Skip to main content

Biotechnological Approach for Enhancing Capability of Brassica oleracea var. italica Against Stresses Under Changing Climate

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

By drastic increment in frequency fluctuation of climatic phenomena worldwide which the consequences majorly negatively have been multifacetedly affecting world’s economy with agriculture section at the pinnacle, is threatening the food security of a large portion of growing population on the Earth to a dangerous level in addition to the percentage that already dealing with food inadequacy. The impacts on this section mainly targeting the productivity and quality of temperate vegetable crops (mainly negative and positive is some cases) and among them Brassicas unquestionably key crops that are an essential source of plant-based protein which increases the incidence of environmental stressors, high temperature, in particular, leads to yield losses to a large quantity since they are vernalization required, a low-temperature period to reach the reproduction phase. In case of the point, Broccoli (Brassica oleracea L. var. italica) a nutritionally and medicinally well-known staple vegetable that in the recent two or three decades has greatly mirrored the devastating effects of global warming owing to its supersensitive crud initiation period and degradation in the salability of heads as a result of heat stress which hopefully with the aim of biotechnology toolbox initial steps toward untwining the complex polygenetically regulated characteristics of heat tolerance and crud quality have been taken and lines of broccoli with non-vernalization requirements have been identified that could expand the broccoli cultivation to tropics. Putative QTLs associated with high-temperature resistance and crud initiation have been detected through gene pyramiding and molecular assistant selection aims to develop commercial cultivars. Gene transformation in broccoli to improve the capability of the current cultivars in addition to elevated CO2 scenario with its influences on broccoli have been studied extensively. The aim of this chapter is to reflect the result of studies concerning reaction and identifying the underlying genetic or protein bases involved in resistance to abiotic or biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akter A, Nishida N, Takada S, Itabashi E, Osabe K, Shea DJ, Fujimoto R (2018) Genetic and epigenetic regulation of vernalization in Brassicaceae. Brassica Germplasm: Characterization, Breeding and Utilization: 75

    Google Scholar 

  • Baenas N, Gómez-Jodar I, Moreno DA, García-Viguera C, Periago PM (2017) Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biol Technol 127:60–67

    Article  CAS  Google Scholar 

  • Béliveau R, Gingras D (2017) Foods to fight cancer: what to eat to reduce your risk. Dorling Kindersley Ltd

    Google Scholar 

  • Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, Williams M (2015) Feeding 9 billion by 2050–Putting fish back on the menu. Food Security 7(2):261–274

    Article  Google Scholar 

  • Björkman T, Pearson KJ (1998) High temperature arrest of inflorescence development in broccoli (Brassica oleracea var. italica L.). J Exp Bot 49(318):101–106

    Google Scholar 

  • Bottrell DG, Aguda RM, Gould F, Theunis W, Demayo C, Magalit VF (1992) Potential strategies for prolonging the usefulness of Bacillus thuringiensis in engineered rice. Korean J Appl Entomol 31

    Google Scholar 

  • Branham SE, Farnham MW (2019) Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica 215(2):34. https://doi.org/10.1007/s10681-018-2334-9

    Article  CAS  Google Scholar 

  • Branham SE, Stansell ZJ, Couillard DM, Farnham MW (2017) Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theor Appl Genet 130(3):529–538. https://doi.org/10.1007/s00122-016-2832-x

  • Broccoli suppliers wp, and global market information (2018) Broccoli suppliers, wholesale prices, and global market information. https://www.tridge.com/intelligences/brocolli

  • Cao J, Earle ED (2003) Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep 21(8):789–796. https://doi.org/10.1007/s00299-003-0589-6

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breeding 5(2):131–141. https://doi.org/10.1023/A:1009619924620

    Article  CAS  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206(1):307–313

    Article  CAS  PubMed  Google Scholar 

  • Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther J-G (2013) Introduction. In: Plattner K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York. http://www.climatechange2013.org/images/report/WG1AR5_Chapter01_FINAL.pdf

  • Davis M (2017) Are all fruits and vegetables created equal? The importance of plant genetics in cancer prevention

    Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Physiol 160(4):1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9(3):034011. https://doi.org/10.1088/1748-9326/9/3/034011

    Article  Google Scholar 

  • Dias JS (2019) Nutritional quality and effect on disease prevention of vegetables. Food and Nutrition Sciences 10(04):369

    Article  CAS  Google Scholar 

  • Dong J, Gruda N, Lam S, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00924

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos TC, Gomes TM, Pinto BAS, Camara AL, de Andrade Paes AM (2018) Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front Pharmacol 9

    Google Scholar 

  • El-Sayed AA, Nada MA, El-Fattah SMA (2018) Impacts of climate change on insect pests of main crops in Egypt. In: Sustainability of agricultural environment in Egypt: part II. Springer, pp 189–214

    Google Scholar 

  • Fanzo J, Davis C, McLaren R, Choufani J (2018) The effect of climate change across food systems: Implications for nutrition outcomes. Glob Food Secur 18:12–19

    Article  Google Scholar 

  • Fernandez-garcia N, Hernandez M, Casado-Vela J, Bru R, Elortza F, Hedden P, Olmos E (2011) Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress. Plant, Cell Environ 34(5):821–836. https://doi.org/10.1111/j.1365-3040.2011.02285.x

    Article  CAS  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE (1987) Insect tolerant transgenic tomato plants. Biotechnology 5(8):807

    CAS  Google Scholar 

  • Francisco M, Tortosa M, Martínez-Ballesta MdC, Velasco P, García-Viguera C, Moreno DA (2017) Nutritional and phytochemical value of Brassica crops from the agrifood perspective. Ann Appl Biol 170(2):273–285. https://doi.org/10.1111/aab.12318

    Article  CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Biotechnology 11(10):1151–1155. https://doi.org/10.1038/nbt1093-1151

    Article  CAS  PubMed  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419(1):64–77. https://doi.org/10.1016/j.ydbio.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 C global warming could be dangerous. Atmos Chem Phys 16(6):3761–3812

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013a) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013b) Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress: plant responses and applications in agriculture. InTech, Rijeka, pp 169–205

    Google Scholar 

  • Hassini I, Martinez-Ballesta MC, Boughanmi N, Moreno DA, Carvajal M (2017) Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci Hortic 226:141–151

    Article  CAS  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53(2):242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Xu Y (2015) Cellular and molecular mechanisms for elevated CO2–regulation of plant growth and stress adaptation. Crop Sci 55(4):1405–1424

    Article  CAS  Google Scholar 

  • Irwin J, Bird N, Richardson A, Sparrow P, Townsend T, Dean C, Coupland G, Dale P (2002) Control of the transition from vegetative to flowering mode in horticultural Brassicas. In: Abstracts of the 13th crucifer genetics workshop, California

    Google Scholar 

  • Irwin JA, Lister C, Soumpourou E, Zhang Y, Howell EC, Teakle G, Dean C (2012) Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biol 12(1):21. https://doi.org/10.1186/1471-2229-12-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458. https://doi.org/10.1080/07352689.2011.605739

    Article  Google Scholar 

  • Jiang M, Jiang JJ, He CM, Guan M (2016) Broccoli plants over-expressing a cytosolic ascorbate peroxidase gene increase resistance to downy mildew and heat stress. Journal of Plant Pathology 98(3):413–420

    Google Scholar 

  • Kałużewicz A, Krzesiński W, Knaflewski M (2009) Effect of temperature on the yield and quality of broccoli heads. Veg Crops Res Bullet 71:51–58

    Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38(7):1049–1063. https://doi.org/10.1007/s10529-016-2080-9

  • Lemoine NP, Doublet D, Salminen JP, Burkepile DE, Parker JD (2017) Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory. Ecology 98(7):1817–1828

    Article  PubMed  Google Scholar 

  • Li L, Song S, Nirasawa S, Hung Y-C, Jiang Z, Liu H (2018) Slightly acidic electrolyzed water treatment enhances the main bioactive phytochemicals content in broccoli sprouts via changing metabolism. J Agric Food Chem 67(2):606–614

