Skip to main content

Nanomedicines in Drug Delivery from Synthetic and Natural Sources to Their Clinical Applications

  • Chapter
  • First Online:
  • 474 Accesses

Abstract

In recent days, nanotechnology in the form of nanopharmaceuticals and nanostructured materials has found a significant niche in different spheres of pharmaceutical science, for instance, diagnostic imaging, gene therapy, drug delivery, immunotherapy, microsurgery and dentistry. The polymer-based nanopharmaceuticals have relatively gained the interest of researchers lately, by virtue of their tuneable characteristics to achieve the intended response in targeted drug delivery. This chapter lays special prominence to the inclusion of synthetic and natural biopolymers in nanomedicines. Synthetic biopolymers have been found competent in delivering biologics besides several active pharmaceutical ingredients (API) in multiple clinical complications. This chapter additionally elucidates the employment of natural biopolymers in delivering API derived from both synthetic and natural source. The currently available FDA-approved biopolymer-based nanomedicines and those under clinical trials have been also enumerated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5(2):081–089

    Article  CAS  Google Scholar 

  2. Wanigasekara J, Witharana C (2016) Applications of nanotechnology in drug delivery and design - an insight. Curr Trends Biotechnol Pharm 10(1):78–91

    CAS  Google Scholar 

  3. Somwanshi SB, Dolas RT, Siddheshwar SS, Merekar AN, Godge RK, Pattan SR (2013) Nanomedicine drug delivery system. Asian J Biomed Pharm Sci 3(22):9–15

    Google Scholar 

  4. Moritz M, Geszke-Moritz M (2015) Recent developments in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med 24(5):749–758

    Article  PubMed  Google Scholar 

  5. Prasad M, Lambe UP, Brar B et al (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537

    Article  CAS  PubMed  Google Scholar 

  6. Keskinbora KH, Jameel MA (2018) Nanotechnology applications and approaches in medicine: a review. J Nanosci Nanotechnol 2(6):1–5

    Google Scholar 

  7. Mirza AZ, Siddiqui FA (2014) Nanomedicine and drug delivery: a mini review. Int Nano Lett 4:94

    Article  CAS  Google Scholar 

  8. Velavan P, Karuppusamy C, Venkatesan P (2015) Nanoparticles as drug delivery systems. J Pharm Sci Res 7(12):1118–1122

    Google Scholar 

  9. Heera P, Shanmugam S (2015) Nanoparticle characterization and application: an overview. Int J Curr Microbiol App Sci 4(8):379–386

    CAS  Google Scholar 

  10. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramsden JJ (2011) Nanodevices. Chapter 7. In: Nanotechnology: an introduction. William Andrew Publishing, Norwich, NY, pp 125–159

    Chapter  Google Scholar 

  12. Subramani K, Mehta M (2018) Nanodiagnostics in microbiology and dentistry. Chapter 19. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry, 2nd edn. William Andrew Publishing, Norwich, NY, pp 391–419

    Chapter  Google Scholar 

  13. Hu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M (2011) Nanodevices in diagnostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(1):11–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo GF, Chen WH, Liu Y, Lei Q, Zhuo RX, Zhang XZ (2014) Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep 4:6064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Xu L, Kuang H, Xu C, Kotov NA (2012) Dynamic nanoparticle assemblies. Acc Chem Res 45(11):1916–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tiruwa R (2015) A review on nanoparticles – preparation and evaluation parameters. Indian J Pharm Biol Res 4(2):27–31

    Article  Google Scholar 

  17. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70

    Article  PubMed  Google Scholar 

  18. Karuppusamy C, Venkatesan P (2017) Role of nanoparticles in drug delivery system: a comprehensive review. J Pharm Sci Res 9(3):318–325

    CAS  Google Scholar 

  19. Moghimi SM et al (2018) Nanomedicine: current status and future prospects. J Pharm Investig 48:43–60

    Article  CAS  Google Scholar 

  20. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60(Suppl. C):569–578

    Article  CAS  PubMed  Google Scholar 

  21. Lin G, Zhang H, Huang L (2015) Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm 12(2):314–321

    Article  PubMed  CAS  Google Scholar 

  22. Farjadian F, Ghasemi A, Omid Gohari O, Roointan A, Karimi M, Hamblin MR (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomed 14(1):93–126

    Article  CAS  Google Scholar 

  23. Syu WJ, Huang CC, Hsiao JK et al (2019) Co-precipitation synthesis of near-infrared Iron oxide Nanocrystals on magnetically targeted imaging and Photothermal cancer therapy via Photoablative protein denature. Nano 3(3):236–254

