Skip to main content

Carbon-Based Tumour-targeted Systems

  • Chapter
  • First Online:
New Nanomaterials and Techniques for Tumor-targeted Systems

Abstract

Cancer is the second leading cause of death globally. Lung cancer and breast cancer are the most common types of cancer in men and women, respectively. Many strategies are used to target cancer such as surgery, chemotherapy, radiotherapy and immunotherapy. Immunotherapy is the latest addition to these strategies, but they also suffer from hypersensitive and allergic reactions. Lately nanoparticles have gained enormous interest in the nanomedicine due to their unique properties at the nanoscale level. These can be modified easily by biomolecules. Carbon is the extraordinary and most sought of material in the nano world. The beauty of the carbon to form covalent linkage with different orbital hybridization forms various nanoallotropes of carbon having different hybridization between C-C. Carbon is the basis of life on earth. Thus, these carbon nanomaterials are biocompatible. Earlier only diamond and graphite were the two known allotropes of carbon. But the discovery of fullerene (C60) in 1985 has opened a new avenue for the discovery of carbon nanoallotropes. Soon this was followed by the discovery of carbon nanotubes (CNTs) by Iijima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McGuire A, Brown J, Malone C, McLaughlin R, Kerin M (2015) Effects of age on the detection and management of breast cancer. Cancer 7(2):908–929

    Article  CAS  Google Scholar 

  2. Boyle P, Levin B (2008) World cancer report 2008. IARC Press, International Agency for Research on Cancer, Lyon

    Google Scholar 

  3. Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang MD, Shin DM, Simons JW, Nie S (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7(6):833–837

    Article  CAS  PubMed  Google Scholar 

  5. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  PubMed  Google Scholar 

  6. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  CAS  Google Scholar 

  7. Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J (2013) Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434

    Article  CAS  Google Scholar 

  8. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  10. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5(45):8904–8924

    Article  CAS  PubMed  Google Scholar 

  11. Sciortino A, Cannizzo A, Messina F (2018) Carbon nanodots: a review—from the current understanding of the fundamental photophysics to the full control of the optical response. C 4(4):67

    CAS  Google Scholar 

  12. Sri S, Kumar R, Panda AK, Solanki PR (2018) Highly biocompatible, fluorescence, and zwitterionic carbon dots as a novel approach for bioimaging applications in cancerous cells. ACS Appl Mater Interfaces 10(44):37835–37845

    Article  CAS  PubMed  Google Scholar 

  13. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125(14):4045–4049

    Article  Google Scholar 

  14. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  CAS  Google Scholar 

  15. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84(14):6220–6224

    Article  CAS  PubMed  Google Scholar 

  16. Molaei MJ (2019) Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv 9(12):6460–6481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goryacheva IY, Sapelkin AV, Sukhorukov GB (2017) Carbon nanodots: mechanisms of photoluminescence and principles of application. TrAC Trends Anal Chem 90:27–37

    Article  CAS  Google Scholar 

  18. Zhou N, Zhu S, Maharjan S, Hao Z, Song Y, Zhao X, Jiang Y, Yang B, Lu L (2014) Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Adv 4(107):62086–62095

    Article  CAS  Google Scholar 

  19. Song Y, Zhu S, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4(52):27184–27200

    Article  CAS  Google Scholar 

  20. Emam A, Loutfy SA, Mostafa AA, Awad H, Mohamed MB (2017) Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv 7(38):23502–23514

    Article  CAS  Google Scholar 

  21. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Meng Y, Wang S, Li C, Shi W, Chen J, Wang J, Huang R (2015) Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small 11(29):3575–3581

    Article  CAS  PubMed  Google Scholar 

  23. Zhao X, Zhang J, Shi L, Xian M, Dong C, Shuang S (2017) Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Adv 7(67):42159–42167

    Article  CAS  Google Scholar 

  24. Zhang J, Zhao X, Xian M, Dong C, Shuang S (2018) Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183:39–47

    Article  CAS  PubMed  Google Scholar 

  25. Qian J, Quan F, Zhao F, Wu C, Wang Z, Zhou L (2018) Aconitic acid derived carbon dots: conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells. Sensors Actuators B Chem 262:444–451

