Skip to main content

Green Synthesis of Nanoparticles and Their Application in Cancer Therapy

  • Chapter
  • First Online:
Green Synthesis of Nanoparticles: Applications and Prospects

Abstract

Biological systems such as yeasts, fungi, bacteria and plant extracts are recently used as natural sources to synthetize nanoparticles (NPs). These green alternatives to traditional chemical routes have different advantages derived from the use of phytochemicals, carbohydrates and other biomolecules. The possibility to employ organisms as ‘chemical factories’ using neutral pH and low temperatures makes them a powerful eco-friendly tool to synthetize nanomaterials. In particular, plants are the best candidates for the large-scale biosynthesis of metallic NPs such as silver (Ag NPs) and gold nanoparticles (Au NPs) having unique physicochemical properties particularly suitable in the field of cancer therapy. In this chapter, we carefully analyse the main green methods to synthetize metallic NPs, with a particular focus on the use of plants or their derivatives. The role of nontoxic capping and reducing agents and safe solvents and their influence on the NP formations are investigated, especially regarding their size and shape. Successively, the assessment of their anticancer properties in vitro and in vivo together with a life cycle assessment (LCA) is discussed. Also, we report some recent examples on how metallic nanoparticles can be used as self-propelling system, an interesting topic pioneering the concept of nano-robot able to respond and move towards specific stimuli. We finally report the use of green and stimuli-responsive polymeric nanovesicles, mainly used in drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:1

    Article  CAS  Google Scholar 

  2. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  PubMed  Google Scholar 

  3. Xu L, Liu Y, Bai R, Chen C (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem 82(2):349–372

    Article  CAS  Google Scholar 

  4. Raj S, Jose S, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4(3):186–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Marzo JL, Jornet JM, Pierobon M (2019) Nanotechnology derived nanotools in biomedical perspectives: an update. Curr Drug Targets 20(8):800–807

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4(10):2047–2050

    Article  CAS  Google Scholar 

  7. Iqbal P, Preece JA, Mendes PM (2012) Nanotechnology: the “top-down” and “bottom-up” approaches. In: Gale PA, Steed JW (eds) Supramolecular chemistry.

    Google Scholar 

  8. Wolfrum C, Peukert W (2012) Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J Nanopart Res 14:1–16

    Google Scholar 

  9. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821

    Article  CAS  PubMed  Google Scholar 

  10. Odularu AT (2018) Metal nanoparticles: thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg Chem Appl 2018:Article ID 9354708

    Article  CAS  Google Scholar 

  11. Chaitoglou S, Sanaee MR, Bertran E (2014) Arc-discharge synthesis of iron encapsulated in carbon nanoparticles for biomedical applications. J Nanomater 2014:1

    Article  CAS  Google Scholar 

  12. Tsai SC, Song YL, Tsai CS et al (2004) Ultrasonic spray pyrolysis for nanoparticles. J Mater Sci 3(9):3647–3657

    Article  Google Scholar 

  13. De Matteis V, Cascione M, Toma CC, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5):pii: E319

    Article  CAS  Google Scholar 

  14. Zhang XF, Liu ZG, Shen WGS (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 13(17):9

    CAS  Google Scholar 

  15. Kim S-W, Chung H-E, Kwon J-H, Yoon H-G, Kim W (2010) Facile synthesis of silver chloride nanocubes and their derivatives. Bull Kor Chem Soc 31(10):2918–2922

    Article  CAS  Google Scholar 

  16. Viger ML, Live LS, Therrien OD, Boudreau D (2008) Reduction of self-quenching in fluorescent silica-coated silver nanoparticles. Plasmonics 3(1):33–40

    Article  CAS  Google Scholar 

  17. Guo W, Lin Z, Wang X, Song G (2003) Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectr Eng 66:95–101

    Article  CAS  Google Scholar 

  18. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:1

    Article  CAS  Google Scholar 

  19. Rodrıguez-Sanchez L, Blanco MC, López-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  CAS  Google Scholar 

  20. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Eunkeu O, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119(8):4819–4880

    Google Scholar 

  21. Farooqi ZH, Khalid R, Begum R, Farooq U, Wu Q, Wu W et al (2019) Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environ Technol 40(15):2027–2036

