Skip to main content

Antioxidant Defense Systems and Remediation of Metal Toxicity in Plants

  • Chapter
  • First Online:
Approaches to the Remediation of Inorganic Pollutants

Abstract

Over the past years, knowledge concerning bioremediation of heavy metals via fungi and bacteria has been extensively developed. Globally, there has been a notable improvement in the level of several toxic metals in different environments as well as soils due to industrial usage (anthropogenic activities) and causing a severe affair to plants and human health as well. Plants growing in such a contaminated environment show a decrease in plant growth, development, and yield; thereby, there is a high-priority to cope with the toxicity of heavy metals. Several heavy metals have been examined to give rise to oxidative injury in crops by the generation of freely available toxic O2 radicals. In the arrangement to tackle with the toxicity of heavy metals or to keep alive the level of some vital metals inside the range of physiological processes, the plant has evolved a wide range of multiplex mechanisms for metal tolerance. Plant and microorganisms possess various mechanisms for the bioremediation of contaminated environments, including soils. Different microorganisms have been favorably employed to decrease the toxic effects of heavy metals. Nevertheless, the critical action is to sectionalize and accumulate heavy metals in plant tissues; and antioxidant defense system plus enzymatic antioxidants (SOD, CAT, APX, GR, POD, GSTs, GPx, MDHAR, and DHAR) and non-enzymatic antioxidants (ASA, GSH, carotenoids, and tocopherols) have been declared. Additionally, chelation has emerged as prospect mechanisms, which widely control the metal resistance in crops via retaining the low level of freely available metal ions in the cytoplasm. Chelation of metals can be carried out by thiol compounds (GSH, PCs, and MTs), and non-thiol compounds (organic acids, amino acids, and their derivatives). Together, GSH plays a vital role in the bioremediation process as a chelating agent, due to its high kinship of metals, and it acts as a forerunner for PCs. Under metal stress, ROS and antioxidant defense systems generate signaling, where GSH can affect the cellular pathways associated with the acclimation and repair process to tackle with oxidative damage caused by metal stress. In this chapter, we have reviewed the recent advancement in the decisive role of antioxidant defense systems in the bioremediation system along with chelation of metalsĀ in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem A et al (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18:120

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393ā€“406

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ahmad P, Abdel Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    Google ScholarĀ 

  • Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216ā€“226

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Alqarawi AA, Abd Allah E, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9:802ā€“810

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Amooaghaie R, Golmohammadi S (2017) Effect of vermicompost on growth, essential oil, and health of Thymus vulgaris. Compost Sci Util 25:166ā€“177

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Anjum NA et al (2012) Modulation of glutathione and its related enzymes in plantsā€™ responses to toxic metals and metalloidsā€”a review. Environ Exp Bot 75:307ā€“324

    CASĀ  Google ScholarĀ 

  • Anjum NA et al (2015) Jacks of metal/metalloid chelation trade in plantsā€”an overview. Front Plant Sci 6:192

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ansari MKA, Ahmad A, Umar S, Iqbal M (2009) Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J Plant Interact 4:131ā€“136

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Asgher M, Khan MIR, Iqbal N, Masood A, Khan NA (2013) Cadmium tolerance in mustard cultivars: dependence on proline accumulation and nitrogen assimilation. J Funct Environ Bot 3:30ā€“42

    ArticleĀ  Google ScholarĀ 

  • AssunĆ§Ć£o AG, Schat H, Aarts MG (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351ā€“360

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Kołoczek H (2010) Chromium (VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077ā€“1083

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ayyobi H, Peyvast G-A (2014) The effects of cow manure vermicompost and municipal solid waste compost on peppermint (Mentha piperita L.) in Torbat-e-Jam and Rasht regions of Iran. Int J Recycl Organic Waste Agric 3:147ā€“153

    ArticleĀ  Google ScholarĀ 

  • Azad S, Vikineswary S, Ramachandran K, Chong V (2001) Growth and production of biomass of Rhodovulum sulfidophilum in sardine processing wastewater. Lett Appl Microbiol 33:264ā€“268