    Article  Google Scholar 

  • Lin H-H, Lin K-H, Chen S-C, Shen Y-H, Lo H-F (2015) Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Bot Stud 56(1):18. https://doi.org/10.1186/s40529-015-0098-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Lee J, Tseng M, Lee C, Shen C, Wang C, Liou C, Shuang L, Paterson AH, Hwu K (2018) Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Sci Rep 8(1):13609. https://doi.org/10.1038/s41598-018-31987-1

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33(1):323–343

    Article  CAS  PubMed  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30

    Google Scholar 

  • Mann CC (2018) Can planet earth feed 10 billion people? The Atlantic

    Google Scholar 

  • Mark WF, Thomas B (2011) Breeding vegetables adapted to high temperatures: a case study with broccoli. HortScience Horts 46(8):1093–1097. https://doi.org/10.21273/HORTSCI.46.8.1093

    Article  Google Scholar 

  • Maynard D, Hochmuth G (2007) Vegetables and the vegetable industry. Knott’s Handbook for Vegetable Growers:1–53

    Google Scholar 

  • McDonald M, Warland J (2018) Vegetables and climate change. Agroclimatology: Linking Agriculture to Climate (agronmonogr60)

    Google Scholar 

  • McKeown A, Warland J, Mcdonald M, Hutchinson C (2004) Cool season crop production trends: a possible signal for global warming. Acta Horticulturae:241–248

    Google Scholar 

  • Medek DE, Schwartz J, Myers SS (2017) Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environ Health Perspect 125(8):087002

    Article  PubMed  PubMed Central  Google Scholar 

  • Metz TD (2001) Transgenic broccoli (Brassica oleracea var. italica) and cabbage (var. capitata). In: Bajaj YPS (ed) Transgenic crops II. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 69–86. https://doi.org/10.1007/978-3-642-56901-2_6

  • Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breeding 1(4):309–317. https://doi.org/10.1007/BF01248408

    Article  CAS  Google Scholar 

  • Miller C, Konsler T, Lamont W (1985) Cold stress influence on premature flowering of broccoli. HortScience

    Google Scholar 

  • Mora AA, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Mol Breed 8(1):1–9. https://doi.org/10.1023/A:1011913100783

    Article  CAS  Google Scholar 

  • Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJ, Cahalan RF, Cane MA, Colwell RR, Feng K, Franklin RS (2016) Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the earth and human systems. Natl Sci Rev 3(4):470–494

    PubMed  PubMed Central  Google Scholar 

  • Mourão I, Hadley P (1998) Environmental control of plant growth development and yield in broccoli (Brassica oleracea L. var. italica Plenk): crop responses to light regime. Acta Hort 459:71–78. https://doi.org/10.17660/ActaHortic.1998.459.6

    Article  Google Scholar 

  • Myers MB, Roberts JJ, White C, Stalker L (2019) An experimental investigation into quantifying CO2 leakage in aqueous environments using chemical tracers. Chem Geol 511:91–99

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2015b) Heat stress responses and thermotolerance in soybean. In: Miransari M (ed) Abiotic and biotic stresses in soybean production: soybean production, vol 1, 1st edn. Academic Press/Elsevier Inc, New York, USA, pp 261–284

    Google Scholar 

  • Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 7(1):84–89. https://doi.org/10.4161/rna.7.1.10501

    Article  CAS  PubMed  Google Scholar 

  • Nawaz H, Shad MA, Muzaffar S (2018) Phytochemical composition and antioxidant potential of Brassica. Brassica Germplasm: Characterization, Breeding and Utilization:7

    Google Scholar 

  • Omar SA, Fu QT, Chen MS, Wang GJ, Song SQ, Elsheery NI, Xu ZF (2011) Identification and expression analysis of two small heat shock protein cDNAs from developing seeds of biodiesel feedstock plant Jatropha curcas. Plant Sci 181(6):632–637. https://doi.org/10.1016/j.plantsci.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37(1):3–22

    Article  PubMed  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology (N Y) 8(10):939–943. https://doi.org/10.1038/nbt1090-939

    Article  CAS  Google Scholar 

  • Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. Bioscience 54(10):909–918