    Article  CAS  PubMed  Google Scholar 

  22. Collins TJ (1997) Green chemistry. In: Macmillan encyclopedia of chemistry. Simon and Schuster, Macmillan, New York, pp 691–697

    Google Scholar 

  23. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  PubMed  Google Scholar 

  24. Jime VM (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    Article  CAS  Google Scholar 

  25. Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84

    Article  CAS  Google Scholar 

  26. Shah M, Fawcett D, Sharma S, Tripathy SK (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8(11):7278–7308

    Article  CAS  Google Scholar 

  27. Gopisetty MK, Szerencsés B (2018) Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine 13:695–703

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55(36):9557–9577

    Article  CAS  Google Scholar 

  29. Limo MJ, Sola-rabada A, Boix E, Thota V, Westcott ZC, Puddu V et al (2018) Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem Rev 118:11118–11193

    Article  CAS  PubMed  Google Scholar 

  30. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702

    Article  CAS  Google Scholar 

  31. Pal G, Rai P, Pandey A (2019) Green synthesis of nanoparticles: a greener approach for a cleaner future [Internet]. Green synthesis, characterization and applications of nanoparticles. Elsevier Inc. pp 1–26. https://doi.org/10.1016/B978-0-08-102579-6.00001-0

  32. Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  33. Lue J (2001) A review of characterization and physical property studies of metallic nanoparticles. J Phys Chem Solids 62:1599–1612

    Article  CAS  Google Scholar 

  34. Dargo H, Ayaliew A, Kassa H (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs ): a review. Sustain Mater Technol 13:18–23. https://doi.org/10.1016/j.susmat.2017.08.001

    Article  CAS  Google Scholar 

  35. Mlalila NG, Swai HS, Hilonga A, Kadam DM (2016) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  PubMed  Google Scholar 

  37. De Matteis V, Cascione M, Toma CC, Leporatti S (2018) Morphomechanical and organelle perturbation induced by silver nanoparticle exposure. J Nanoparticle Res 20(10):14

    Article  CAS  Google Scholar 

  38. De Matteis V, Cascione M, Cristina C, Rinaldi R (2019) Engineered gold nanoshells killing tumor cells: new perspectives. Curr Pharm Des 25:1–13

    Article  CAS  Google Scholar 

  39. Huang X, El-sayed MA (2015) Plasmonic photo-thermal therapy (PPTT). Alexandria J Med 47(1):1–9

    Google Scholar 

  40. Iravani S (2018) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not, Article ID 359316, 18 p

    Google Scholar 

  41. Rafique M, Sadaf I, Rafique MS, Tahir M (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45(7):1272–1291

    Google Scholar 

  42. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  43. Pooley FD (1982) Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296:642–643

    Article  CAS  Google Scholar 

  44. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  45. Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces 1(88):325–331

    Article  CAS  Google Scholar 

  46. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456

    Article  CAS  PubMed  Google Scholar 

  47. Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3(30):1–7

    Google Scholar 

  48. El-Shanshoury AE-RR, ElSilk SE, Ebeid M (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus Esh1 and their antimicrobial activities. ISRN Nanotechnol 2011:Article ID 385480

    Article  CAS  Google Scholar 

  49. Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Reports. 15:33–40

    Article  Google Scholar 

  50. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170

    Article  CAS  Google Scholar 

  51. Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 3943:1–12

    Google Scholar 

  52. El-Sonbaty SM (2013) Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nano 4:73–79

    Article  CAS  Google Scholar 

  53. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98. https://doi.org/10.1186/s11671-016-1311-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett 9(365):1–11

    CAS  Google Scholar 

  55. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove. Colloids Surf B Biointerfaces 71:133–137

    Article  CAS  PubMed  Google Scholar 

  56. Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059

    Article  CAS  PubMed  Google Scholar 

  57. Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  58. Costa LP, Cunegundes MC, Ferraz CM, Araújo JV, Tobias FL (2017) Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int J Nanomedicine 12:6373–6381

    Article  Google Scholar 

  59. Bhangale H, Sarode K, Patil A, Patil DI (2016) Microbial synthesis of silver nanoparticles using Aspergillus flavus and their characterization. In: Techno-Societal 2016, Int Conf Adv Technol Soc Appl

    Google Scholar 

  60. Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  61. Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:Article ID 796018

    Article  CAS  Google Scholar 

  62. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2011) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vigneshwaran N, Kathe AA, Varadarajan PV et al (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloid Surf B 53:55–59

