Skip to main content

Carbon Nanodots for Cell Imaging

  • Chapter
  • First Online:

Abstract

As novel fluorescent materials, carbon nanodots (CNDs) have gained tremendous attention due to their exceptional physicochemical properties. Compared to other fluorescent materials, CNDs have tunable photoluminescence properties, high photostability, good water-dispersity, low toxicity, and excellent biocompatibility. Thus, they have broad applications in biomedical fields, such as biosensing, bioimaging, and drug delivery. In this chapter, we first briefly review the synthetic methods of CNDs, and then summarize the recent progress of CNDs in cell imaging, including mammalian cell imaging, microbial cell imaging, and plant cell imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947

    Article  CAS  Google Scholar 

  2. Zhu SJ, Song YB, Zhao XH, Shao JR, Zhang JH, Yang B (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Google Scholar 

  3. Meng WX, Bai X, Wang BY, Liu ZY, Lu SY, Yang B (2019) Biomass‐derived carbon dots and their applications. Energy Environ Mater 2:172–192

    Google Scholar 

  4. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  PubMed  Google Scholar 

  5. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PJG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Google Scholar 

  6. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, Qi BP, Pang DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    Article  CAS  PubMed  Google Scholar 

  7. Zheng HZ, Wang QL, Long YJ, Zhang HJ, Huang XX, Zhu R (2011) Enhancing the luminescence of carbon dots with a reduction pathway. Chem Commun 47:10650–10652

    Article  CAS  Google Scholar 

  8. Yang JJ, Gao G, Zhang XD, Ma YH, Jia HR, Jiang YW, Wang ZF, Wu FG (2017) Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules. Nanoscale 9:15441–15452

    Article  CAS  PubMed  Google Scholar 

  9. Xu D, Lin Q, Chang HT (2020) Recent advances and sensing applications of carbon dots. Small Methods 4(4):1900387

    Google Scholar 

  10. Nie H, Li MJ, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang SXA (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112

    Article  CAS  Google Scholar 

  11. Pan LL, Sun S, Zhang AD, Jiang K, Zhang L, Dong CQ, Huang Q, Wu AG, Lin HW (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 27:7782–7787

    Article  CAS  PubMed  Google Scholar 

  12. Sharma A, Gadly T, Gupta A, Ballal A, Ghosh SK, Kumbhakar M (2016) Origin of excitation dependent fluorescence in carbon nanodots. J Phys Chem Lett 7:3695–3702

    Article  CAS  PubMed  Google Scholar 

  13. van Dam B, Nie H, Ju B, Marino E, Paulusse JMJ, Schall P, Li MJ, Dohnalova K (2017) Excitation-dependent photoluminescence from single-carbon dots. Small 13:1702098

    Google Scholar 

  14. Wang CX, Xu ZZ, Cheng H, Lin HH, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95

    Article  CAS  Google Scholar 

  15. Wang N, Wang YT, Guo TT, Yang T, Chen ML, Wang JH (2016) Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 85:68–75

    Article  CAS  PubMed  Google Scholar 

  16. Fan YZ, Zhang Y, Li N, Liu SG, Liu T, Li NB, Luo HQ (2017) A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens Actuators B Chem 240:949–955

    Article  CAS  Google Scholar 

  17. Li SH, Amat D, Peng ZL, Vanni S, Raskin S, De Angulo G, Othman AM, Grahamb RM, Leblanc RM (2016) Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale 8:16662–16669

    Article  CAS  PubMed  Google Scholar 

  18. Wang ZG, Fu BS, Zou SW, Duan B, Chang CY, Yang B, Zhou X, Zhang LN (2016) Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res 9:214–223

    Article  CAS  Google Scholar 

  19. Feng T, Ai XZ, An GH, Yang PP, Zhao YL (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10:4410–4420

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Guo BD, Rao ZY, Zhang BH, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441

    Article  CAS  PubMed  Google Scholar 

  21. Liu YB, Zhou L, Li YN, Deng RP, Zhang HJ (2017) Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale 9:491–496

    Article  CAS  PubMed  Google Scholar 

  22. Sun MH, Liang C, Tian Z, Ushakova EV, Li D, Xing GC, Qu SN, Rogach AL (2019) Realization of the photostable intrinsic core emission from carbon dots through surface deoxidation by ultraviolet irradiation. J Phys Chem Lett 10:3094–3100