    Article  CAS  Google Scholar 

  26. Chiu S-H, Gedda G, Girma WM, Chen J-K, Ling Y-C, Ghule AV, Ou K-L, Chang J-Y (2016) Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 46:151–164

    Article  CAS  PubMed  Google Scholar 

  27. Nahain A-A, Lee J-E, In I, Lee H, Lee KD, Jeong JH, Park SY (2013) Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm 10(10):3736–3744

    Article  CAS  Google Scholar 

  28. Motaghi H, Mehrgardi MA, Bouvet P (2017) Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci Rep 7(1):10513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mongelard F, Bouvet P (2010) AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12(1):107–114

    CAS  PubMed  Google Scholar 

  30. Ma Y, Peng J, Liu W, Zhang P, Huang L, Gao B, Shen T, Zhou Y, Chen H, Chu Z (2009) Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics 8(8):1878–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li C-F, Yan Z-K, Chen L-B, Jin J-P, Li D-D (2017) Desmin detection by facile prepared carbon quantum dots for early screening of colorectal cancer. Medicine 96(5):e5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao G, Jiang Y-W, Jia H-R, Yang J, Wu F-G (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    Article  CAS  Google Scholar 

  33. Li H, Zhang Y, Wang L, Tian J, Sun X (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47(3):961–963

    Article  CAS  Google Scholar 

  34. Wu X, Sun S, Wang Y, Zhu J, Jiang K, Leng Y, Shu Q, Lin H (2017) A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens Bioelectron 90:501–507

    Article  CAS  PubMed  Google Scholar 

  35. Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer WG, Chen C, Chai Z, Yin J-J (2016) Crossover between anti-and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano 10(9):8690–8699

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun Y-P (2009) Photoinduced electron transfers with carbon dots. Chem Commun 25:3774–3776

    Article  CAS  Google Scholar 

  37. Hsu P-C, Chen P-C, Ou C-M, Chang H-Y, Chang H-T (2013) Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B 1(13):1774–1781

    Article  CAS  PubMed  Google Scholar 

  38. Ruan J, Wang Y, Li F, Jia R, Zhou G, Shao C, Zhu L, Cui M, Yang D-P, Ge S (2018) Graphene quantum dots for radiotherapy. ACS Appl Mater Interfaces 10(17):14342–14355

    Article  CAS  PubMed  Google Scholar 

  39. Kleinauskas A, Rocha S, Sahu S, Sun Y-P, Juzenas P (2013) Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology 24(32):325103

    Article  PubMed  CAS  Google Scholar 

  40. Qian M, Du Y, Wang S, Li C, Jiang H, Shi W, Chen J, Wang Y, Wagner E, Huang R (2018) Highly crystalline multicolor carbon nanodots for dual-modal imaging-guided photothermal therapy of glioma. ACS Appl Mater Interfaces 10(4):4031–4040

    Article  CAS  PubMed  Google Scholar 

  41. Jiao J, Liu C, Li X, Liu J, Di D, Zhang Y, Zhao Q, Wang S (2016) Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. J Colloid Interface Sci 483:343–352

    Article  CAS  PubMed  Google Scholar 

  42. Yao Y-Y, Gedda G, Girma WM, Yen C-L, Ling Y-C, Chang J-Y (2017) Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl Mater Interfaces 9(16):13887–13899

    Article  CAS  PubMed  Google Scholar 

  43. Karthik S, Saha B, Ghosh SK, Singh NP (2013) Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem Commun 49(89):10471–10473

    Article  CAS  Google Scholar 

  44. Khan MS, Pandey S, Talib A, Bhaisare ML, Wu H-F (2015) Controlled delivery of dopamine hydrochloride using surface modified carbon dots for neuro diseases. Colloids Surf B: Biointerfaces 134:140–146

    Article  CAS  PubMed  Google Scholar 

  45. Feng T, Ai X, Ong H, Zhao Y (2016) Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 8(29):18732–18740

    Article  CAS  PubMed  Google Scholar 

  46. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8(26):16573–16583

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, Li C, Qian M, Jiang H, Shi W, Chen J, Lächelt U, Wagner E, Lu W, Wang Y (2017) Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomaterials 141:29–39