    Article  CAS  Google Scholar 

  64. Ingle A, Rai M, Gade A et al (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  65. Kathiresan K, Manivannan S, Nabeel MA et al (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid Surf B 71:133–137

    Article  CAS  Google Scholar 

  66. Sheikhloo Z, Salouti MKFB (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci 22:661–665

    Article  CAS  Google Scholar 

  67. Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G et al (2018) Green synthesis of gold nanoparticles by thermophilic flamentous fungi. Sci Rep 8:3943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mol Biomol Spectrosc 73:374–381

    Article  CAS  Google Scholar 

  69. Moghaddam AB, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  CAS  Google Scholar 

  70. Golinska P, Wypij M, Ingle AP (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98:8083–8097

    Article  CAS  PubMed  Google Scholar 

  71. Ahmad A, Senapati S, Sergeev GB, Moriarty P, Applications B (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  Google Scholar 

  72. Mourato A, Lino AR (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 8:Article ID 546074

    Google Scholar 

  73. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Biointerfaces influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica. Colloids Surf B Biointerfaces 74:309–316

    Article  CAS  PubMed  Google Scholar 

  74. Suganya KSU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G et al (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356. https://doi.org/10.1016/j.msec.2014.11.043

    Article  CAS  Google Scholar 

  75. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101

    Article  CAS  PubMed  Google Scholar 

  76. Links DA (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  77. Parandhaman T, Dey D, Das SK (2019) Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate. Green Chem 21:5469–5500

    Article  CAS  Google Scholar 

  78. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  79. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose Yacaman M (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:24397–24401

    Article  CAS  Google Scholar 

  81. Armendariz V, Parsons JG, Lopez ML, Peralta-Videa JR, Jose-Yacaman M, Gardea-Torresdey JL (2009) The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV–visible spectroscopy. Nanotechnology 20(10):105607

    Article  PubMed  CAS  Google Scholar 

  82. Shankar SS, Ahmad A, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  83. Huang J, Li Q, Sun D, Lu Y (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  CAS  Google Scholar 

  84. Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  85. Beach ES, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Energy Environ Sci 2:1038–1049

    Article  CAS  Google Scholar 

  86. Kumar DA, Palanichamy V, Roopan SM (2014) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 127:168–171

    Article  CAS  Google Scholar 

  87. Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B Biointerfaces 76:50–56. 76: 50–56

    Article  CAS  PubMed  Google Scholar 

  88. Veeraputhiran V (2013) Bio-catalytic synthesis of silver nanoparticles. Int J Chem Tech Res 5:255–2562

    Google Scholar 

  89. Khalil MMH (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139. https://doi.org/10.1016/j.arabjc.2013.04.007

    Article  CAS  Google Scholar 

  90. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    Article  CAS  Google Scholar 

  91. Shankar SS, Rai A, Ahmad ASM (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  PubMed  Google Scholar 

  92. Kumar I, Mondal M, Meyappan V, Sakthivel N (2019) Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater Res Bull 117:18–27. https://doi.org/10.1016/j.materresbull.2019.04.029

    Article  CAS  Google Scholar 

  93. Boomi P, Ganesan RM, Poorani G, Prabu HG, Ravikumar S, Jeyakanthan J (2019) Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater Sci Eng C 99:202–210. https://doi.org/10.1016/j.msec.2019.01.105

    Article  CAS  Google Scholar 

  94. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68:55–60

    Article  CAS  PubMed  Google Scholar 

  95. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84

    Article  PubMed  CAS  Google Scholar 

  96. Jafarizad A, Safaee K, Gharibian S, Omidi Y, Ekinci D (2015) Biosynthesis and in-vitro study of gold nanoparticles using Mentha and Pelargonium extracts. Procedia Mater Sci 11:224–230. https://doi.org/10.1016/j.mspro.2015.11.113

    Article  CAS  Google Scholar 

  97. Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18(1):83–86

    Article  CAS  Google Scholar 

  98. Eya F, Olivier J, Mbeng A, Ebongue CO, Schlüsener C, Kökҫam Ü et al (2019) Stachytarpheta cayennensis aqueous extract, a new bioreactor towards silver nanoparticles for biomedical applications. J Biomater Nanobiotechnology 10:102–119