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniquesā€“classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Funct Plant Biol 28:497ā€“504

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Banakar R, Fernandez AA, Zhu C, Abadia J, Capell T, Christou P (2019) The ratio of phytosiderophores nicotianamine to deoxymugenic acid controls metal homeostasis in rice. Planta 250:1339ā€“1354

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Banerjee G, Pandey S, Ray AK, Kumar R (2015) Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226:91

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bhosale P, Gadre R (2001) Production of Ī²-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol 55:423ā€“427

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • BjĆørklund G, Crisponi G, Nurchi VM, Cappai R, Buha Djordjevic A, Aaseth J (2019) A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules 24:3247

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Blilou I, Bueno P, Ocampo JA, GarcĆ­a-Garrido JM (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722ā€“725

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Braha B, Tintemann H, Krauss G, Ehrman J, BƤrlocher F, Krauss G-J (2007) Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions. Biometals 20:93

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • BreierovĆ” E, Gregor T, MarovĆ” I, ČertĆ­k M, Kogan G (2008) Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass. Chem Biodivers 5:440ā€“446

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bulbovas P, Souza S, Esposito J, Moraes R, Alves E, Domingos M, Azevedo RA (2014) Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. SambaĆ­ba and TracajĆ”) cultivated in Amazonian areas. Environ Sci Pollut Res 21:10514ā€“10524

    ArticleĀ  CASĀ  Google ScholarĀ 

  • CalderĆ³n-Delgado IC, Mora-Solarte DA, Velasco-SantamarĆ­a YM (2019) Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Environ Monit Assess 191:399

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Casati P, Drincovich MF, Edwards GE, Andreo CS (1999) Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res 61:99ā€“105

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chakraborty S, Mukherjee A, Khuda-Bukhsh AR, Das TK (2014) Cadmium-induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: its possible role in cadmium bioremediation. Ecotoxicol Environ Saf 106:46ā€“53

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chaudhary K, Agarwal S, Khan S (2018) Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 39ā€“60

    ChapterĀ  Google ScholarĀ 

  • Cho Y-G, Rhee S-K, Lee S-T (2000) Influence of phenol on biodegradation of p-nitrophenol by freely suspended and immobilized Nocardioides sp. NSP41. Biodegradation 11:21ā€“28

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Clausen C, Green F III, Woodward B, Evans J, DeGroot R (2000) Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos. Int Biodeterior Biodegradation 46:69ā€“76

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319ā€“332

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211ā€“216

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159ā€“182

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Contreras L, Moenne A, Correa JA (2005) Antioxidant responses in Scytosiphon lomentaria (phaeophyceae) inhabiting copper-enriched coastal environments 1. J Phycol 41:1184ā€“1195

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can J Bot 76:238ā€“244

    Google ScholarĀ 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512ā€“517

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dalton DA (1995) Antioxidant defenses of plants and fungi. In: Oxidative stress and antioxidant defenses in biology. Springer, Boston, pp 298ā€“355

    ChapterĀ  Google ScholarĀ 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ding H et al (2014) Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels. J Agric Food Chem 62:10654ā€“10660

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338ā€“350

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Doshi H, Ray A, Kothari I (2008) Bioremediation potential of Chlorella: spectroscopic, kinetics, and SEM studies. Int J Phytoremediation 10:264ā€“277

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3:195ā€“199

    Google ScholarĀ 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    ArticleĀ  Google ScholarĀ 

  • Epelde L, Becerril JM, Barrutia O, Gonzalez-Oreja JA, Garbisu C (2010) Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut 158:1576ā€“1583

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Eprintsev AT, Fedorin DN, Dobychina MA, Igamberdiev AU (2018) Regulation of expression of the mitochondrial and peroxisomal forms of citrate synthase in maize during germination and in response to light. Plant Sci 272:157ā€“163