    Article  CAS  PubMed  Google Scholar 

  48. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Anal Lett 34(5):635–659

    Article  Google Scholar 

  49. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanal Int J Dev Fundam Pract Asp Electroanal 13(12):983–988

    CAS  Google Scholar 

  50. Tothill IE (2009) Biosensors for cancer markers diagnosis. In: Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 55–62

    Google Scholar 

  51. Hu S-W, Qiao S, Xu B-Y, Peng X, Xu J-J, Chen H-Y (2017) Dual-functional carbon dots pattern on paper chips for Fe3+ and ferritin analysis in whole blood. Anal Chem 89(3):2131–2137

    Article  CAS  PubMed  Google Scholar 

  52. Alkhateeb AA, Connor JR (2013) The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta Rev Biomembr 1836(2):245–254

    CAS  Google Scholar 

  53. Chen Z, Mao R, Liu Y (2012) Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 13(8):1035–1045

    Article  CAS  PubMed  Google Scholar 

  54. Krusic P, Wasserman E, Keizer P, Morton J, Preston K (1991) Radical reactions of C60. Science 254(5035):1183–1185

    Article  CAS  PubMed  Google Scholar 

  55. Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, Liu R, Zhang Z (2014) A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 35(22):5771–5784

    Article  CAS  PubMed  Google Scholar 

  56. Shi J, Chen Z, Wang L, Wang B, Xu L, Hou L, Zhang Z (2016) A tumor-specific cleavable nanosystem of PEG-modified C60@ Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater 29:282–297

    Article  CAS  PubMed  Google Scholar 

  57. Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, Zhang Z (2016) Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J Control Release 235:245–258

    Article  CAS  PubMed  Google Scholar 

  58. Bilobrov V, Sokolova V, Prylutska S, Panchuk R, Litsis O, Osetskyi V, Evstigneev M, Prylutskyy Y, Epple M, Ritter U (2019) A novel nanoconjugate of landomycin A with C 60 fullerene for cancer targeted therapy: in vitro studies. Cell Mol Bioeng 12(1):41–51

    Article  CAS  PubMed  Google Scholar 

  59. Xu J, Wang H, Hu Y, Zhang YS, Wen L, Yin F, Wang Z, Zhang Y, Li S, Miao Y (2019) Inhibition of CaMKIIα activity enhances antitumor effect of fullerene C60 nanocrystals by suppression of autophagic degradation. Adv Sci 6(8):1801233

    Article  CAS  Google Scholar 

  60. Xia LY, Zheng YN, Liang WB, Li MJ, Hu T, Yuan R, Chai YQ (2019) [Ru (dcbpy) 2dppz] 2+/fullerene cosensitized PTB7-Th for ultrasensitive photoelectrochemical microRNA assay. Chem Eur J 25(16):4087–4092

    Article  CAS  PubMed  Google Scholar 

  61. Bacon R (1960) Growth, structure, and properties of graphite whiskers. J Appl Phys 31(2):283–290

    Article  Google Scholar 

  62. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  63. Pastorin G, Wu W, Wieckowski S, Briand J-P, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 11:1182–1184

    Article  CAS  Google Scholar 

  64. Mehra NK, Jain N (2013) Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target 21(8):745–758

    Article  CAS  PubMed  Google Scholar 

  65. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397

    Article  CAS  PubMed  Google Scholar 

  66. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41):412001

    Article  CAS  Google Scholar 

  67. Zhang S, Yang K, Liu Z (2010) Carbon nanotubes for in vivo cancer nanotechnology. Sci China Chem 53(11):2217–2225

    Article  CAS  Google Scholar 

  68. Kesharwani P, Ghanghoria R, Jain NK (2012) Carbon nanotube exploration in cancer cell lines. Drug Discov Today 17(17–18):1023–1030

    Article  CAS  PubMed  Google Scholar 

  69. Kathane LL, Panchabhai SA, Thakare VM (2018) Carbon nano tubes: new techniques for cancer treatment. Trends Drug Deliv 5(1):28–39