    Article  CAS  Google Scholar 

  99. Kora AJ, Sashidharb RB, Arunachalama J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82(3):670–679

    Article  CAS  Google Scholar 

  100. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47(1):844–851

    Article  CAS  PubMed  Google Scholar 

  101. Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arab J Chem 12(8):3576–3600

    Article  CAS  Google Scholar 

  102. Qi C, Musetti S, Fu L, Zhu Y, Huang L (2019) Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 48(10):2698–2737

    Article  CAS  PubMed  Google Scholar 

  103. Jia Y, Yan X, Guo X, Zhou G, Liu P, Li Z (2019) One step preparation of peptide-coated gold nanoparticles with tunable size. Materials (Basel) 12:2107

    Article  CAS  Google Scholar 

  104. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880–2904

    Article  CAS  PubMed  Google Scholar 

  105. Boury B, Plumejeau S (2015) Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem 17:72–88

    Article  CAS  Google Scholar 

  106. Raveendran P, Fu J, Wallen SL, Hill C, Carolina N (2003) Completely “green” synthesis and stabilization of metal nanoparticles. JACS 125:13940–13941

    Article  CAS  Google Scholar 

  107. Carré-Rangel L, Alonso-Nuñez G, Espinoza-Gómez H, Flores-López LZ (2015) Green synthesis of silver nanoparticles: effect of dextran molecular weight used as stabilizing-reducing agent. J Nanosci Nanotechnol 15(12):9849–9855

    Article  PubMed  CAS  Google Scholar 

  108. Maribel Guzman MA, Dille J, Godet S, Rousse C (2018) Effect of the concentration of NaBH4 and N2H4 as reductant agent on the synthesis of copper oxide nanoparticles and its potential antimicrobial applications. Nano Biomed Eng 10(4):392–405

    Google Scholar 

  109. Lu L, An X (2015) Silver nanoparticles synthesis using H2 as reducing agent in toluene—supercritical CO2 microemulsion. J Supercrit Fluids 99:29–37. https://doi.org/10.1016/j.supflu.2014.12.024

    Article  CAS  Google Scholar 

  110. Kvı L, Vec R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  111. Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile “green” synthesis, characterization, and catalytic function of b-D-glucose-stabilized Au nanocrystals. Chemistry 12(8):2131–2138

    Article  CAS  PubMed  Google Scholar 

  112. Vasileva P, Donkova B, Karadjova I, Dushkin C (2011) Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 382(1):203–210

    Article  CAS  Google Scholar 

  113. Chairam S, Poolperm C, Somsook E (2009) Starch vermicelli template-assisted synthesis of size/shape-controlled nanoparticles. Carbohydr Polym 75(4):694–704. https://doi.org/10.1016/j.carbpol.2008.09.022

    Article  CAS  Google Scholar 

  114. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J (2009) Green synthesis of gold nanoparticles with starch—glucose and application in bioelectrochemistry. J Mater Chem 19:7839–7847

    Article  CAS  Google Scholar 

  115. Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44:119–137

    Article  Google Scholar 

  116. Sheldon RA, Sheldon R (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  117. Li CJ (2005) Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem Rev Aug 105(8):3095–3165

    Article  CAS  Google Scholar 

  118. Manabe K, Iimura S, Sun X (2002) Dehydration reactions in water. Brønsted acid—surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. JACS 124(40):11971–11978

    Article  CAS  Google Scholar 

  119. Leitner W (2002) Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res 35(9):746–756

    Article  CAS  PubMed  Google Scholar 

  120. Ohde H, Hunt F, Wai CM (2001) Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater 9:4130–4135

    Article  CAS  Google Scholar 

  121. Esumi K, Sarashina S, Yoshimura T (2004) Synthesis of gold nanoparticles from an organometallic compound in supercritical carbon dioxide. Langmuir 14:5189–5191

    Article  CAS  Google Scholar 

  122. Pollet P, Davey EA, Eckert CA, Liotta CL (2014) Solvents for sustainable chemical processes. Green Chem 16:1034–1055

    Article  CAS  Google Scholar 

  123. Adschiri T, Lee Y-W, Goto M, Takami S (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390

    Article  CAS  Google Scholar 

  124. Sue K, Adschiri T, Arai K (2002) Predictive model for equilibrium constants of aqueous inorganic species at subcritical and supercritical conditions. Ind Eng Chem Res 41:3298–3306