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529ā€“539

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ernst WH, Krauss GJ, Verkleij JA, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123ā€“143

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Estrella-GĆ³mez NE, Sauri-Duch E, Zapata-PĆ©rez O, SantamarĆ­a JM (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188ā€“194

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70:828ā€“832

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2:191ā€“206

    ArticleĀ  Google ScholarĀ 

  • Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7:2745ā€“2788

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fulthorpe RR, Rhodes AN, Tiedje JM (1996) Pristine soils mineralize 3-chlorobenzoate and 2, 4-dichlorophenoxyacetate via different microbial populations. Appl Environ Microbiol 62:1159ā€“1166

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Futaki S et al (2004) Arginine carrier peptide bearing Ni (II) chelator to promote cellular uptake of histidine-tagged proteins. Bioconjug Chem 15:475ā€“481

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609ā€“643

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • GarcĆ­a-SĆ”nchez M, Paradiso A, GarcĆ­a-Romera I, Aranda E, De Pinto M (2014) Bioremediation of dry olive-mill residue removes inhibition of growth induced by this waste in tomato plants. Int J Environ Sci Technol 11:21ā€“32

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ghelfi A, Gaziola S, Cia M, Chabregas S, Falco M, Kuser-FalcĆ£o P, Azevedo RA (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267ā€“280

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gill SS, Tuteja N (2010a) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26ā€“33

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gill SS, Tuteja N (2010b) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909ā€“930

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • GratĆ£o PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LE, Azevedo RA (2012) Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79ā€“96

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gu C-S, Liu L-Q, Deng Y-M, Zhu X-D, Huang S-Z, Lu X-Q (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IlMT2b gene enhances copper tolerance in Arabidopsis thaliana. Bull Environ Contam Toxicol 94:247ā€“253

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1ā€“11

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hamed SM, Selim S, Klƶck G, AbdElgawad H (2017) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19ā€“25

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Han H, Lee K (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210ā€“215

    Google ScholarĀ 

  • Han L, Zhao D, Li C (2015) Isolation and 2, 4-D-degrading characteristics of Cupriavidus campinensis BJ71. Braz J Microbiol 46:433ā€“441

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hasan M et al (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hasanuzzaman M, Bhuyan MB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020a) Selenium in Plants: Boon or Bane?. Environ Exp Bot 29:104170

    Google ScholarĀ 

  • Hasanuzzaman M, Bhuyan MH, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020b) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Google ScholarĀ 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261ā€“315

    ChapterĀ  Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522ā€“529

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloid Surf B 59:128ā€“133

    ArticleĀ  CASĀ  Google ScholarĀ 

  • He J et al (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in PopulusƗ canescens. Physiol Plant 143:50ā€“63

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hoque E (2003) Verfahren zum Abbau von Xenobiotika durch Pilzarten mit Monooxygenaseāˆ’/Dioxygenase-AktivitƤt in Gegenwart von Pilzen mit Glutathion-S-Transferase-AktivitƤt. German Patent DE 101:365

    Google ScholarĀ 

  • Hoque E, Pflugmacher S, Fritscher J, Wolf M (2007) Induction of glutathione-transferase in biofilms and germinating spores of Mucor hiemalis strain EH5 from cold sulfidic spring waters. Appl Environ Microbiol 73:2697ā€“2707

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google ScholarĀ 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227ā€“238

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hu S, Lau KW, Wu M (2001) Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci 161:987ā€“996

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Huang L et al (2008) Antioxidant defenses of mycorrhizal fungus infection against SO 2-induced oxidative stress in Avena nuda seedlings. Bull Environ Contam Toxicol 81:440

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655ā€“667

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huang R-H, Lu Y-M, Yang H-L, Huang W, Chen K (2016) Effects of arbuscular mycorrhizal fungi on caesium accumulation and the ascorbate-glutathione cycle of Sorghum halepense. Sci Asia 42:323ā€“331

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hussain J et al (2016) Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Sci Rep 6:36423