    Google Scholar 

  24. Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 11:1–12

    Article  CAS  PubMed  Google Scholar 

  25. Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5(77):1–26

    CAS  Google Scholar 

  26. Karimi M, Solati N, Amiri M et al (2015) Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv 12(7):1071–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elsayed MMA, Mostafa ME, Alaaeldin E et al (2019) Design and characterisation of novel Sorafenib-loaded carbon nanotubes with distinct tumour-suppressive activity in hepatocellular carcinoma. Int J Nanomedicine 14:8445–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khazi-Syed A, Hasan MT, Campbell E, Rodriguez RG, Naumov AV (2019) Single-walled carbon nanotube assisted antibiotic delivery and imaging in S. epidermidis strains addressing antibiotic resistance. Nano 9(1685):1–16

    Google Scholar 

  29. Kumar HK, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic nanoparticle: a review. Biomed J Sci Tech Res 4(2):3765–3775

    Google Scholar 

  30. Garrido C, Simpson CA, Dahl NP et al (2015) Gold nanoparticles to improve HIV drug delivery. Future Med Chem 7(9):1097–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong PV, Ha CH, Binh LT, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel shaped silver nanoparticles. Int Nano Lett 2:9

    Article  Google Scholar 

  32. Reddy LS, Nisha MM, Joice M, Shilpa PN (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumonia. Pharm Biol 52(11):1388–1397

    Article  CAS  PubMed  Google Scholar 

  33. Neves LFF, Duan J, Voelker A et al (2016) Preparation and optimization of anionic liposomes for delivery of small peptides and cDNA to human corneal epithelial cells. J Microencapsul 33(4):391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Sun J, Lu Y et al (2013) Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors. Int J Nanomedicine 8:1573–1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mock JN, Costyn LJ, Wilding SL, Arnold RD, Cummings BS (2013) Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol (Camb) 5(1):172–182

    Article  CAS  Google Scholar 

  36. Nagavarma BVN, Yadave HKS, Ayaz A, Vasudha LS, Shivakumar HG (2012) Different techniques for preparation of polymeric nanoparticles- a review. Asian J Pharm ClinRes 5(3):16–23

    CAS  Google Scholar 

  37. Mansour HM, Sohn MJ, Ghananeem AA, DeLuca PP (2010) Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 201(1):3298–3322

    Article  CAS  Google Scholar 

  38. Gandhi KJ, Deshmane SV, Biyani KR (2012) Polymers in pharmaceutical drug delivery system: a review. Int J Pharm Sci Rev Res 14(2):57–66

    CAS  Google Scholar 

  39. Desale SS, Zhang J, Bronich TK (2016) Synthetic polymer-based nanomaterials. In: Methods in pharmacology and toxicology. Humana Press, Totowa, pp 1–26

    Google Scholar 

  40. Jawahar N, Meyyanathan SN (2012) Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci 1(4):217–223

    Article  Google Scholar 

  41. Leyva-Gómez G, Piñón-Segundo E, Mendoza-Muñoz N, Zambrano-Zaragoza ML, Mendoza-Elvira S, Quintanar-Guerrero D (2018) Approaches in polymeric nanoparticles for vaginal drug delivery: a review of the state of the art. Int J Mol Sci 19(6):1549

    Article  PubMed Central  CAS  Google Scholar 

  42. Das Neves J, Nunes R, Machado A, Sarmento B (2015) Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev 92:53–70

    Article  CAS  PubMed  Google Scholar 

  43. Srivastava A, Yadav T, Sharma S, Nayak A, Kumari A, Mishra N (2016) Polymers in drug delivery. J Biosci Med 4:69–84

    CAS  Google Scholar 

  44. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6(1):41–58

    Article  CAS  PubMed  Google Scholar 

  45. Silva JD, Jesus S, Bernardi N, Colaco M, Borges O (2019) Poly(D,L-lactic acid) nanoparticle size reduction increases its immunotoxicity. Front Bioeng Biotech 7(137):1–10

    CAS  Google Scholar 

  46. Alsaheb RAA, Aladdin A, Othman NZ et al (2015) Recent applications of Polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7(12):51–63

    Google Scholar 

  47. Pawar RP, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical applications of poly (lactic acid). Recent Pat Regen Med 4(1):40–51

    CAS  Google Scholar 

  48. Khalil IR, Burns ATH, Radecka I et al (2017) Bacterial-derived polymer poly-γ-glutamic acid(γ-PGA)-based micro/nanoparticles as a delivery system for antimicrobials and other biomedical applications. Int J Mol Sci 18(313):1–18

    Google Scholar 

  49. Alsaheb RAA, Othman NZ, Malek RA, Leng OM, Aziz R, El Enshasy HA (2016) Polyglutamic acid applications in pharmaceutical and Bomedical industries. Pharm Lett 8(9):217–225

    Google Scholar 

  50. Araújo RV, Santos SDS, Igne Ferreira E, Giarolla J (2018) New advances in general biomedical applications of PAMAM dendrimers. Molecules 23(11):2849

    Article  PubMed Central  CAS  Google Scholar 

  51. Gupta U, Perumal O (2014) Dendrimers and its biomedical applications. In: Kumbar SG, Laurencin CT, Deng M (eds) Natural and synthetic biomedical polymers. Elsevier, Amsterdam, pp 243–257