    Google Scholar 

  70. Sheikhpour M, Golbabaie A, Kasaeian A (2017) Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater Sci Eng C 76:1289–1304

    Article  CAS  Google Scholar 

  71. Dong X, Wei C, Liang J, Liu T, Kong D, Lv F (2017) Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery. Colloids Surf B: Biointerfaces 154:253–262

    Article  CAS  PubMed  Google Scholar 

  72. Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ (2014) Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid. Drug Des Devel Ther 8:2333

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ (2014) Sustained release and cytotoxicity evaluation of carbon nanotube-mediated drug delivery system for betulinic acid. J Nanomater 2014:1

    Google Scholar 

  74. Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, Da Ros T, Prato M, Kostarelos K, Bianco A (2010) Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chem Commun 46(9):1494–1496

    Article  Google Scholar 

  75. Singh R, Mehra NK, Jain V, Jain NK (2013) Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target 21(6):581–592

    Article  CAS  PubMed  Google Scholar 

  76. Mahmood M, Xu Y, Dantuluri V, Mustafa T, Zhang Y, Karmakar A, Casciano D, Ali S, Biris A (2013) Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics. Nanotechnology 24(4):045102

    Article  CAS  PubMed  Google Scholar 

  77. Shao W, Paul A, Zhao B, Lee C, Rodes L, Prakash S (2013) Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials 34(38):10109–10119

    Article  CAS  PubMed  Google Scholar 

  78. Arya N, Arora A, Vasu K, Sood AK, Katti DS (2013) Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 5(7):2818–2829

    Article  CAS  PubMed  Google Scholar 

  79. Yu B, Tan L, Zheng R, Tan H, Zheng L (2016) Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater Sci Eng C 68:579–584

    Article  CAS  Google Scholar 

  80. Cao L, Liang Y, Zhao F, Zhao X, Chen Z (2016) Chelerythrine and Fe3O4 loaded multi-walled carbon nanotubes for targeted cancer therapy. J Biomed Nanotechnol 12(6):1312–1322

    Article  CAS  PubMed  Google Scholar 

  81. Tian Z, Yin M, Ma H, Zhu L, Shen H, Jia N (2011) Supramolecular assembly and antitumor activity of multiwalled carbon nanotube–camptothecin complexes. J Nanosci Nanotechnol 11(2):953–958

    Article  CAS  PubMed  Google Scholar 

  82. Ringel J, Erdmann K, Hampel S, Kraemer K, Maier D, Arlt M, Kunze D, Wirth MP, Fuessel S (2014) Carbon nanofibers and carbon nanotubes sensitize prostate and bladder cancer cells to platinum-based chemotherapeutics. J Biomed Nanotechnol 10(3):463–477

    Article  CAS  PubMed  Google Scholar 

  83. Chen H, Ma X, Li Z, Shi Q, Zheng W, Liu Y, Wang P (2012) Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother 66(5):334–338

    Article  CAS  PubMed  Google Scholar 

  84. Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M (2015) Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm 485(1–2):50–60

    Article  CAS  PubMed  Google Scholar 

  85. Guo C, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, Kostarelos K (2015) Design of cationic multiwalled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjug Chem 26(7):1370–1379

    Article  CAS  PubMed  Google Scholar 

  86. Anderson T, Hu R, Yang C, Yoon HS, Yong K-T (2014) Pancreatic cancer gene therapy using an siRNA-functionalized single walled carbon nanotubes (SWNTs) nanoplex. Biomater Sci 2(9):1244–1253

    Article  CAS  PubMed  Google Scholar 

  87. Taghavi S, HashemNia A, Mosaffa F, Askarian S, Abnous K, Ramezani M (2016) Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf B: Biointerfaces 140:28–39

    Article  CAS  PubMed  Google Scholar 

  88. Singh RP, Sharma G, Singh S, Patne SC, Pandey BL, Koch B, Muthu MS (2016) Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater Sci Eng C 67:313–325