    Article  CAS  PubMed  Google Scholar 

  23. Huang YF, Zhou X, Zhou R, Zhang H, Kang KB, Zhao M, Peng Y, Wang Q, Zhang HL, Qiu WY (2014) One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chem Eur J 20:5640–5648

    Google Scholar 

  24. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  CAS  Google Scholar 

  25. Xu Q, Pu P, Zhao JG, Dong CB, Gao C, Chen YS, Chen JR, Liu Y, Zhou HJ (2015) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A 3:542–546

    Google Scholar 

  26. Zhang Z, Hao JH, Zhang J, Zhang BL, Tang JL (2012) Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Adv 2:8599–8601

    Article  CAS  Google Scholar 

  27. Ge JC, Jia QY, Liu WM, Guo L, Liu QY, Lan MH, Zhang HY, Meng XM, Wang PF (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177

    Article  CAS  PubMed  Google Scholar 

  28. Hu SL, Wei ZJ, Chang Q, Trinchi A, Yang JL (2016) A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl Surf Sci 378:402–407

    Article  CAS  Google Scholar 

  29. Hua XW, Bao YW, Wang HY, Chen Z, Wu FG (2017) Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale 9:2150–2161

    Google Scholar 

  30. Lin FM, Li CC, Dong L, Fu DG, Chen Z (2017) Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale 9:9056–9064

    Google Scholar 

  31. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  PubMed  Google Scholar 

  32. Peng H, Li Y, Jiang CL, Luo CH, Qi RJ, Huang R, Duan CG, Travas-Sejdic J (2016) Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon 100:386–394

    Article  CAS  Google Scholar 

  33. Jiang K, Sun S, Zhang L, Lu Y, Wu AG, Cai CZ, Lin HW (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363

    Article  CAS  Google Scholar 

  34. Zhang CF, Hu ZB, Song L, Cui YY, Liu XF (2015) Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg2+ with high sensitivity and selectivity. New J Chem 39:6201–6206

    Article  CAS  Google Scholar 

  35. Hutton GAM, Martindale BCM, Reisner E (2017) Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev 46:6111–6123

    Google Scholar 

  36. Semeniuk M, Yi ZH, Poursorkhabi V, Tjong J, Jaffer S, Lu ZH, Sain M (2019) Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 13:6224–6255

    Article  CAS  PubMed  Google Scholar 

  37. Li MX, Chen T, Gooding JJ, Liu JQ (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748

    Article  CAS  PubMed  Google Scholar 

  38. Mishra V, Patil A, Thakur S, Kesharwani P (2018) Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today 23:1219–1232

    Article  CAS  PubMed  Google Scholar 

  39. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924

    Article  CAS  PubMed  Google Scholar 

  40. Li HX, Yan X, Kong DS, Jin R, Sun CY, Du D, Lin YH, Lu GY (2020) Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz 5:218–234

    Article  CAS  Google Scholar 

  41. Wang W, Cheng L, Liu WG (2014) Biological applications of carbon dots. Sci China Chem 57:522–539

    Article  CAS  Google Scholar 

  42. Song YB, Zhu SJ, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4:27184–27200

    Article  CAS  Google Scholar 

  43. Liu X, Pang JH, Xu F, Zhang XM (2016) Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep 6:31100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhang YQ, Ma DK, Zhuang Y, Zhang X, Chen W, Hong LL, Yan QX, Yu K, Huang SM (2012) One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J Mater Chem 22:16714–16718

    Article  CAS  Google Scholar 

  45. Li XM, Zhang SL, Kulinich SA, Liu YL, Zeng HB (2014) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4:4976

    Article  CAS  PubMed Central  Google Scholar 

  46. Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, Chang HT (2014) Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6:13119–13125

    Article  CAS  PubMed  Google Scholar 

  47. Zhang XD, Chen XK, Kai SQ, Wang HY, Yang JJ, Wu FG, Chen Z (2015) Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem 87:3360–3365

    Article  CAS  PubMed  Google Scholar 

  48. Wu FG, Zhang XD, Kai SQ, Zhang MY, Wang HY, Myers JN, Weng YX, Liu PD, Gu N, Chen Z (2015) One-step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80%. Adv Mater Interfaces 2:1500360

    Article  CAS  Google Scholar 

  49. Zhang YQ, Liu XY, Fan Y, Guo XY, Zhou L, Lv Y, Lin J (2016) One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale 8:15281–15287