    Chapter  Google Scholar 

  52. Householder KT, DiPerna DM, Chung EP et al (2015) Intravenous delivery of Camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479(2):374–380

    Article  CAS  PubMed  Google Scholar 

  53. Naeem M, Choi M, Cao J et al (2015) Colon-targeted delivery of budesonide using dual pH-and time-dependent polymeric nanoparticles for colitis therapy. Drug Des Devel Ther 9:3789–3799

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mishtry NP, Desai JL, Thakkar HP (2015) Formulation and evaluation of tacrolimus-loaded galactosylated poly (lactic-co-glycolic acid) nanoparticles for liver targeting. J Pharm Pharmacol 67(10):1337–1348

    Article  CAS  Google Scholar 

  55. Zhou H, Qian H (2018) Preparation and characterization of pH-sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. Drug Des Devel Ther 12:2601–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Badri W, Miladi K, Robin S et al (2017) Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: from preparation to ex vivo study. Pharm Res 34:1773–1783

    Article  CAS  PubMed  Google Scholar 

  57. Santos SS, Lorenzoni A, Ferreira LM et al (2013) Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C 33:1389–1394

    Article  CAS  Google Scholar 

  58. Maleki H, Dorkoosh F, Adabi M, Khosravani M, Arzani H, Kamali M (2017) Methotrexate-loaded PLGA nanoparticles: preparation, characterization and their cytotoxicity effect on human glioblastoma U87MG cells. Int J Med Nano Res 4(1):1–9

    Google Scholar 

  59. Kalluru R, Fenaroli F, Westmoreland D (2013) Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J Cell Sci 126(14):3034–3054

    Article  CAS  Google Scholar 

  60. Hao S, Wang B, Wang Y, Xu Y (2014) Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation. J Nanopart Res 16:2204

    Article  CAS  Google Scholar 

  61. Ray S, Ghosh S, Mandal S (2016) Development of Bicalutamide-loaded PLGA nanoparticles: preparation, characterization and in-vitro evaluation for the treatment of prostate cancer. Artif Cells Nanomed Biotechnol 45(5):944–954

    Article  PubMed  CAS  Google Scholar 

  62. Ramesh G, Kumar SS (2019) Formulation and characterization of noscapine-loaded polycaprolactone nanoparticles. Asian J Pharm 13(1):10–18

    CAS  Google Scholar 

  63. Posadowska U, Włoch MB, Pamuła E (2015) Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech 17(3):41–48

    PubMed  Google Scholar 

  64. Zia Q, Khan AA, Swaleha Z, Owais M (2015) Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Int J Nanomedicine 10:1769–1790

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Venkatesh DN, Baskaran M, Reddy Karri VVS, Mannemala SS, Radhakrishna K, Goti S (2015) Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect. Saudi Pharm J 23:667–674

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bhavna SM, Ali M et al (2014) Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm 40:278–287

    Article  CAS  Google Scholar 

  67. Anwer MK, Al-Shdefat R, Ezzeldin E, Alshahrani SM, Alshetaili AS, Iqbal M (2017) Preparation, evaluation and bioavailability studies of Eudragit coated PLGA nanoparticles for sustained release of Eluxadoline for the treatment of irritable bowel syndrome. Front Pharmacol 8(844):1–11

    Google Scholar 

  68. Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X (2013) Pluronic P105/F127 mixed micelles for the delivery of Docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine 8:73–84

    PubMed  PubMed Central  Google Scholar 

  69. Sotoudegan F, Amini M, Faizi M, Aboofazeli R (2016) Nimodipine-loaded Pluronic® block copolymer micelles: preparation, characterization, in-vitro and in-vivo studies. Iranian J Pharm Res 15(4):641–661

    CAS  Google Scholar 

  70. Zhou M, Yi Y, Liu L et al (2019) Polymeric micelles loading with Ursolic acid enhancing anti-tumor effect on hepatocellular carcinoma. J Cancer 10(23):5820–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Son GM, Kim HY, Ryu JH et al (2014) Self-assembled polymeric micelles based on hyaluronic acid-g-poly(D,L-lactide-co-glycolide) copolymer for tumor targeting. Int J Mol Sci 15:16057–16068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sim T, Kim JE, Hoang NH (2018) Development of a Docetaxel micellar formulation using poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) with successful reconstitution for tumor targeted drug delivery. Drug Deliv 25(1):1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li JJ, Deng JJ, Yuan JX et al (2017) Zonisamide-loaded triblock copolymer nanomicelles as a novel drug delivery system for the treatment of acute spinal cord injury. Int J Nanomedicine 12:2443–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ward SM, Skinner M, Saha B, Emrick T (2018) Polymer-temozolomide conjugates as therapeutics for treating glioblastoma. Mol Pharm 15:5263–5276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao C, Liu A, Santamaria CM et al (2019) Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nat Commun 10:2566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Katare YK, Daya RP, Gray CS et al (2015) Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol Pharm 12:3380–3388