    Article  Google Scholar 

  • Raiola A, Errico A, Petruk G, Monti DM, Barone A, Rigano MM (2018) Bioactive compounds in brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules 23(1):15

    Article  Google Scholar 

  • Räsänen A, Juhola S, Nygren A, Käkönen M, Kallio M, Monge A, Kanninen M (2016) Climate change, multiple stressors and human vulnerability: a systematic review. Reg Environ Change 16:2291–2302. https://doi.org/10.1007/s10113-016-0974-7

    Article  Google Scholar 

  • Ravanfar SA, Aziz MA (2015) Shoot tip regeneration and optimization of Agrobacterium tumefaciens-mediated transformation of Broccoli (Brassica oleracea var. italica) cv. Green Marvel. Plant Biotechnol Rep 9(1):27–36. https://doi.org/10.1007/s11816-014-0340-5

  • Rehman SA, Kumar R (2018) Scenario of insect pests under changing climatic situations. Int J Chem Stud 6(3):77–81

    Google Scholar 

  • Romo CM, Tylianakis JM (2013) Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. PLoS ONE 8(3):e58136. https://doi.org/10.1371/journal.pone.0058136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblatt AE, Schmitz OJ (2016) Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol Evol 31(12):965–975

    Article  PubMed  Google Scholar 

  • Rumjaun AB, Borde B, Guilyardi E, Lescarmontier L, Matthews R, Niewöhner C, Point SP (2018) IPCC special report “Global Warming of 1.5 C”: summary for teachers. Office for Climate Education, Paris. https://www.ipcc.ch/site/assets

  • Šamec D, Salopek-Sondi B (2019) Cruciferous (Brassicaceae) vegetables. In: Nonvitamin and nonmineral nutritional supplements. Elsevier, pp 195–202

    Google Scholar 

  • Schmid I, Franzaring J, Müller M, Brohon N, Calvo O, Högy P, Fangmeier A (2016) Effects of CO2 enrichment and drought on photosynthesis, growth and yield of an old and a modern barley cultivar. J Agron Crop Sci 202(2):81–95

    Article  CAS  Google Scholar 

  • Schuur EA, McGuire AD, Schädel C, Grosse G, Harden J, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179

    Article  CAS  PubMed  Google Scholar 

  • Shahbandeh M (2019) Broccoli: fresh and processing market production value 2018. https://www.statista.com/statistics/1030612/us-market-broccoli-production-value/. Accessed 14 Nov 2019

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2018) QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage. Theor Appl Genet 131(4):917–928. https://doi.org/10.1007/s00122-017-3047-5

    Article  CAS  PubMed  Google Scholar 

  • Siddiq M, Uebersax MA (2018) Handbook of vegetables and vegetable processing. Wiley Online Library

    Google Scholar 

  • Stansell Z, Farnham M, Björkman T (2019) Complex horticultural quality traits in broccoli are illuminated by evaluation of the immortal BolTBDH mapping population. Front Plant Sci 10(1104). https://doi.org/10.3389/fpls.2019.01104

  • Su P-H, Li H-m (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146(3):1231. https://doi.org/10.1104/pp.107.114496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh S, Waly MI, Rahman MS (2018) Broccoli (Brassica oleracea) as a preventive biomaterial for cancer. In: Bioactive components, diet and medical treatment in cancer prevention. Springer, pp 75–87

    Google Scholar 

  • Tacke E, Salamini F, Rohde W (1996) Genetic engineering of potato for broad-spectrum protection against virus infection. Nat Biotechnol 14(11):1597

    Article  CAS  PubMed  Google Scholar 

  • Tan DKY, Birch CJ, Wearing AH, Rickert KG (2000) Predicting broccoli development: II. Comparison and validation of thermal time models. Scientia Horticulturae 86(2):89–101. doi:https://doi.org/10.1016/S0304-4238(00)00203-X

  • Teawkul P, Hwang S-Y (2019) Carbon dioxide—and temperature-mediated changes in plant defensive compounds alter food utilization of herbivores. J Appl Entomol 143(3):289–298. https://doi.org/10.1111/jen.12593