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Iannetta PP, Escobar NM, Ross HA, Souleyre EJ, Hancock RD, Witte CP, Davies HV (2004) Identification, cloning and expression analysis of strawberry (FragariaƗ ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase. Physiol Plant 121:15ā€“26

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Idi A, Nor MHM, Wahab MFA, Ibrahim Z (2015) Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14:271ā€“285

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Islam F et al (2016) Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 23:220ā€“233

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jadoon S, Malik A (2018) A review of formation, toxicity of reactive oxygen species by heavy metals and tolerance in plants. Int J Biochem Res Rev 21:1ā€“12

    ArticleĀ  Google ScholarĀ 

  • Jaeckel P, Krauss G, Menge S, Schierhorn A, RĆ¼cknagel P, Krauss G-J (2005) Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem Biophys Res Commun 333:150ā€“155

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jain S, Arnepalli D (2019) Biominerlisation as a remediation technique: a critical review. In: Geotechnical characterisation and geoenvironmental engineering. Springer, Singapore, pp 155ā€“162

    ChapterĀ  Google ScholarĀ 

  • Jakkeral SA, Kajjidoni S (2011) Root exudation of organic acids in selected genotypes under phosphorus deficient condition in blackgram (Vigna mungo L. Hepper). Karnataka J Agric Sci 24:316ā€“319

    Google ScholarĀ 

  • Jambhulkar HP, Juwarkar AA (2009) Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicol Environ Saf 72:1122ā€“1128

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jan AT, Azam M, Ali A, Haq QMR (2014) Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol 44:519ā€“560

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jayanthy V, Geetha R, Rajendran R, Prabhavathi P, Sundaram SK, Kumar SD, Santhanam P (2014) Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil. Saudi J Biol Sci 21:324ā€“333

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61ā€“75

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jin S, Cheng Y, Guan Q, Liu D, Takano T, Liu S (2006) A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnol Lett 28:1749ā€“1753

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145ā€“3175

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kapoor D, Rattan A, Gautam V, Bhardwaj R (2016) Alleviation of cadmium and mercury stress by supplementation of steroid hormone to Raphanus sativus seedlings. Proc Natl Acad Sci India Sect B Biol Sci 86:661ā€“666

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kohler J, HernĆ”ndez JA, Caravaca F, RoldĆ”n A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245ā€“252

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Krumova E, Kostadinova N, Miteva-Staleva J, Gryshko V, Angelova M (2016) Cellular response to Cu-and Zn-induced oxidative stress in Aspergillus fumigatus isolated from polluted soils in Bulgaria. Clean Soil Air Water 44:657ā€“666

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kumar G et al (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in Ī±-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079ā€“1089

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24:39ā€“51

    ArticleĀ  CASĀ  Google ScholarĀ 

  • LaVoie SP et al (2015) Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli. J Biol Inorg Chem 20:1239ā€“1251

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • LenĆ”rtovĆ” V, HolovskĆ” K, JavorskĆ½ P (1998) The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiol Ecol 27:319ā€“325

    ArticleĀ  Google ScholarĀ 

  • Li H et al (2014) Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) gaud. In the presence of exogenous citric and oxalic acids. J Environ Sci 26:2508ā€“2516

    ArticleĀ  Google ScholarĀ 

  • Li Y, Chen YY, Yang SG, Tian WM (2015) Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals. Biochem Biophys Res Commun 461:95ā€“101

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li J, Zhao Q, Xue B, Wu H, Song G, Zhang X (2019) Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stress. PLoS One 14:e0225373

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lin Q et al (2016) Low temperature induced changes in citrate metabolism in ponkan (Citrus reticulata Blanco cv. Ponkan) fruit during maturation. PLoS One 11:e0156703

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315ā€“317

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Liu S, Yang C, Xie W, Xia C, Fan P (2012a) The effects of cadmium on germination and seedling growth of Suaeda salsa. Proc Environ Sci 16:293ā€“298