    Article  CAS  Google Scholar 

  89. Karmakar A, Iancu C, Bartos DM, Mahmood MW, Ghosh A, Xu Y, Dervishi E, Collom SL, Khodakovskaya M, Mustafa T (2012) Raman spectroscopy as a detection and analysis tool for in vitro specific targeting of pancreatic cancer cells by EGF-conjugated, single-walled carbon nanotubes. J Appl Toxicol 32(5):365–375

    Article  CAS  PubMed  Google Scholar 

  90. Saeed LM, Mahmood M, Pyrek SJ, Fahmi T, Xu Y, Mustafa T, Nima ZA, Bratton SM, Casciano D, Dervishi E (2014) Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J Appl Toxicol 34(11):1188–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tian Q, Wang Y, Deng R, Lin L, Liu Y, Li J (2015) Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Nanoscale 7(3):987–993

    Article  CAS  PubMed  Google Scholar 

  92. Sardesai NP, Barron JC, Rusling JF (2011) Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem 83(17):6698–6703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weizmann Y, Chenoweth DM, Swager TM (2011) DNA− cnt nanowire networks for DNA detection. J Am Chem Soc 133(10):3238–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 22(9–10):2377–2381

    Article  CAS  PubMed  Google Scholar 

  95. Tian J, Huang J, Zhao Y, Zhao S (2012) Electrochemical immunosensor for prostate-specific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starch-functionalized multi-walled carbon nanotubes. Microchim Acta 178(1–2):81–88

    Article  CAS  Google Scholar 

  96. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128(34):11199–11205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zou Y, Xiang C, Sun L, Xu F, Zhou H (2014) Ultrasensitive prostate specific antigen immunosensor based on gold nanoparticles functionalized polypyrrole@ carbon nanotubes. Asian J Chem 26(23):8002–8006

    Article  CAS  Google Scholar 

  98. Lerner MB, D’Souza J, Pazina T, Dailey J, Goldsmith BR, Robinson MK, Johnson AC (2012) Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 6(6):5143–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sharma A, Hong S, Singh R, Jang J (2015) Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin. Anal Chim Acta 869:68–73

    Article  CAS  PubMed  Google Scholar 

  100. Liu L, Song C, Zhang Z, Yang J, Zhou L, Zhang X, Xie G (2015) Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction. Biosens Bioelectron 70:351–357

    Article  CAS  PubMed  Google Scholar 

  101. Tran H, Piro B, Reisberg S, Tran L, Duc H, Pham M (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  CAS  PubMed  Google Scholar 

  102. Tran H, Piro B, Reisberg S, Nguyen LH, Nguyen TD, Duc H, Pham M (2014) An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens Bioelectron 62:25–30

    Article  CAS  PubMed  Google Scholar 

  103. Ramnani P, Gao Y, Ozsoz M, Mulchandani A (2013) Electronic detection of microRNA at attomolar level with high specificity. Anal Chem 85(17):8061–8064

    Article  CAS  PubMed  Google Scholar 

  104. Li F, Peng J, Wang J, Tang H, Tan L, Xie Q, Yao S (2014) Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens Bioelectron 54:158–164

    Article  CAS  PubMed  Google Scholar 

  105. Xu H, Wang Y, Wang L, Song Y, Luo J, Cai X (2016) A label-free microelectrode array based on one-step synthesis of chitosan–multi-walled carbon nanotube–thionine for ultrasensitive detection of carcinoembryonic antigen. Nano 6(7):132

    Google Scholar 

  106. Kumar S, Willander M, Sharma JG, Malhotra BD (2015) A solution processed carbon nanotube modified conducting paper sensor for cancer detection. J Mater Chem B 3(48):9305–9314

    Article  CAS  PubMed  Google Scholar 

  107. Feng D, Lu X, Dong X, Ling Y, Zhang Y (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180(9–10):767–774

    Article  CAS  Google Scholar 

  108. Zhang Y, Chen H, Gao X, Chen Z, Lin X (2012) A novel immunosensor based on an alternate strategy of electrodeposition and self-assembly. Biosens Bioelectron 35(1):277–283