    Article  CAS  PubMed  Google Scholar 

  77. Teow HM, Zhou Z, Najlah M, Yusof SR, Abbott NJ, D’Emanuele A (2013) Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarriers. Int J Pharm 441:701–711

    Article  CAS  PubMed  Google Scholar 

  78. Tseng YY, Wang YC, Su CH, Liu SJ (2014) Biodegradable vancomycin-eluting poly[(d,l)-lactide-co-glycolide] nanofibres for the treatment of postoperative central nervous system infection. Sci Rep 5:7849

    Article  CAS  Google Scholar 

  79. Liu D-Q, Cheng Z-Q, Feng Q-J, Li H-J, Ye S-F, Teng B (2018) Polycaprolactone nanofibres loaded with 20(S)-protopanaxadiol for in vitro and in vivo anti-tumour activity study. R Soc Open Sci 5:180137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Reda RI, Wen MM, El-Kamel AH (2017) Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine 12:2335–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang J, Wang X, Liu T, Liu S, Jing X (2016) Antitumor activity of electrospun polylactide nanofibres loaded with 5-fluorouracil and oxaliplatin against colorectal cancer. Drug Deliv 23(3):784–790

    Article  CAS  Google Scholar 

  82. Patnaik S, Gupta KC (2013) Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 10(2):215–228

    Article  CAS  PubMed  Google Scholar 

  83. Jin L, Zeng X, Liu M, Deng Y, He N (2014) Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4(3):240–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim J, Kang Y, Tzeng SY, Green JJ (2016) Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy. Acta Biomater 41:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mullick Chowdhury S, Wang T-Y, Bachawal S, Devulapally R, Choe JW, Abou Elkacem L et al (2016) Ultrasound-guided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs. J Control Release 238:272–280

    Article  CAS  PubMed  Google Scholar 

  86. Tang J, Chen JY, Liu J et al (2012) Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Int J Pharm 431:210–221

    Article  CAS  PubMed  Google Scholar 

  87. Pawar D, Mangal S, Goswami R, Jaganathan KS (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85(3 Pt A):550–559

    Article  CAS  PubMed  Google Scholar 

  88. Peng SF, Hsu HK, Lin CC, Cheng YM, Hsu KH (2017) Novel PEI/poly-glutamic acid nanoparticles for high efficient siRNA and plasmid DNA co-delivery. Molecules 22(1):1–16

    Article  CAS  Google Scholar 

  89. Sadeghpour H, Khalvati B, Entezar-Almahdi E et al (2018) Double domain Polyethylenimine based nanoparticles for integrin mediated delivery of plasmid DNA. Sci Rep 8:6842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Alkie TN, Yitbarek A, Taha-Abdelaziz K, Astill J, Sharif S (2018) Characterization of immunogenicity of avian influenza antigens encapsulated in PLGA nanoparticles following mucosal and subcutaneous delivery in chickens. PLoS One 13(11):1–18

    Article  CAS  Google Scholar 

  91. Liu H, Wang H, Yang W, Cheng Y (2012) Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc 134:17680–17687

    Article  CAS  PubMed  Google Scholar 

  92. Patil ML, Zhang M, Minko T (2011) Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 5(3):1877–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bahadoran A, Moeini H, Bejo MH, Hussein MZ, Omar AR (2016) Development of tat conjugated dendrimer for transdermal DNA vaccine delivery. J Pharm Pharm Sci 19(3):325–338

    Article  CAS  PubMed  Google Scholar 

  94. Patra JK, Das G, Fraceto LF et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  CAS  Google Scholar 

  95. Mohanty SK, Swamy MK, Sinniah UR et al (2017) Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019

    Article  PubMed Central  CAS  Google Scholar 

  96. Rodrigues T, Reker D, Schneider P et al (2016) Counting on natural products for drug design. Nat Chem 8(6):531–541

    Article  CAS  PubMed  Google Scholar 

  97. Yuan H, Ma Q, Ye L et al (2016) The traditional medicine and modern medicine from natural products. Molecules 21:559

    Article  PubMed Central  CAS  Google Scholar 

  98. Namdari M, Eatemadi A, Soleimaninejad M et al (2017) A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed Pharmacother 87:321–331

    Article  CAS  PubMed  Google Scholar 

  99. Bonifacio BV, da Silva PB, dos MA et al (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1

    Article  PubMed  CAS  Google Scholar 

  100. Torres FG, Troncoso OP, Pisani A et al (2019) Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci 20:5092

    Article  CAS  PubMed Central  Google Scholar 

  101. Mogosanu GD, Grumezescu AM, Bejenaru LE, Bejenaru C (eds) (2016) Natural and synthetic polymers for drug delivery and targeting. Nanobiomaterials in drug delivery, 1st edn. William Andrew, Norwich, NY, pp 229–284