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu Z, Wu Y, Lei C, Liu P, Gao M (2012b) Chromate reduction by a chromate-resistant bacterium, Microbacterium sp. World J Microbiol Biotechnol 28:1585ā€“1592

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99ā€“108

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu M, Li N, He Y, Ge Y, Song G (2018) Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine. Microchim Acta 185:147

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu Y et al (2019) Heterologous expression of the metallothionein PpMT2 gene from Physcomitrella patens confers enhanced tolerance to heavy metal stress on transgenic Arabidopsis plants. Plant Growth Regul:1ā€“10

    Google ScholarĀ 

  • Lopez-Bucio J, de la Vega OM, Guevara-Garcia A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lou HQ et al (2016) An oxalyl-CoA synthetase is involved in oxalate degradation and aluminum tolerance. Plant Physiol 172:1679ā€“1690

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ma XL, Ren J, Dai WR, Yang W, Bi YF (2018) Effects of aluminium on the root activity, organic acids and free proline accumulation of alfalfa grown in nutrient solution. N Z J Agric Res:1ā€“12

    Google ScholarĀ 

  • Maheshwari DK (2012) Bacteria in agrobiology: plant probiotics. Springer, Berlin

    BookĀ  Google ScholarĀ 

  • Mai P, Jacobsen OS, Aamand J (2001) Mineralization and co-metabolic degradation of phenoxyalkanoic acid herbicides by a pure bacterial culture isolated from an aquifer. Appl Microbiol Biotechnol 56:486ā€“490

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Majumdar R et al (2019) Contribution of maize polyamine and amino acid metabolism towards resistance against Aspergillus flavus infection and aflatoxin production. Front Plant Sci 10:692

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mala JGS, Sujatha D, Rose C (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170:235ā€“241

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martins MNC, de Souza VV, da Silva Souza T (2016) Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere 148:481ā€“486

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Megharaj M, Singh N, Kookana RS, Naidu R, Sethunathan N (2003) Hydrolysis of fenamiphos and its oxidation products by a soil bacterium in pure culture, soil and water. Appl Microbiol Biotechnol 61:252ā€“256

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Meghnous O, Dehimat L, Doumas P, Kassa-Laouar M, Mosbah F, Rached O (2019) Oxidative and antioxidative responses to antimony stress by endophytic fungus Aspergillus tubingensis isolated from antimony accumulator Hedysarum pallidum Desf. Biologia 74:1711ā€“1720

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mishra S, Srivastava S, Tripathi R, Govindarajan R, Kuriakose S, Prasad M (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25ā€“37

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mishra S, Jha A, Dubey R (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565ā€“577

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • MonferrĆ”n MV, Agudo JAS, Pignata ML, Wunderlin DA (2009) Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut 157:2570ā€“2576

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mukherjee A, Das D, Mondal SK, Biswas R, Das TK, Boujedaini N, Khuda-Bukhsh AR (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol Environ Saf 73:172ā€“182

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mukta RH, Khatun MR, Nazmul Huda A (2019) Calcium induces phytochelatin accumulation to cope with chromium toxicity in rice (Oryza sativa L.). J Plant Interact 14:295ā€“302

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193ā€“207

    ArticleĀ  Google ScholarĀ 

  • Musrati R, Kollarova M, Mernik N, Mikulasova D (1998) Malate dehydrogenase: distribution, function and properties. Gen Physiol Biophys 17:193ā€“210

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44ā€“54

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245ā€“255

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nawaz K et al (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5:177ā€“183

    Google ScholarĀ 

  • Nematian MA, Kazemeini F (2013) Accumulation of Pb, Zn, Cu and Fe in plants and hyperaccumulator choice in Galali iron mine area, Iran. Int J Agric Crop Sci 5:426

    Google ScholarĀ 

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36:791ā€“805

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Niu Z, Sun L, Sun T (2010) Relationships between changes of three organic acids (oxalic acid, citric acid and tartaric acid) and phytoextration by Sunflower (Helianthus annuus L.) in sand cultures contaminated with cadmium and lead. In: International conference on digital manufacturing & automation. IEEE, pp 149ā€“153