    Article  CAS  Google Scholar 

  125. Klöpffer W, Curran MA, Frankl P, Heijungs R et al (2006) Nanotechnology and life cycle assessment. a systems approach to nanotechnology and the environment. Synthesis of results obtained at a workshop. In: Nanotechnology and life cycle assessment workshop. Woodrow Wilson Int Cent Sch Washington, DC

    Google Scholar 

  126. International Standardisation Organisation (ISO), European Standard EN ISO 14′044 G (2006) Environmental management—life cycle assessment—requirements and guidelines

    Google Scholar 

  127. International Standardization Organization (ISO), European Standard EN ISO 14′040 G (2006) Environmental management—life cycle assessment—principles and framework

    Google Scholar 

  128. Salieri B, Turner DA, Nowack B, Hischier R (2018) Life cycle assessment of manufactured nanomaterials: where are we? NanoImpact 10:108–120. https://doi.org/10.1016/j.impact.2017.12.003

    Article  Google Scholar 

  129. Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17:295–303

    Article  Google Scholar 

  130. Kim HC, Fthenakis V (2013) Life cycle energy and climate change implications of nanotechnologies. A critical review. J Ind Ecol 17:528–541

    Article  CAS  Google Scholar 

  131. Sierra MJ, Herrera AP, Ojeda KA (2018) Life cycle analysis of the synthesis of eco-friendly metallic nanoparticles. Contemp Eng Sci 11(25):1227–1234

    Article  CAS  Google Scholar 

  132. Pati P, Mcginnis S, Vikesland P (2014) Life cycle assessment of “green” nanoparticle synthesis methods. Environ Eng Sci 31(7):410–420

    Article  CAS  Google Scholar 

  133. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12(11):958–962. http://www.nature.com/doifinder/10.1038/nmat3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654

    Article  CAS  PubMed  Google Scholar 

  135. Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14(1):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baharara J, Ramezani T, Divsalar A, Mousavi M, Seyedarabi A (2016) Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J Med Biotechnol 8(2):75–83

    PubMed  PubMed Central  Google Scholar 

  137. González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B Biointerfaces 153(1):190–198

    Article  PubMed  CAS  Google Scholar 

  138. Maddinedi SB, Mandal BK, Ranjanb S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733

    Article  CAS  Google Scholar 

  139. Muthukumar T, Sudhakumari R, Balaji S, Aravinthan A, Sastry TP, Kim J-H (2016) Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem 51(3):384–391

    Article  CAS  Google Scholar 

  140. Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M (2016) A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photochem Photobiol B Biol 159:237–242

    Article  CAS  Google Scholar 

  141. Siddiq AM, Thangam R, Madhan B, Alam MS (2019) Green (gemini) surfactant mediated gold nanoparticles green synthesis: effect on triple negative breast cancer cells. Nano-Struct Nano-Objects 2019:1003

    Google Scholar 

  142. Kajani AA, Bordbar A-K, Zarkesh Esfahani SH, Razmjou A (2016) Gold nanoparticles as potent anticancer agent: green synthesis, characterization, and in vitro study. RSC Adv 6(68):63973–63983

    Article  CAS  Google Scholar 

  143. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F (2019) Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif Cells Nanomed Biotechnol 47(1):1617–1627

    Article  CAS  PubMed  Google Scholar 

  144. Kuppusamy P, Ichwan SJA, Al-Zikri PNH et al (2016) In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 173:297

    Article  CAS  PubMed  Google Scholar 

  145. Wang C, Mathiyalagan R, Kim YJ, Castro-Aceituno V, Singh P, Ahn S, Wang D, Yang DC (2016) Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomedicine 10(11):3691–3701

    Google Scholar 

  146. Nakkala JR, Mata R, Bhagat E, Rani SS (2015) Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res 17:151

    Article  CAS  Google Scholar 

  147. Patra S, Mukherjeea S, Baruia AK et al (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C 53:298–309

    Article  CAS  Google Scholar 

  148. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 13:8013–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Al-Sheddi ES, Farshori NN, Al-Oqail MM, Al-Massarani SM, Saquib Q, Wahab R, Musarrat J, Al-Khedhairy AA, Siddiqui MA (2018) Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl 2018:12