    Article  CAS  PubMed  Google Scholar 

  109. Gao X, Zhang Y, Chen H, Chen Z, Lin X (2011) Amperometric immunosensor for carcinoembryonic antigen detection with carbon nanotube-based film decorated with gold nanoclusters. Anal Biochem 414(1):70–76

    Article  CAS  PubMed  Google Scholar 

  110. Yang P, Li X, Wang L, Wu Q, Chen Z, Lin X (2014) Sandwich-type amperometric immunosensor for cancer biomarker based on signal amplification strategy of multiple enzyme-linked antibodies as probes modified with carbon nanotubes and concanavalin A. J Electroanal Chem 732:38–45

    Article  CAS  Google Scholar 

  111. Cheng H, Lai G, Fu L, Zhang H, Yu A (2015) Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 71:353–358

    Article  CAS  PubMed  Google Scholar 

  112. Deng W, Liu F, Ge S, Yu J, Yan M, Song X (2014) A dual amplification strategy for ultrasensitive electrochemiluminescence immunoassay based on a Pt nanoparticles dotted graphene–carbon nanotubes composite and carbon dots functionalized mesoporous Pt/Fe. Analyst 139(7):1713–1720

    Article  CAS  PubMed  Google Scholar 

  113. Hu C, Zheng J, Su X, Wang J, Wu W, Hu S (2013) Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light. Anal Chem 85(21):10612–10619

    Article  CAS  PubMed  Google Scholar 

  114. Li N, Wang Y, Cao W, Zhang Y, Yan T, Du B, Wei Q (2015) An ultrasensitive electrochemical immunosensor for CEA using MWCNT-NH 2 supported PdPt nanocages as labels for signal amplification. J Mater Chem B 3(9):2006–2011

    Article  CAS  PubMed  Google Scholar 

  115. Chen S, Yuan R, Chai Y, Min L, Li W, Xu Y (2009) Electrochemical sensing platform based on tris (2, 2′-bipyridyl) cobalt (III) and multiwall carbon nanotubes–Nafion composite for immunoassay of carcinoma antigen-125. Electrochim Acta 54(28):7242–7247

    Article  CAS  Google Scholar 

  116. Paul KB, Singh V, Vanjari SRK, Singh SG (2017) One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosens Bioelectron 88:144–152

    Article  CAS  PubMed  Google Scholar 

  117. Ding Y, Liu J, Jin X, Lu H, Shen G, Yu R (2008) Poly-L-lysine/hydroxyapatite/carbon nanotube hybrid nanocomposite applied for piezoelectric immunoassay of carbohydrate antigen 19-9. Analyst 133(2):184–190

    Article  CAS  PubMed  Google Scholar 

  118. Chen X, Zhang Q, Qian C, Hao N, Xu L, Yao C (2015) Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly (o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag. Biosens Bioelectron 64:485–492

    Article  CAS  PubMed  Google Scholar 

  119. Arkan E, Saber R, Karimi Z, Shamsipur M (2015) A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal Chim Acta 874:66–74

    Article  CAS  PubMed  Google Scholar 

  120. Asav E, Sezgintürk MK (2014) A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker. Int J Biol Macromol 66:273–280

    Article  CAS  PubMed  Google Scholar 

  121. Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón J (2017) Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double–walled carbon nanotubes. Anal Chim Acta 959:66–73

    Article  PubMed  CAS  Google Scholar 

  122. Munge BS, Fisher J, Millord LN, Krause CE, Dowd RS, Rusling JF (2010) Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes. Analyst 135(6):1345–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tu M-C, Chen H-Y, Wang Y, Moochhala SM, Alagappan P, Liedberg B (2015) Immunosensor based on carbon nanotube/manganese dioxide electrochemical tags. Anal Chim Acta 853:228–233

    Article  CAS  PubMed  Google Scholar 

  124. Roy S, Jaiswal A (2017) Graphene-based nanomaterials for theranostic applications. Rep Adv Phys Sci 1(04):1750011

    Article  Google Scholar 

  125. Bourlinos AB, Steriotis TA, Zboril R, Georgakilas V, Stubos A (2009) Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. J Mater Sci 44(5):1407–1411