    Google ScholarĀ 

  • Noctor G et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454ā€“484

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res 14:1504

    Google ScholarĀ 

  • Osmolovskaya N, Dung VV, Kuchaeva L (2018) The role of organic acids in heavy metal tolerance in plants. Biol Commun 63:9ā€“16

    ArticleĀ  Google ScholarĀ 

  • Pandey S, Barai PK, Maiti TK (2013) Influence of heavy metals on the activity of antioxidant enzymes in the metal resistant strains of Ochrobactrum and Bacillus sp. J Environ Biol 34:1033

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pandey S et al (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pattanamanee W, Choorit W, Deesan C, Sirisansaneeyakul S, Chisti Y (2012) Photofermentive production of biohydrogen from oil palm waste hydrolysate. Int J Hydrogen Energy 37:4077ā€“4087

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153ā€“162

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pierart A, Shahid M, Sejalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219ā€“234

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pivato M, Fabrega-Prats M, Masi A (2014) Low-molecular-weight thiols in plants: functional and analytical implications. Arch Biochem Biophys 560:83ā€“99

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ponsano EHG, Lacava PM, Pinto MF (2003) Chemical composition of Rhodocyclus gelatinosus biomass produced in poultry slaughterhouse wastewater. Arch Biochem Biophys 46:143ā€“147

    CASĀ  Google ScholarĀ 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135ā€“143

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prameela K, Murali Mohan C, Smitha P, Hemalatha K (2010) Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. Int J Appl Biol Pharma Technol 1:903ā€“910

    Google ScholarĀ 

  • Radhika M, Kannahi M (2014) Bioremediation of pesticide (Cypermethrin) using bacterial species in contaminated soil. Int J Curr Microbiol Appl Sci 3:427ā€“435

    Google ScholarĀ 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178ā€“185

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rady MM, El-Yazal MAS, Taie HA, Ahmed SM (2016) Response of wheat growth and productivity to exogenous polyamines under lead stress. J Crop Sci Biotechnol 19:363ā€“371

    ArticleĀ  Google ScholarĀ 

  • Raeesossadati M, Ahmadzadeh H, McHenry M, Moheimani N (2014) CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 6:78ā€“85

    ArticleĀ  Google ScholarĀ 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. C R Biol 339:462ā€“474

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Raza A (2020) Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10231-z

  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M (2020a) Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology 9:177

    Google ScholarĀ 

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020b) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 117ā€“145

    Google ScholarĀ 

  • Raza A, Charagh S, Sadaqat N, Jin W (2020c) Arabidopsis thaliana: Model plant for the study of abiotic stress responses. In: The plant family brassicaceae. Springer, Singapore, pp 129ā€“180

    Google ScholarĀ 

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019a) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Wheat production in changing environments. Springer, Singapore, pp 557ā€“577

    ChapterĀ  Google ScholarĀ 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019b) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Google ScholarĀ 

  • Rehman A, Anjum MS (2011) Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess 174:585ā€“595

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rejeb KB, Abdelly C, SavourĆ© A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278ā€“284

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ruiz-Lozano J, AzcĆ³n R, Palma J (1996) Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327ā€“333

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Russo F et al (2019a) Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. Environ Sci Pollut Res 26:24445ā€“24461

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Russo F et al (2019b) Bioremediation of DDT-contaminated agricultural soils: the potential of two autochthonous saprotrophic fungal strains. Appl Environ Microbiol 85:01720ā€“01719

    ArticleĀ  Google ScholarĀ 

  • Sabetta W, Paradiso A, Paciolla C, de Pinto MC (2017) Chemistry, biosynthesis, and antioxidative function of glutathione in plants. In: Glutathione in plant growth, development, and stress tolerance. Springer, Cham, pp 1ā€“27

    Google ScholarĀ 

  • Sadka A, Dahan E, Or E, Roose ML, Marsh KB, Cohen L (2001) Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Funct Plant Biol 28:383ā€“390

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Salim N, Raza A (2020) Nutrient use efficiency (NUE) for sustainable wheat production: a review. J Plant Nutr 43:297ā€“315

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Salomon MV, Purpora R, Bottini R, Piccoli P (2016) Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiol Biochem 106:295ā€“304

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sazanova K, Osmolovskaya N, Schiparev S, Yakkonen K, Kuchaeva L, Vlasov D (2015) Organic acids induce tolerance to zinc-and copper-exposed fungi under various growth conditions. Curr Microbiol 70:520ā€“527

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scarano G, Morelli E (2002) Characterization of cadmium-and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure. Biometals 15:145ā€“151

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887ā€“898

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • SchĆ¼tzendĆ¼bel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in PopulusƗ canescens roots. Plant Physiol Biochem 40:577ā€“584

    ArticleĀ  Google ScholarĀ 

  • Sekhar K, Priyanka B, Reddy V, Rao K (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72:131ā€“139

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Selinski J, Scheibe R (2019) Malate valves: old shuttles with new perspectives. Plant Biol 21:21ā€“30

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Seth CS et al (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334ā€“346

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Setyaningsih L, Setiadi Y, Sopandie D, Budi SW (2012) Organic acid characteristics and tolerance of Sengon (Paraserianthes falcataria L Nielsen) to lead. J Man Hut Trop 18:177ā€“183

    Google ScholarĀ 

  • Shaheen S, Mahmood Q, Asif M, Ahmad R (2017) Genetic control of metal sequestration in hyper-accumulator plants. In: Phytoremediation. Springer, Cham, pp 343ā€“368

    ChapterĀ  Google ScholarĀ 

  • Shahid M et al (2015) Heavy metal stress and crop productivity. In: Crop production and global environmental issues. Springer, Cham, pp 1ā€“25

    Google ScholarĀ 

  • Shahid MA et al (2018) Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environ Exp Bot 156:248ā€“260

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shahzad R et al (2019) Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochem J 476:3385ā€“3400

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711ā€“726

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sheng L et al (2017) Exogenous Ī³-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem 216:138ā€“145

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shestivska V et al (2011) Investigation of the antioxidant properties of metallothionein in transgenic tobacco plants using voltammetry at a carbon paste electrode. Int J Electrochem Sci 6:2869ā€“2883

    CASĀ  Google ScholarĀ 

  • Silva P, Matos M (2016) Assessment of the impact of aluminum on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicol Environ Saf 131:151ā€“156

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh JS, Abhilash P, Singh H, Singh RP, Singh D (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1ā€“9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh A, Prasad SM, Singh S, Singh M (2016a) Phytoremediation potential of weed plantsā€™ oxidative biomarker and antioxidant responses. Chem Ecol 32:684ā€“706

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Singh N, Srivastava S, Rathaur S, Singh N (2016b) Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. J Environ Sci 48:112ā€“119

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Srivastava S, Dubey R (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1ā€“16

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun L, Cao X, Li M, Zhang X, Li X, Cui Z (2017) Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides. Environ Sci Pollut Res 24:9681ā€“9689

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 33ā€“52

    Google ScholarĀ 

  • Tandon PK, Singh SB (2016) Redox processes in water remediation. Environ Chem Lett 14:15ā€“25

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Theriappan P, Gupta AK, Dhasarrathan P (2011) Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J Appl Sci Environ Manag 15

    Google ScholarĀ 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653ā€“659

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Uraguchi S, Weber M, Clemens S (2019) Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments. Plant Cell Environ 42:2003ā€“2014

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Van Der Merwe MJ, Osorio S, Moritz T, Nunes-Nesi A, Fernie AR (2009) Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms. Plant Physiol 149:653ā€“669