    Article  CAS  PubMed  Google Scholar 

  50. Jiang K, Wang YH, Gao XL, Cai CZ, Lin HW (2018) Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew Chem Int Ed 57:6216–6220

    Article  CAS  Google Scholar 

  51. Gao G, Jiang YW, Yang JJ, Wu FG (2017) Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9:18368–18378

    Article  CAS  PubMed  Google Scholar 

  52. Li HT, Ming H, Liu Y, Yu H, He XD, Huang H, Pan KM, Kang ZH, Lee ST (2011) Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J Chem 35:2666–2670

    Article  CAS  Google Scholar 

  53. Hou YX, Lu QJ, Deng JH, Li HT, Zhang YY (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74

    Article  CAS  PubMed  Google Scholar 

  54. Deng JH, Lu QJ, Mi NX, Li HT, Liu ML, Xu MC, Tan L, Xie QJ, Zhang YY, Yao SZ (2014) Electrochemical synthesis of carbon nanodots directly from alcohols. Chem Eur J 20:4993–4999

    Article  CAS  PubMed  Google Scholar 

  55. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  56. Li Y, Hu Y, Zhao Y, Shi GQ, Deng LE, Hou YB, Qu LT (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Article  CAS  PubMed  Google Scholar 

  57. Lu J, Yang JX, Wang JZ, Lim AL, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18

    Article  CAS  PubMed  Google Scholar 

  59. Ananthanarayanan A, Wang XW, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24:3021–3026

    Article  CAS  Google Scholar 

  60. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, Song L, Alemany LB, Zhan XB, Gao GH (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  PubMed  Google Scholar 

  61. Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J 18:12522–12528

    Article  CAS  PubMed  Google Scholar 

  62. Zhang XY, Wang SQ, Zhu CY, Liu MY, Ji Y, Feng L, Tao L, Wei Y (2013) Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. J Colloid Interface Sci 397:39–44

    Article  CAS  PubMed  Google Scholar 

  63. Wang QL, Zheng HZ, Long YJ, Zhang LY, Gao M, Bai WJ (2011) Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon 49:3134–3140

    Article  CAS  Google Scholar 

  64. Tan MQ, Zhang LX, Tang R, Song XJ, Li YM, Wu H, Wang YF, Lv GJ, Liu WF, Ma XJ (2013) Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta 115:950–956

    Article  CAS  PubMed  Google Scholar 

  65. Hu C, Yu C, Li MY, Wang XN, Yang JY, Zhao ZB, Eychmüller A, Sun YP, Qiu JS (2014) Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu (II) detection. Small 10:4926–4933

    Article  CAS  PubMed  Google Scholar 

  66. Dong YQ, Chen CQ, Zheng XT, Gao LL, Cui ZM, Yang HB, Guo CX, Chi YW, Li CM (2012) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22:8764–8766

    Google Scholar 

  67. Qiao ZA, Wang YF, Gao Y, Li HW, Dai TY, Liu YL, Huo QS (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46:8812–8814

    Article  CAS  Google Scholar 

  68. Lai CW, Hsiao YH, Peng YK, Chou PT (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem 22:14403–14409

    Google Scholar 

  69. Mehta VN, Jha S, Singhal RK, Kailasa SK (2014) Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem 38:6152–6160

    Article  CAS  Google Scholar 

  70. Feng J, Wang WJ, Hai X, Yu YL, Wang JH (2016) Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B 4:387–393

    Article  CAS  PubMed  Google Scholar 

  71. Ding P, Wang HY, Song B, Ji XY, Su YY, He Y (2017) In situ live-cell nucleus fluorescence labeling with bioinspired fluorescent probes. Anal Chem 89:7861–7868

    Article  CAS  PubMed  Google Scholar 

  72. Li D, Qiao ZZ, Yu YR, Tang JL, He XX, Shi H, Ye XS, Lei YL, Wang KM (2018) In situ fluorescence activation of DNA–silver nanoclusters as a label-free and general strategy for cell nucleus imaging. Chem Commun 54:1089–1092

    Article  CAS  Google Scholar 

  73. Chen XK, Zhang XD, Guo YX, Zhu YX, Liu XY, Chen Z, Wu FG (2019) Smart supramolecular “Trojan horse”-inspired nanogels for realizing light-triggered nuclear drug influx in drug-resistant cancer cells. Adv Funct Mater 29:1807772