    Article  CAS  Google Scholar 

  126. Sinitskii A, Dimiev A, Kosynkin DV, Tour JM (2010) Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 4(9):5405–5413

    Article  CAS  PubMed  Google Scholar 

  127. Terrones M, Botello-Méndez AR, Campos-Delgado J, Lopez-Urias F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Munoz-Sandoval E, Cano-Márquez AG, Charlier J-C (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Article  CAS  Google Scholar 

  128. James DK, Tour JM (2012) The chemical synthesis of graphene nanoribbons—a tutorial review. Macromol Chem Phys 213(10–11):1033–1050

    Article  CAS  Google Scholar 

  129. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  PubMed  Google Scholar 

  130. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  PubMed  Google Scholar 

  131. Yang K, Feng L, Hong H, Cai W, Liu Z (2013) Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc 8(12):2392

    Article  CAS  PubMed  Google Scholar 

  132. Patel SC, Lee S, Lalwani G, Suhrland C, Chowdhury SM, Sitharaman B (2016) Graphene-based platforms for cancer therapeutics. Ther Deliv 7(2):101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG (2016) Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sens 2(1):52–56

    Article  PubMed  CAS  Google Scholar 

  134. Zhang B, Li Q, Cui T (2012) Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise. Biosens Bioelectron 31(1):105–109

    Article  CAS  PubMed  Google Scholar 

  135. Xu T, Liu N, Yuan J, Ma Z (2015) Triple tumor markers assay based on carbon–gold nanocomposite. Biosens Bioelectron 70:161–166

    Article  CAS  PubMed  Google Scholar 

  136. Gao Z, Vishnubhotla R, Ducos P, Serrano MD, Ping J, Robinson MK, Johnson ATC (2016) Genetically engineered antibody functionalized platinum nanoparticles modified CVD-graphene nanohybrid transistor for the detection of breast cancer biomarker, HER3. Adv Mater Interfaces 3(17):1600124

    Article  CAS  Google Scholar 

  137. Cheng F-F, He T-T, Miao H-T, Shi J-J, Jiang L-P, Zhu J-J (2015) Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl Mater Interfaces 7(4):2979–2985

    Article  CAS  PubMed  Google Scholar 

  138. Li J, Hu X, Shi S, Zhang Y, Yao T (2016) Three label-free thrombin aptasensors based on aptamers and [Ru (bpy) 2 (o-mopip)] 2+. J Mater Chem B 4(7):1361–1367

    Article  CAS  PubMed  Google Scholar 

  139. Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X (2012) Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv Mater 24(1):125–131

    Article  CAS  PubMed  Google Scholar 

  140. Jia L-P, Liu J-F, Wang H-S (2015) Electrochemical performance and detection of 8-Hydroxy-2′-deoxyguanosine at single-stranded DNA functionalized graphene modified glassy carbon electrode. Biosens Bioelectron 67:139–145

    Article  CAS  PubMed  Google Scholar 

  141. Kumar S, Sharma JG, Maji S, Malhotra BD (2016) Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens Bioelectron 78:497–504

    Article  CAS  PubMed  Google Scholar 

  142. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127(50):17604–17605

    Article  CAS  PubMed  Google Scholar 

  143. Gaebel T, Popa I, Gruber A, Domhan M, Jelezko F, Wrachtrup J (2004) Stable single-photon source in the near infrared. New J Phys 6(1):98

    Article  Google Scholar 

  144. Kong X, Huang LL, Liau S-CV, Han C-C, Chang H-C (2005) Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Anal Chem 77(13):4273–4277

    Article  CAS  PubMed  Google Scholar 

  145. Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci 104(3):727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93(6):2199–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3(5):284

    Article  CAS  PubMed  Google Scholar 

  148. Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault J-C, Thorel A, Boudou J-P (2009) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3(12):3955–3962

    Article  CAS  PubMed  Google Scholar 

  149. Zhang B, Li Y, Fang CY, Chang CC, Chen CS, Chen YY, Chang HC (2009) Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5(23):2716–2721

    Article  CAS  PubMed  Google Scholar 

  150. Hui YY, Su L-J, Chen OY, Chen Y-T, Liu T-M, Chang H-C (2014) Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci Rep 4:5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10(9):3692–3699