    Article  CAS  Google Scholar 

  150. Sreekanth TVM, Pandurangan M, Kim DH, Lee YR (2016) Green synthesis: in-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. J Clust Sci 27:671

    Article  CAS  Google Scholar 

  151. El-Naggar NE, Hussein MH, El-Sawah AA (2017) Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci Rep 7:10844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Angelico R, Ceglie A, Sacco P, Colafemmina G, Ripoli M, Mangia A (2014) Phyto-liposomes as nanoshuttles for water-insoluble silybin—phospholipid complex. Int J Pharm 471(1–2):173–181. https://doi.org/10.1016/j.ijpharm.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  153. Marqués-gallego P, de Kroon AIPM (2014) Ligation strategies for targeting liposomal nanocarriers. Biomed Res Int 2014:129458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Brown S, Khan DR (2012) The treatment of breast cancer using liposome technology. J Drug Deliv 2012:212965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Du J, Tang Y, Lewis AL, Armes SP (2005) pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. JACS 127:17982–17983

    Article  CAS  Google Scholar 

  156. Smart TP, Mykhaylyk OO, Ryan A, Battaglia G (2009) Polymersomes hydrophilic brush scaling relations. Soft Matter 5:3607–3610

    Article  CAS  Google Scholar 

  157. Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. JACS 6(6):12423–12428

    Article  CAS  Google Scholar 

  158. Koide A, Kishimura A, Osada K, Jang W, Yamasaki Y (2006) Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. JACS 128:5988–5989

    Article  CAS  Google Scholar 

  159. Al-jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44(10):1094–1104

    Article  CAS  PubMed  Google Scholar 

  160. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967

    Article  CAS  PubMed  Google Scholar 

  161. Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341

    Article  CAS  PubMed  Google Scholar 

  162. Discher BM, Won Y, Ege DS, Lee JC, Bates FS, Discher DE et al (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1147

    Article  CAS  PubMed  Google Scholar 

  163. Gaitzsch J, Chierico L, Battaglia G (2014) Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol 1:104–111

    Google Scholar 

  164. Davis HT, Bates FS (2003) Molecular exchange in PEO—PB micelles in water. Macromolecules 36:953–955

    Article  CAS  Google Scholar 

  165. Dimova R, Pouligny B, Dietrich C (2000) Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: optical dynamometry study. Biophys J 79(1):340–356. https://doi.org/10.1016/S0006-3495(00)76296-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mason AF, Thordarson P (2017) Polymersomes as protocellular constructs. J Polym Sci A Polym Chem 55:3817–3825

    Article  CAS  Google Scholar 

  167. He H, Liu L, Morin EE, Liu M, Schwendeman A (2019) Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc Chem Res 52(9):2445–2461

    Article  CAS  PubMed  Google Scholar 

  168. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  CAS  PubMed  Google Scholar 

  169. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  170. Mirna therapeutics halts phase 1 clinical study of MRX34. https://www.businesswire.com/news/home/20160920006814/en/Mirna-Therapeutics-Halts-Phase-1-Clinical-Study

  171. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):16014

    Article  CAS  Google Scholar 

  173. Huang L, Tao K, Liu J, Qi C, Xu L, Chang P, Gao J, Shuai X, Wang G, Wang Z, Wang L (2016) Design and fabrication of multifunctional sericin nanoparticles for tumor targeting and pH-responsive subcellular delivery of cancer chemotherapy drugs. ACS Appl Mater Interfaces 8:6577–6585

    Article  CAS  PubMed  Google Scholar 

  174. Xia X, Xu Q, Hu X, Qin G, Kaplan DL (2011) Tunable self-assembly of genetically engineered silk—elastin-like protein polymers. Biomacromolecules 12:3844–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wu H, Liu S, Xiao L, Dong X, Lu Q, Kaplan DL (2016) Injectable and pH-responsive silk nano fiber hydrogels for sustained anticancer drug delivery. ACS Appl Mater Interfaces 8:17118–17126

    Article  CAS  PubMed  Google Scholar 

  176. Kang Y, Wang C, Liu K, Wang Z, Zhang X (2012) Enzyme-responsive polymeric supra-amphiphiles formed by the complexation of chitosan and ATP. Langmuir 28:14562–14566

    Article  CAS  PubMed  Google Scholar 

  177. Hong Y-J, Kim J-C (2015) Complexation-triggerable liposome mixed with silk protein and chitosan. J Biomater Sci Polym Ed 26(12):766–779

    Article  CAS  PubMed  Google Scholar 

  178. Su Y, Hu Y, Du Y, Huang X, He J, You J et al (2015) Redox-responsive polymer—drug conjugates based on doxorubicin and chitosan oligosaccharide—g—stearic acid for cancer therapy. Mol Pharm 12:1193–1202

    Article  CAS  PubMed  Google Scholar 

  179. Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36(3):258–264. https://doi.org/10.1038/nbt.4071

    Article  CAS  PubMed  Google Scholar 

  180. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  181. Micali G (2016) Bacterial chemotaxis: information processing, thermodynamics, and behavior. Curr Opin Microbiol 30:8–15

    Article  CAS  PubMed  Google Scholar 

  182. Wong-Ng J, Celani A, Vergassola M (2018) Exploring the function of bacterial chemotaxis. Curr Opin Microbiol 45:16–21

    Article  CAS  PubMed  Google Scholar 

  183. Khadka U, Holubec V, Yang H, Cichos F (2019) Active particles bound by information flows. Nat Commun 9:3864

    Article  CAS  Google Scholar 

  184. You MY, Ming SK, Gua CCXM (2018) Intelligent micro/nanomotors with taxis. Acc Chem Res 51(12):3006–3014

    Article  CAS  PubMed  Google Scholar 

  185. Williams BJ, Anand SV, Rajagopalan J, Saif MT (2014) A self-propelled biohybrid swimmer at low Reynolds number. Nat Commun 5:3081

    Article  PubMed  CAS  Google Scholar 

  186. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3

    Article  Google Scholar 

  187. Qiu T, Lee T, Mark AG, Morozov KI, Mu R, Mierka O et al (2014) Swimming by reciprocal motion at low Reynolds number. Nat Commun 5:5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhao Z, Zhao Y, Zhuang X, Lo W, Baker MAB, Lo C et al (2018) Frequent pauses in Escherichia coli flagella fluorescence imaging. Nat Commun 9:1885. https://doi.org/10.1038/s41467-018-04288-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kumar MS, Philominathan P (2010) The physics of flagellar motion of E. coli during chemotaxis. Biophys Rev 2(1):13–20

    Article  CAS  PubMed  Google Scholar 

  190. Ali J, Cheang UK, Martindale JD, Jabbarzadeh M, Fu HC, Jun Kim M (2017) Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Sci Rep 7(1):14098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Schwarz L, Medina-Sanchez M, Schmidt OG (2017) Hybrid biomicromotors. Appl Phys Rev 4:031301

    Article  CAS  Google Scholar 

  192. Medina-Sánchez M, Schwarz L, Meyer AK, Hebenstreit F, Schmidt OG (2016) Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett 16(1):555–561

    Article  PubMed  CAS  Google Scholar 

  193. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ et al (2014) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 64107(94):2007–2010

    Google Scholar 

  194. Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ (2015) Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater 25:1666–1671

    Article  CAS  Google Scholar 

  195. Wang S, Liu X, Wang Y, Xu D, Liang C (2019) Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale 11:14099–14112

    Article  CAS  PubMed  Google Scholar 

  196. Gao W, de Ávila BE, Zhang L, Wang J (2018) Targeting and isolation of cancer cells using micro/nanomotors. Adv Drug Deliv Rev 1:94–101

    Article  CAS  Google Scholar 

  197. Gao W, Manesh KM, Hua J, Sattayasamitsathit S, Wang J (2011) Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7(14):2047–2051

    Article  CAS  PubMed  Google Scholar 

  198. Moran JL, Posner JD (2017) Phoretic self-propulsion. Annu Rev Fluid Mech 49:511–540

    Article  Google Scholar 

  199. You A, Be MAY, In I (2016) Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys Fluids 25(1):12001(2013)

    Google Scholar 

  200. Popescu MN, Tasinkevych M, Stark H, Das S, Cacciuto A (2007) Designing phoretic micro- and nano-swimmers. New J Phys 9:127

    Article  CAS  Google Scholar 

  201. Ibrahim Y, Golestanian R, Liverpool TB (2018) Shape dependent phoretic propulsion of slender active particles. Phys Rev Fluids 3(3):033101