    Article  CAS  Google Scholar 

  74. Yang L, Jiang WH, Qiu LP, Jiang XW, Zuo DY, Wang DK, Yang L (2015) One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 7:6104–6113

    Article  CAS  PubMed  Google Scholar 

  75. Jung YK, Shin E, Kim BS (2015) Cell nucleus-targeting zwitterionic carbon dots. Sci Rep 5:18807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Ci JL, Tian Y, Kuga S, Niu ZW, Wu M, Huang Y (2017) One-pot green synthesis of nitrogen-doped carbon quantum dots for cell nucleus labeling and copper (II) detection. Chem Asian J 12:2916–2921

    Article  CAS  PubMed  Google Scholar 

  77. Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Google Scholar 

  78. Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, Cox J, Jungmann R, Hartl F, Hipp M (2019) The nucleolus functions as a phase-separated protein quality control compartment. Science 365:342–347

    Article  CAS  PubMed  Google Scholar 

  79. Barbosa CDES, Corrêa JR, Medeiros GA, Barreto G, Magalhães KG, de Oliveira AL, Spencer J, Rodrigues MO, Neto BAD (2015) Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chem Eur J 21:5055–5060

    Google Scholar 

  80. Kong WQ, Liu RH, Li H, Liu J, Huang H, Liu Y, Kang ZH (2014) High-bright fluorescent carbon dots and their application in selective nucleoli staining. J Mater Chem B 2:5077–5082

    Google Scholar 

  81. Hua XW, Bao YW, Wu FG (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces 10:10664–10677

    Article  CAS  PubMed  Google Scholar 

  82. Hua XW, Bao YW, Zeng J, Wu FG (2019) Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: high-resolution cell imaging and in vivo tracking. ACS Appl Mater Interfaces 11:32647–32658

    Article  CAS  PubMed  Google Scholar 

  83. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  PubMed  Google Scholar 

  84. Wang BB, Wang YF, Wu H, Song XJ, Guo X, Zhang DM, Ma XJ, Tan MQ (2014) A mitochondria-targeted fluorescent probe based on TPP-conjugated carbon dots for both one-and two-photon fluorescence cell imaging. RSC Adv 4:49960–49963

    Article  CAS  Google Scholar 

  85. Hua XW, Bao YW, Chen Z, Wu FG (2017) Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 9:10948–10960

    Article  CAS  PubMed  Google Scholar 

  86. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  87. Chen XK, Zhang XD, Xia LY, Wang HY, Chen Z, Wu FG (2018) One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield: long-term lysosome imaging in living, fixed, and permeabilized cells. Nano Lett 18:1159–1167

    Article  CAS  PubMed  Google Scholar 

  88. Zhang XD, Chen XK, Guo YX, Jia HR, Jiang YW, Wu FG (2020) Endosome/lysosome-detained supramolecular nanogels as an efflux retarder and autophagy inhibitor for repeated photodynamic therapy of multidrug-resistant cancer. Nanoscale Horiz 5:481–487

    Article  CAS  PubMed  Google Scholar 

  89. Wu LL, Li XL, Ling YF, Huang CS, Jia NQ (2017) Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 9:28222–28232

    Article  CAS  PubMed  Google Scholar 

  90. Zhang DY, Zheng Y, Zhang H, He L, Tan CP, Sun JH, Zhang W, Peng XY, Zhan QQ, Ji LN, Mao ZW (2017) Ruthenium complex-modified carbon nanodots for lysosome-targeted one- and two-photon imaging and photodynamic therapy. Nanoscale 9:18966–18976

    Google Scholar 

  91. E S, Mao QX, Yuan XL, Kong XL, Chen XW, Wang JH (2018) Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. Nanoscale 10:12788–12796

    Google Scholar 

  92. Zhang QQ, Yang T, Li RS, Zou HY, Li YF, Guo J, Liu XD, Huang CZ (2018) A functional preservation strategy for the production of highly photoluminescent emerald carbon dots for lysosome targeting and lysosomal pH imaging. Nanoscale 10:14705–14711

    Article  CAS  PubMed  Google Scholar 

  93. Liu HF, Sun YQ, Li ZH, Yang J, Aryee AA, Qu LB, Du D, Lin YH (2019) Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale 11:8458–8463

    Article  CAS  PubMed  Google Scholar 

  94. Chen S, Jia Y, Zou GY, Yu YL, Wang JH (2019) A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. Nanoscale 11:6377–6383