    Article  CAS  PubMed  Google Scholar 

  152. Vaijayanthimala V, Cheng P-Y, Yeh S-H, Liu K-K, Hsiao C-H, Chao J-I, Chang H-C (2012) The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33(31):7794–7802

    Article  CAS  PubMed  Google Scholar 

  153. Igarashi R, Yoshinari Y, Yokota H, Sugi T, Sugihara F, Ikeda K, Sumiya H, Tsuji S, Mori I, Tochio H (2012) Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett 12(11):5726–5732

    Article  CAS  PubMed  Google Scholar 

  154. Titirici MM, Thomas A, Antonietti M (2007) Replication and coating of silica templates by hydrothermal carbonization. Adv Funct Mater 17(6):1010–1018

    Article  CAS  Google Scholar 

  155. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828

    Article  CAS  PubMed  Google Scholar 

  156. Titirici M-M, Thomas A, Antonietti M (2007) Aminated hydrophilic ordered mesoporous carbons. J Mater Chem 17(32):3412–3418

    Article  CAS  Google Scholar 

  157. Gu J, Su S, Li Y, He Q, Shi J (2011) Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem Commun 47(7):2101–2103

    Article  CAS  Google Scholar 

  158. Li C, Qian M, Wang S, Jiang H, Du Y, Wang J, Lu W, Murthy N, Huang R (2017) Aptavalve-gated mesoporous carbon nanospheres image cellular mucin and provide on-demand targeted drug delivery. Theranostics 7(13):3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meng Y, Wang S, Li C, Qian M, Yan X, Yao S, Peng X, Wang Y, Huang R (2016) Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials 100:134–142

    Article  CAS  PubMed  Google Scholar 

  160. Wang Y, Wang K, Zhang R, Liu X, Yan X, Wang J, Wagner E, Huang R (2014) Synthesis of core–shell graphitic carbon@ silica nanospheres with dual-ordered mesopores for cancer-targeted photothermochemotherapy. ACS Nano 8(8):7870–7879

    Article  CAS  PubMed  Google Scholar 

  161. Wang S, Li C, Meng Y, Qian M, Jiang H, Du Y, Huang R, Wang Y (2017) MemHsp70 receptor-mediated multifunctional ordered mesoporous carbon nanospheres for photoacoustic imaging-guided synergistic targeting trimodal therapy. ACS Biomater Sci Eng 3(8):1702–1709

    Article  CAS  PubMed  Google Scholar 

  162. Pirsaheb M, Mohammadi S, Salimi A (2019) Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC Trends Anal Chem 115:83–99

    Article  CAS  Google Scholar 

  163. Beaudoin D, Maris T, Wuest JD (2013) Constructing monocrystalline covalent organic networks by polymerization. Nat Chem 5(10):830

    Article  CAS  PubMed  Google Scholar 

  164. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Kayat J, Gajbhiye V, Tekade RK, Jain NK (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7(1):40–49

    Article  CAS  PubMed  Google Scholar 

  166. Mehra NK, Jain AK, Lodhi N, Raj R, Dubey V, Mishra D, Nahar M, Jain NK (2008) Challenges in the use of carbon nanotubes for biomedical applications. Crit Rev Ther Drug Carrier Syst 25(2):169–206

    Article  CAS  PubMed  Google Scholar 

  167. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11

    Article  CAS  Google Scholar 

  168. Zeynalov EB, Allen NS, Salmanova NI (2009) Radical scavenging efficiency of different fullerenes C60–C70 and fullerene soot. Polym Degrad Stab 94(8):1183–1189

    Article  CAS  Google Scholar 

  169. Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131(47):17099–17101

    Article  CAS  PubMed  Google Scholar 

  170. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc 115(21):9798–9799

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima R. Solanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sri, S., Panwar, S., Solanki, P.R. (2020). Carbon-Based Tumour-targeted Systems. In: Huang, R., Wang, Y. (eds) New Nanomaterials and Techniques for Tumor-targeted Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-5159-8_7

Download citation

Publish with us

Policies and ethics