    Article  CAS  Google Scholar 

  • Tian Y, Tian Y, Luo X, Zhou T, Huang Z, Liu Y, Qiu Y, Hou B, Sun D, Deng H, Qian S, Yao K (2014) Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biol 14:226. https://doi.org/10.1186/s12870-014-0226-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018) Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci 115(26):6644–6649. https://doi.org/10.1073/pnas.1718031115

    Article  CAS  PubMed  Google Scholar 

  • Toreti A, Cronie O, Zampieri M (2019) Concurrent climate extremes in the key wheat producing regions of the world. Sci Rep 9(1):5493. https://doi.org/10.1038/s41598-019-41932-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132. https://doi.org/10.1016/j.copbio.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  • Viswakarma N, Bhattacharya R, Chakrabarty R, Dargan S, Bhat S, Kirti PB, Shastri NV, Chopra VL (2004) Insect resistance of transgenic broccoli (‘Pusa Broccoli KTS-1’) expressing a synthetic cryIA(b) gene. J Horticult Sci Biotechnol 79:182–188. https://doi.org/10.1080/14620316.2004.11511746

    Article  CAS  Google Scholar 

  • Wagoner WJ, Kellogg JA, Bestwick RK, Stamp JA (1992) Superior regeneration and Agrobacterium infectability of broccoli and cauliflower tissues and the identification of a procedure for the generation of transgenic plants. HortSci 27:620–621

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wida E (2019) This is America’s favorite vegetable. https://www.today.com/food/what-america-s-favorite-vegetable-green-giant-says-it-s-t156398. Accessed 14 Nov 2019

  • Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S (2015) Recent progress in the use of ‘omics technologies in brassicaceous vegetables. Front Plant Sci 6(244). https://doi.org/10.3389/fpls.2015.00244

  • Wurr DCE, Fellows JR, Phelps K, Reader RJ (1995) Vernalization in calabrese (Brassica oleracea var. italica): a model for apex development. J Exp Bot 46(10):1487–1496. https://doi.org/10.1093/jxb/46.10.1487

  • Xu H, Xie H, Wu S, Wang Z, He K (2019) Effects of elevated CO2 and increased N fertilization on plant secondary metabolites and chewing insect fitness. Front Plant Sci 10:739

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Datta A, Dagar JC (2019) Future research needs: way forward for combating salinity in climate change scenario. In: Dagar JC, Yadav RK, Sharma PC (eds) Research developments in saline agriculture. Springer Singapore, Singapore, pp 883–899. https://doi.org/10.1007/978-981-13-5832-6_31

  • Yifei Z, Yang D, Guijun W, Bin L, Guangnan X, Fajun C (2018) Effects of elevated CO2 on plant chemistry, growth, yield of resistant soybean, and feeding of a target lepidoptera pest, Spodoptera litura (Lepidoptera: Noctuidae). Environ Entomol 47(4):848–856

    Article  PubMed  Google Scholar 

  • Zaghdoud C, Carvajal M, Ferchichi A, del Carmen Martínez-Ballesta M (2016a) Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2. Sci Total Environ 571:763–771

    Article  CAS  PubMed  Google Scholar 

  • Zaghdoud C, Carvajal M, Moreno DA, Ferchichi A, del Carmen Martínez-Ballesta M (2016b) Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments. J Sci Food Agric 96(2):392–403. https://doi.org/10.1002/jsfa.7102

  • Zaghdoud C, Mota-Cadenas C, Carvajal M, Muries B, Ferchichi A, Martínez-Ballesta MdC (2013) Elevated CO2 alleviates negative effects of salinity on broccoli (Brassica oleracea L. var Italica) plants by modulating water balance through aquaporins abundance. Environ Exp Bot 95:15–24. https://doi.org/10.1016/j.envexpbot.2013.07.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Kordrostami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mafakheri, M., Kordrostami, M. (2020). Biotechnological Approach for Enhancing Capability of Brassica oleracea var. italica Against Stresses Under Changing Climate. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_16

Download citation

Publish with us

Policies and ethics