    Article  CAS  PubMed  Google Scholar 

  95. Zhao SJ, Wu SL, Jia QY, Huang L, Lan MH, Wang PF, Zhang WJ (2020) Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem Eng J 388:124212

    Article  CAS  Google Scholar 

  96. Qin HY, Sun YQ, Geng X, Zhao KR, Meng HM, Yang R, Qu LB, Li ZH (2020) A wash-free lysosome targeting carbon dots for ultrafast imaging and monitoring cell apoptosis status. Anal Chim Acta 1106:207–215

    Article  CAS  PubMed  Google Scholar 

  97. Singh H, Sreedharan S, Tiwari K, Green NH, Smythe C, Pramanik SK, Thomas JA, Das A (2019) Two photon excitable graphene quantum dots for structured illumination microscopy and imaging applications: lysosome specificity and tissue-dependent imaging. Chem Commun 55:521–524

    Article  CAS  Google Scholar 

  98. Guo S, Sun YQ, Geng X, Yang R, Xiao LH, Qu LB, Li ZH (2020) Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. J Mater Chem B 8:736–742

    Article  CAS  PubMed  Google Scholar 

  99. Beams HW, Kessel RG (1968) The Golgi apparatus: structure and function. Int Rev Cytol 23:209–276

    Article  CAS  PubMed  Google Scholar 

  100. Li RS, Gao PF, Zhang HZ, Zheng LL, Li CM, Wang J, Li YF, Liu F, Li N, Huang CZ (2017) Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chem Sci 8:6829–6835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Wang L, Wu B, Li WT, Li Z, Zhan J, Geng BJ, Wang SL, Pan DY, Wu MH (2017) Industrial production of ultra-stable sulfonated graphene quantum dots for Golgi apparatus imaging. J Mater Chem B 5:5355–5361

    Article  CAS  PubMed  Google Scholar 

  102. Han JY, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728

    Google Scholar 

  103. Jia XF, Li J, Wang EK (2012) One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4:5572–5575

    Article  CAS  PubMed  Google Scholar 

  104. Hu YP, Yang J, Tian JW, Jia L, Yu JS (2014) Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77:775–782

    Article  CAS  Google Scholar 

  105. Shangguan JF, He DG, He XX, Wang KM, Xu FZ, Liu JQ, Tang JL, Yang X, Huang J (2016) Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal Chem 88:7837–7843

    Article  CAS  PubMed  Google Scholar 

  106. Ye XX, Xiang YH, Wang QR, Li Z, Liu ZH (2019) A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 15:1901673

    Article  CAS  Google Scholar 

  107. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  PubMed  Google Scholar 

  108. Yang MX, Tang QL, Meng Y, Liu JJ, Feng TL, Zhao XH, Zhu SJ, Yu WX, Yang B (2018) Reversible “off-on” fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+. Langmuir 34:7767–7775

    Article  CAS  PubMed  Google Scholar 

  109. Kong DP, Yan FY, Luo YM, Ye QH, Zhou S, Chen L (2017) Amphiphilic carbon dots for sensitive detection, intracellular imaging of Al3+. Anal Chim Acta 953:63–70

    Article  CAS  PubMed  Google Scholar 

  110. Zhang HJ, Chen YL, Liang MJ, Xu LF, Qi SD, Chen HL, Chen XG (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86:9846–9852

    Article  CAS  PubMed  Google Scholar 

  111. Gong XJ, Lu WJ, Paau MC, Hu Q, Wu X, Shuang SM, Dong C, Choi MMF (2015) Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal Chim Acta 861:74–84

    Article  CAS  PubMed  Google Scholar 

  112. Shangguan JF, Huang J, He DG, He XX, Wang KM, Ye RZ, Yang X, Qing TP, Tang JL (2017) Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal Chem 89:7477–7484

    Article  CAS  PubMed  Google Scholar 

  113. Song Y, Zhu CZ, Song JH, Li H, Du D, Lin YH (2017) Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl Mater Interfaces 9:7399–7405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Atchudan R, Edison TNJI, Aseer KR, Perumal S, Karthik N, Lee YR (2018) Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens Bioelectron 99:303–311

    Article  CAS  PubMed  Google Scholar 

  115. Gao G, Jiang YW, Jia HR, Yang JJ, Wu FG (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    Article  CAS  Google Scholar 