    Google Scholar 

  102. Bangar B, Shinde N, Deshmukh S et al (2014) Natural polymers in drug delivery development. Res J Pharm Dos Forms Technol 6(1):54–57

    Google Scholar 

  103. Kaushik K, Sharma RB, Agarwal S (2016) Natural polymers and their applications. Int J Pharm Sci Rev Res 37(2):30–36

    CAS  Google Scholar 

  104. Benabid FZ, Zouai F (2016) Natural polymers: cellulose, chitin, chitosan, gelatin, starch, carrageenan, xylan and dextran. Alg J Nat Prod 4(3):348–357

    Google Scholar 

  105. Dheer D, Arora D, Jaglan S et al (2017) Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 25(1):1–16

    Article  CAS  PubMed  Google Scholar 

  106. Zhang H, Wu F, Li Y et al (2016) Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone. Beilstein J Nanotechnol 7:1861–1870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zhang L, Hu Y (2019) Alphastatin-loaded chitosan nanoparticle preparation and its antiangiogenic effect on lung carcinoma. Int J Polym Sci 2019:2751384

    Google Scholar 

  108. Debnath SK, Saisivam S, Debanth M et al (2018) Development and evaluation of chitosan nanoparticles based dry powder inhalation formulations of prothionamide. PLoS One 13(1):e0190976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Esfandiaria F, Motazediana MH, Asgari Q et al (2019) Paromomycin-loaded mannosylated chitosan nanoparticles: synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop 197:105072

    Article  CAS  Google Scholar 

  110. Maluin FN, Hussein MZ, Yusof NA et al (2019) Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating ganoderma disease in oil palm. Molecules 24:2498

    Article  CAS  PubMed Central  Google Scholar 

  111. Bhatta A, Krishnamoorthy G, Marimuthu N et al (2019) Chlorin e6 decorated doxorubicin encapsulated chitosan nanoparticles for photo-controlled cancer drug delivery. Int J Biol Macromol 136:951–961

    Article  CAS  PubMed  Google Scholar 

  112. Santhosha S, Mukherjee D, Anbu J et al (2019) Improved treatment efficacy of risedronate functionalized chitosan nanoparticles in osteoporosis: formulation development, in vivo, and molecular modelling studies. J Microencapsul 36(4):338–355

    Article  CAS  Google Scholar 

  113. Sharma M, Sharma R, Jain DK et al (2019) Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: optimization and pharmacokinetic study. Int J Biol Macromol 135:246–260

    Article  CAS  PubMed  Google Scholar 

  114. Kumar M, Upadhayay P, Shankar R et al (2019) Chlorpheniramine maleate containing chitosan-based nanoparticle-loaded thermosensitive in situ gel for management in allergic rhinitis. Drug Deliv Transl Res 9(6):1017–1026

    Article  CAS  PubMed  Google Scholar 

  115. Qadi SA, Grenha A, Recio DC et al (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations. J Control Release 157:383–390

    Article  CAS  Google Scholar 

  116. Xua J, Mac L, Liu Y et al (2012) Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int J Biol Macromol 50(2):438–443

    Article  CAS  Google Scholar 

  117. Zaki NM, Hafez MM (2012) Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular salmonella typhimurium. AAPS PharmSciTech 13(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fazil M, Md S, Haque S et al (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1):6–15

    Article  CAS  PubMed  Google Scholar 

  119. Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Goncalves LMD (2017) Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 15:370

    Article  PubMed Central  CAS  Google Scholar 

  120. Wang Y, Qian J, Yang M et al (2019) Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan- based nanoparticles for in-vitro synergistic combination chemotherapy for breast cancer. Carbohydr Polym 225:15206

    Google Scholar 

  121. Zhang W, Xu W, Lan Y et al (2019) Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int J Nanomedicine 14:5287–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Deng X, Cao M, Zhang J et al (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35:4333–4344

    Article  CAS  PubMed  Google Scholar 

  123. Abourehab MAS (2019) Hyaluronic acid modified risedronate and teriparatide co-loaded nanocarriers for improved Osteogenic differentiation of osteoblasts for the treatment of osteoporosis. Curr Pharm Des 25(27):2975–2988

    Article  CAS  PubMed  Google Scholar 

  124. Liu S, Yang S, Ho PC (2018) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81

    Article  PubMed  Google Scholar 

  125. Anitha A, Chennazhi KP, Nair SV et al (2012) 5-flourouracil loaded N, O carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J Biomed Nanotechnol 8(1):29–42

    Article  CAS  PubMed  Google Scholar 

  126. Snima KS, Jayakumar R, Unnikrishnan AG et al (2012) O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym 89(3):1003–1107

    Article  CAS  PubMed  Google Scholar 

  127. Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int J Pharm 456:31–40

    Article  CAS  PubMed  Google Scholar 

  128. Jaffar MHM, Hamid KA (2019) Chitosan-coated alginate nanoparticles enhanced absorption profile of insulin via Oral administration. Curr Drug Deliv 16(7):672–686

    Article  CAS  Google Scholar 

  129. Nagarwal RC, Kumar R, Pandit JK (2012) Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 47(4):678–685

    Article  CAS  PubMed  Google Scholar 

  130. Orasugh JT, Saha NR, Sarkar G et al (2018) Synthesis of methylcellulose/cellulose nano-crystals nanocomposites: material properties and study of sustained release of ketorolac tromethamine. Carbohydr Polym 188:168–180

    Article  CAS  PubMed  Google Scholar 

  131. Chunga JY, Koa JH, Lee YJ et al (2018) Surfactant-free solubilization and systemic delivery of anti-cancer drug using low molecular weight methylcellulose. J Control Release 276:42–49

    Article  CAS  Google Scholar 

  132. Hoang B, Ernsting MJ, Tang WHS et al (2017) Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett 417:169–179

    Article  CAS  Google Scholar 

  133. Hoang B, Ernsting MJ, Murakami M et al (2014) Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration resistant prostate cancer. Int J Pharm 471:224–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Roy A, Murakami M, Ernsting MJ et al (2014) Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein mediated multidrug resistance. Mol Pharm 11(8):2592–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ernsting MJ, Foltz WD, Undzys E et al (2012) Tumor-targeted drug delivery using MR-constrated docetaxel-carboxymethylcellulose nanoparticles. Biomaterials 33:3931–3941

    Article  CAS  PubMed  Google Scholar 

  136. Habashy SEE, Allam AN, Kamel AHE (2016) Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation. Int J Nanomedicine 11:2369–2380

    PubMed  PubMed Central  Google Scholar 

  137. Misra R, Mohanty S (2014) Self-assembled liquid-crystalline folate nanoparticles for in vitro controlled release of doxorubicin. Biomed Pharmacother 69:326–336

    Article  PubMed  CAS  Google Scholar 

  138. Taheri A, Mohammadi M (2015) The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem Biol Drug Des 86(1):102–106

    Article  PubMed  CAS  Google Scholar 

  139. Shanmugapriy K, Kim H, Kang HW (2019) A new alternative insight of nanoemulsion conjugated with κ-carrageenan for wound healing study in diabetic mice: In vitro and in vivo evaluation. Eur J Pharm Sci 133:236–250

    Article  CAS  Google Scholar 

  140. Roy S, Rhim JW (2019) Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf B: Biointerfaces 176:317–324

    Article  CAS  PubMed  Google Scholar 

  141. Alp E, Damkaci F, Guven E et al (2019) Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 14:1335–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Najafi SHM, Baghaie M, Ashori A (2016) Preparation and characterization of acetylated starch nanoparticles as drug carrier: ciprofloxacin as a model. Int J Biol Macromol 87:48–54

    Article  CAS  Google Scholar 

  143. El-Naggar ME, El-Rafiea MH, El-Sheikha MA et al (2015) Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int J Biol Macromol 81:718–729

    Article  CAS  PubMed  Google Scholar 

  144. Han F, Gao C, Liu M (2013) Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers. J Nanosci Nanotechnol 13(10):6996–7007

    Article  PubMed  Google Scholar 

  145. Marto J, Gouveia LF, Goncalves LM et al (2018) Design of minocycline-containing starch nanocapsules for topical delivery. J Microencapsul 35(4):344–356

    Article  CAS  PubMed  Google Scholar 

  146. Marto J, Ruivo E, Lucas SD et al (2018) Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur J Pharm Biopharm 127:1–11

    Article  CAS  PubMed  Google Scholar 

  147. Fang Y, Wang H, Dou HJ et al (2018) Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int J Nanomedicine 13:5673–5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Song Y, Lou B, Cheng J et al (2016) Redox-responsive amphipathic dextran nanomicelles for solid tumor therapy. J Biomed Nanotechnol 12(12):2083–2096

    Article  CAS  PubMed  Google Scholar 

  149. Sona S, Shina S, Rao V et al (2017) Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int J Biol Macromol 110:406–415

    Article  CAS  Google Scholar 

  150. Kiani M, Tekie FSM, Dinarvand M et al (2016) Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study. Mater Sci Eng C 62:771–778

    Article  CAS  Google Scholar 

  151. Heoa R, You DG, Um W et al (2017) Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials 131:15–26

    Article  CAS  Google Scholar 

  152. Goyal AK, Garg T, Rath G (2016) Chemotherapeutic evaluation of guar gum coated chitosan nanoparticle against experimental tuberculosis. J Biomed Nanotechnol 12:450–463

    Article  CAS  PubMed  Google Scholar 

  153. Singh S, Kotla NG, Tomar S et al (2015) A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil. Int J Nanomedicine 10:7175–7182

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kaur M, Malik B, Garg T et al (2015) Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv 22(3):328–334

    Article  CAS  PubMed  Google Scholar 

  155. Kaur R, Garg T, Malik B et al (2016) Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs. Drug Deliv 23(3):872–877

    Article  CAS  Google Scholar 

  156. Sharma M, Malik R, Verma A et al (2013) Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J Biomed Nanotechnol 9(1):96–106

    Article  CAS  PubMed  Google Scholar 

  157. Sarmah JK, Bhattacharjee SK, Roy S (2014) Biodegradable guar gum nanoparticles as carrier for tamoxifen citrate in treatment of breast Cancer. J Biomater Nanobiotechnol 5:220–228

    Article  CAS  Google Scholar 

  158. Fulendra F, Kumar MS (2014) Development and evaluation of enteric coated guar gum nanoparticles for amoebiasis. World J Pharm Pharm Sci 3(9):978–1015

    Google Scholar 

  159. Watkins R, Wu L, Zhang C et al (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055–6074

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Gunasekaran T, Haile T, Nigusse T et al (2014) Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 4(1):1–7

    Article  Google Scholar 

  161. Rajan RK, Hussein MZ, Fakurazi S et al (2019) Increased ROS scavenging and antioxidant efficiency of chlorogenic acid compound delivered via a chitosan nanoparticulate system for efficient In vitro visualization and accumulation in human renal adenocarcinoma cells. Int J Mol Sci 20:4667

    Article  CAS  Google Scholar 

  162. Safer AM, Leporatti S, Jose J et al (2019) Conjugation of EGCG and chitosan NPs as a novel Nano-drug delivery system. Int J Nanomedicine 14:8033–8046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Khan N, Bharali DJ, Adhami VM et al (2014) Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35(2):415–423

    Article  CAS  PubMed  Google Scholar 

  164. Chamcheu JC, Siddiqui IA, Adhami VM et al (2018) Chitosan-based nano-formulated (−)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int J Nanomedicine 13:4189–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Anter HM, Hashim IIA, Awadin W et al (2019) Novel chitosan oligosaccharide-based nanoparticles for gastric mucosal administration of the phytochemical “apocynin”. Int J Nanomedicine 14:4911–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Felice F, Zambito Y, Belardinelli E et al (2013) Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress. Eur J Pharm Sci 50(3):393–399

    Article  CAS  PubMed  Google Scholar 

  167. Rajendran R, Radhai R, Kotresh T et al (2013) Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym 91(2):613–617

    Article  CAS  PubMed  Google Scholar 

  168. Rezapour N, Rasekh B, Mofradnia SR et al (2019) Molecular dynamics studies of polysaccharide carrier based on starch in dental cavities. Int J Biol Macromol 121:616–624

    Article  CAS  PubMed  Google Scholar 

  169. Zhang X, Ma Y, Ma L et al (2019) Oral administration of chondroitin sulfate-functionalized nanoparticles for colonic macrophage-targeted drug delivery. Carbohydr Polym 223:115126

    Article  CAS  PubMed  Google Scholar 

  170. Boroujeni SE, Khoulenjani SB, Mirzadeh H et al (2017) Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym 168:14–21

    Article  CAS  Google Scholar 

  171. Akhtar F, Rizvi MMA, Kar SK (2012) Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 30:310–320

    Article  CAS  PubMed  Google Scholar 

  172. Anitha A, Maya S, Deepa N et al (2012) Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery. Aust J Biol Sci 23:1381–1400

    CAS  Google Scholar 

  173. Chuah LH, Billa N, Roberts CJ et al (2013) Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol 18(3):591–599

    Article  CAS  PubMed  Google Scholar 

  174. Ngwabebhoh FA, Erdagi SI, Yildiz U (2018) Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydr Polym 201:317–328

    Article  CAS  Google Scholar 

  175. Anirudhan TS, Binusreejayan (2016) Dextran based nanosized for the controlled and targeted delivery of curcumin to liver cancer cells. Int J Biol Macromol 88:222–235

    Article  CAS  PubMed  Google Scholar 

  176. Noronha CM, Carvalho SM, Lino RC et al (2014) Characterization of antioxidant methylcellulose film incorporated with a-tocopherol nanocapsules. Food Chem 159:529–535

    Article  CAS  PubMed  Google Scholar 

  177. Khampienga T, Aramwit P, Supapho P (2015) Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol 80:636–643

    Article  CAS  Google Scholar 

  178. Rashedi J, Haghjo AG, Abbasi MM et al (2019) Anti-tumor effect of quercetin loaded chitosan nanoparticles on induced colon cancer in wistar rats. Adv Pharm Bull 9(3):409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Joshi PN, Wangnoo S, Louis M (2015) Carboxymethyl cellulose based multifunctional targeted drug delivery platform for pancreatic cancer: Nanotheranostic potential and biocompatibility analysis. World J Pharm Sci 3(7):1347–1359

    CAS  Google Scholar 

  180. Nan W, Ding L, Chen H et al (2018) Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front Pharmacol 9:826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Tzankova V, Aluani D, Burdina MK et al (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579

    Article  CAS  PubMed  Google Scholar 

  182. Sahu S, Saraf S, Kaur CD et al (2013) Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci 16(13):601–609

    Article  CAS  PubMed  Google Scholar 

  183. Pedro RO, Hoffmann S, Pereira S et al (2018) Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur J Pharm Biopharm 13:203–210

    Article  CAS  Google Scholar 

  184. Li F, Jin H, Xiao J et al (2018) The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res Int 111:351–360

    Article  CAS  PubMed  Google Scholar 

  185. Farrag Y, Ide W, Montero B et al (2018) Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int J Biol Macromol 114:426–433

    Article  CAS  PubMed  Google Scholar 

  186. Aluani D, Tzankova V, Burdina MK et al (2017) Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 103:771–782

    Article  CAS  PubMed  Google Scholar 

  187. Bu L, Ganc LC, Guo XQ et al (2013) Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm 452:355–362

    Article  CAS  PubMed  Google Scholar 

  188. Karthikeyan S, Hoti SL, Prasad NR (2015) Resveratrol loaded gelatin nanoparticles synergistically inhibits cell 4 cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells. Biomed Pharmacother 70:274–282

    Article  CAS  PubMed  Google Scholar 

  189. Zu Y, Zhang Y, Wang W et al (2016) Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Drug Deliv 23(3):971–981

    Article  CAS  Google Scholar 

  190. Saralkar P, Dash AK (2017) Alginate nanoparticles containing curcumin and resveratrol: preparation, characterization, and in vitro evaluation against DU145 prostate cancer cell line. AAPS PharmSciTech 18(7):2814–2823

    Article  CAS  PubMed  Google Scholar 

  191. Freitasa GBLD, Almeida DJD, Carraro E et al (2018) Formulation, characterization, and in vitro/in vivo studies of capsaicin loaded albumin nanoparticles. Mater Sci Eng 93:70–79

    Article  CAS  Google Scholar 

  192. Zhang Y, Huang Z, Siaw EO et al (2016) Preparation and In-vitro-In vivo evaluation of sustained-release matrix pellets of capsaicin to enhance the oral bioavailability. AAPS Pharm Sci Tech 17(2):339–349

    Article  CAS  Google Scholar 

  193. Lu KY, Lin YC, Lu YT et al (2018) A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym 206:664–673

    Article  PubMed  CAS  Google Scholar 

  194. Wang Y, Wen B, Yu H et al (2018) Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol 14(8):1486–1495

    Article  CAS  PubMed  Google Scholar 

  195. Zhou Y, Liu SQ, Peng H et al (2015) In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol 28(1):34–43

    Article  CAS  PubMed  Google Scholar 

  196. Pooja D, Bikkina DJB, Kulhari H et al (2014) Fabrication, characterization and bio evaluation of silibinin loaded chitosan nanoparticles. Int J Biol Macromol 69:267–273

    Article  CAS  PubMed  Google Scholar 

  197. Sedef IK, Saglam N, Ozgenc M et al (2017) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662

    Article  CAS  Google Scholar 

  198. Pan-In P, Hanes J, Kim AJ et al (2014) Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles. Int J Nanomedicine 9:3677–3686

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  CAS  PubMed  Google Scholar 

  200. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther 42(12):742–755

    Google Scholar 

  201. Green MR, Manikhas GM, Orlov S (2006) Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17(8):1263–1268

    Article  CAS  PubMed  Google Scholar 

  202. Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu S et al (2012) A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol 52(6):798–808

    Article  CAS  PubMed  Google Scholar 

  203. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Choi YH, Han HK (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48:43–60

    Article  CAS  PubMed  Google Scholar 

  205. Sainz V, Conniot J, Matos AI et al (2015) Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 468:504–510

    Article  CAS  PubMed  Google Scholar 

  206. Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019:1–26

    Article  CAS  Google Scholar 

  207. United States National Library of Medicine, overview of clinical trials available via www.clinicaltrials.org

  208. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic: an update. Bioeng Transl Med 1:10–29

    Article  PubMed  PubMed Central  Google Scholar 

  209. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med. 4:1–16

    Article  Google Scholar 

  210. Caster JM, Patel AN, Zhang T, Wang A (2016) Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(1):1–18

    Google Scholar 

Download references

Acknowledgements

The Authors acknowledge the library and internet facilities provided by Dibrugarh University to prepare this manuscript. S.D. acknowledges the DURF to carry out this work. T.D. acknowledges the SRF ICMR to carry out this work.

Conflict of Interest

The authors declare that they have no conflict of interest. All the figures and tables are self-made and original.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singha, L.R., Das, P., Ahmed, N., Das, M.K., Das, S., Deka, T. (2020). Nanomedicines in Drug Delivery from Synthetic and Natural Sources to Their Clinical Applications. In: Das, M.K., Pathak, Y.V. (eds) Nano Medicine and Nano Safety. Springer, Singapore. https://doi.org/10.1007/978-981-15-6255-6_7

Download citation

Publish with us

Policies and ethics