    Article  Google Scholar 

  202. Sa S (2016) Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J Am Chem Soc 138:13782–13785

    Article  CAS  Google Scholar 

  203. Wheat PM, Marine NA, Moran JL, Posner JD (2010) Rapid fabrication of bimetallic spherical motors. Langmuir 294(20):13052–13055

    Article  CAS  Google Scholar 

  204. Gao W, Sattayasamitsathit S, Orozco J, Wang J (2013) Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale 5:8909–8914

    Article  CAS  PubMed  Google Scholar 

  205. Wang S, Wu N (2014) Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30:3477–3486

    Article  CAS  PubMed  Google Scholar 

  206. Pourrahimi AM, Pumera M (2018) Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale 10:16398–16415

    Article  CAS  PubMed  Google Scholar 

  207. Zhao X, Gentile K, Mohajerani F, Sen A (2018) Powering motion with enzymes. Acc Chem Res 51:2373–2381

    Article  CAS  PubMed  Google Scholar 

  208. Stark H (2018) Artificial chemotaxis of self-phoretic active colloids: collective behavior published as part of the accounts of chemical research special issue “fundamental aspects of self-powered”. Acc Chem Res 51:2681–2688

    Article  CAS  PubMed  Google Scholar 

  209. Tu Y, Peng F, Sui X, Men Y, White PB, van Hest JCM, Wilson DA (2017) Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nat Chem 9:480–486

    Article  CAS  PubMed  Google Scholar 

  210. Ming W, Jeong X, Guo C, Liu C, Chun S, Juinn D et al (2019) Motion control of biohybrid microbots under low Reynolds number environment: magnetotaxis. Chem Eng Process Process Intensif 141:107530. https://doi.org/10.1016/j.cep.2019.107530

    Article  CAS  Google Scholar 

  211. Mou F, Li Y, Chen C, Li W, Yin Y, Ma H et al (2015) Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 21:2564–2570

    Article  CAS  Google Scholar 

  212. Su H, Price CH, Jing L, Tian Q, Liu J, Qian K (2019) Janus particles: design, preparation, and biomedical applications. Mater Today Bio 4:100033. https://doi.org/10.1016/j.mtbio.2019.100033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Medina-Sánchez M, Xu H, Schmidt OG (2018) Micro- and nano-motors: the new generation of drug carriers. Ther Deliv 9(4):303–316

    Article  PubMed  CAS  Google Scholar 

  214. Chen Z, Xia T, Zhang Z, Xie S, Wang T, Li X (2019) Enzyme-powered Janus nanomotors launched from intratumoral depots to address drug delivery barriers. Chem Eng J 375:122109

    Article  CAS  Google Scholar 

  215. Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000–7003

    Article  CAS  Google Scholar 

  216. Chen C, Karshalev E, Li J, Soto F, Castillo R, Campos I, Mou F, Guan J, Wang J (2016) Transient micromotors that disappear when no longer needed. ACS Nano 10(11):10389–10396

    Article  CAS  PubMed  Google Scholar 

  217. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kang D et al (2010) Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 23:2741–2747

    Article  CAS  Google Scholar 

  218. Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8(5):1271–1276

    Article  CAS  PubMed  Google Scholar 

  219. Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L et al (2015) Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 1:117–123

    Article  CAS  Google Scholar 

  220. Patiño T, Arqué X, Mestre R, Palacios L, Sánchez S (2018) Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc Chem Res 51:2662–2671

    Article  PubMed  CAS  Google Scholar 

  221. Dey KK, Zhao X, Tansi BM, Golestanian R, Sen A (2015) Micromotors powered by enzyme catalysis. Nano Lett 15:8311–8315

    Article  CAS  PubMed  Google Scholar 

  222. Nanomotors U, Carrascosa R, Murillo-cremaes N, Patin T, Hortela AC (2019) Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13:429–439

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria De Matteis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Matteis, V., Cascione, M., Rizzello, L., Liatsi-Douvitsa, E., Apriceno, A., Rinaldi, R. (2020). Green Synthesis of Nanoparticles and Their Application in Cancer Therapy. In: Saquib, Q., Faisal, M., Al-Khedhairy, A.A., Alatar, A.A. (eds) Green Synthesis of Nanoparticles: Applications and Prospects. Springer, Singapore. https://doi.org/10.1007/978-981-15-5179-6_8

Download citation

Publish with us

Policies and ethics