  116. Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubí-Robles M, Fernández B, Ruedas-Rama MJ, Megia-Fernández A, Lapresta-Fernández A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49:1103–1105

    Google Scholar 

  117. Sotiriou GA, Pratsinis SE (2011) Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng 1: 3–10

    Google Scholar 

  118. Zuo GC, Xie AM, Li JJ, Su T, Pan XH, Dong W (2017) Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection. J Phys Chem C 121:26558–26565

    Article  CAS  Google Scholar 

  119. Makam P, Shilpa R, Kandjani AE, Periasamy SR, Sabri YM, Madhu C, Bhargava SK, Govindaraju T (2018) SERS and fluorescence-based ultrasensitive detection of mercury in water. Biosens Bioelectron 100:556–564

    Article  CAS  PubMed  Google Scholar 

  120. Yan FY, Zou Y, Wang M, Mu XL, Yang N, Chen L (2014) Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens Actuators B Chem 192:488–495

    Article  CAS  Google Scholar 

  121. Prathumsuwan T, Jamnongsong S, Sampattavanich S, Paoprasert P (2018) Preparation of carbon dots from succinic acid and glycerol as ferrous ion and hydrogen peroxide dual-mode sensors and for cell imaging. Opt Mater 86:517–529

    Article  CAS  Google Scholar 

  122. Yazid SNAM, Chin SF, Pang SC, Ng SM (2013) Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta 180:137–143

    Google Scholar 

  123. Tabaraki R, Abdi O, Yousefipour S (2017) Green and selective fluorescent sensor for detection of Sn (IV) and Mo (VI) based on boron and nitrogen-co-doped carbon dots. J Fluoresc 27:651–657

    Article  CAS  PubMed  Google Scholar 

  124. Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens Actuators B Chem 242:679–686

    Article  CAS  Google Scholar 

  125. Zhang HY, Wang Y, Xiao S, Wang H, Wang JH, Feng L (2017) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52

    Article  CAS  PubMed  Google Scholar 

  126. Du FK, Zeng F, Ming YH, Wu SZ (2013) Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchim Acta 180:453–460

    Article  CAS  Google Scholar 

  127. Sun S, Jiang K, Qian SH, Wang YH, Lin HW (2017) Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions. Anal Chem 89:5542–5548

    Article  CAS  PubMed  Google Scholar 

  128. Du FK, Min YH, Zeng F, Yu CM, Wu SZ (2014) A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 10:964–972

    Article  CAS  PubMed  Google Scholar 

  129. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    Article  CAS  PubMed  Google Scholar 

  130. Yu CM, Li XZ, Zeng F, Zheng FY, Wu SZ (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49:403–405

    Article  CAS  Google Scholar 

  131. Zhang XD, Wu FG, Liu PD, Gu N, Chen Z (2014) Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: glutathione detection and selective cancer cell imaging. Small 10:5170–5177

    CAS  PubMed  Google Scholar 

  132. Sun XH, Yang SH, Guo MZ, Ma S, Zheng MD, He J (2017) Reversible fluorescence probe based on N-doped carbon dots for the determination of mercury ion and glutathione in waters and living cells. Anal Sci 33:761–767

    Article  CAS  PubMed  Google Scholar 

  133. Kim DO, Lee KW, Lee HJ, Lee CY (2002) Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713–3717

    Article  CAS  PubMed  Google Scholar 

  134. Feng LL, Wu YX, Zhang DL, Hu XX, Zhang J, Wang P, Song ZL, Zhang XB, Tan WH (2017) Near infrared graphene quantum dots-based two-photon nanoprobe for direct bioimaging of endogenous ascorbic acid in living cells. Anal Chem 89:4077–4084

    Article  CAS  PubMed  Google Scholar 

  135. Kiran S, Misra RDK (2015) Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. J Biomed Mater Res A 103:2888–2897

    Google Scholar 

  136. Loo AH, Sofer Z, Bousa D, Ulbrich P, Bonanni A, Pumera M (2016) Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl Mater Interfaces 8:1951–1957

    Article  CAS  PubMed  Google Scholar 

  137. Mahani M, Mousapour Z, Divsar F, Nomani A, Ju HX (2019) A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Microchim Acta 186:132

    Article  CAS  Google Scholar 

  138. Han GM, Zhao J, Zhang RL, Tian XH, Liu ZJ, Wang AD, Liu RY, Liu BH, Han MY, Gao XH, Zhang ZP (2019) Membrane-penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew