environ Contam Toxicol 55(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  PubMed  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A 101(44):15811–15816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediation 15(1):51–64

    Article  CAS  PubMed  Google Scholar 

  • Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014a) Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere 113:9–16

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ni X, Liu J, Gao Y (2014b) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Clean Soil Air Water 42(3):306–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Dhaulaniya, A.S., Shree, P., Singh, D.K. (2020). Endophytic Bacterial Applications in Phytoremediation of Organic Pollutants and Toxic Metals. In: Shukla, P. (eds) Microbial Enzymes and Biotechniques. Springer, Singapore. https://doi.org/10.1007/978-981-15-6895-4_8

Download citation

Publish with us

Policies and ethics