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817ā€“20820

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Inn 14:100369

    ArticleĀ  Google ScholarĀ 

  • VĆ­tovĆ” M, BiÅ”ovĆ” K, HlavovĆ” M, Zachleder V, Rucki M, ÄŒĆ­Å¾kovĆ” M (2011) Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat Toxicol 102:87ā€“94

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Volland S, Bayer E, Baumgartner V, Andosch A, LĆ¼tz C, Sima E, LĆ¼tz-Meindl U (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171:154ā€“163

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062ā€“1070

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wasi S, Jeelani G, Ahmad M (2008) Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere 71:1348ā€“1355

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wasi S, Tabrez S, Ahmad M (2011) Suitability of immobilized Pseudomonas fluorescens SM1 strain for remediation of phenols, heavy metals, and pesticides from water. Water Air Soil Pollut 220:89ā€“99

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wasi S, Tabrez S, Ahmad M (2013) Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess 185:8147ā€“8155

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wen X-P et al (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251ā€“263

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wojciechowska A, Gągor A, Zierkiewicz W, Jarząb A, Dylong A, Duczmal M (2015) Metalā€“organic framework in an l-arginine copper (ii) ion polymer: structure, properties, theoretical studies and microbiological activity. RSC Adv 5:36295ā€“36306

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wu QS, Zou YN, Liu W, Ye X, Zai H, Zhao L (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470ā€“475

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xu X, Xia L, Zhu W, Zhang Z, Huang Q, Chen W (2015) Role of Penicillium chrysogenum XJ-1 in the detoxification and bioremediation of cadmium. Front Microbiol 6:1422

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xu P, Zheng Y, Zhu X, Li S, Zhou C (2018) L-lysine and L-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical. Asian Australas J Anim 31:905

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2008) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339ā€“349

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Yadav SK, Dhote M, Kumar P, Sharma J, Chakrabarti T, Juwarkar AA (2010) Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. J Hazard Mater 180:609ā€“615

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168:58ā€“64

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H (2001) Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants. Physiol Plant 113:64ā€“71

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yap L, Lee Y, Poh C (1999) Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl Microbiol Biotechnol 51:833ā€“840

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yilmaz E, Batislam E, Basar M, Tuglu D, Erguder I (2008) Citrate levels in fresh tomato juice: a possible dietary alternative to traditional citrate supplementation in stone-forming patients. Urology 71:379ā€“383

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061ā€“1069

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zell MB et al (2010) Analysis of Arabidopsis with highly reduced levels of malate and fumarate sheds light on the role of these organic acids as storage carbon molecules. Plant Physiol 152:1251ā€“1262

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang ZC, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248ā€“1255

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang Y, Zhang H, Liu Y, Zhang Z, Ding C (2018) Chelating ability and microbial stability of an L-arginine-modified chitosan-based environmental remediation material. J Polym Environ 26:885ā€“894

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hortic 116:442ā€“447

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhou Y et al (2018) Soybean NADP-malic enzyme functions in malate and citrate metabolism and contributes to their efflux under Al stress. Front Plant Sci 8:2246

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhou Y, Liu J, Liu S, Jiang L, Hu L (2019) Identification of the metallothionein gene family from cucumber and functional characterization of CsMT4 in Escherichia coli under salinity and osmotic stress. 3 Biotech 9:394

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhuang Q, Sun L, Ni Y (2017) One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 164:458ā€“462

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgement

We are thankful to the researchers whose contributions have been cited in this study, which helped us to get more insight into the presented area and helped us to prepare this chapter. Further, we apologize to those whose contributions have not been cited in this chapter due to space limitation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, A., Hussain, S., Javed, R., Hafeez, M.B., Hasanuzzaman, M. (2021). Antioxidant Defense Systems and Remediation of Metal Toxicity in Plants. In: Hasanuzzaman, M. (eds) Approaches to the Remediation of Inorganic Pollutants. Springer, Singapore. https://doi.org/10.1007/978-981-15-6221-1_6

Download citation

Publish with us

Policies and ethics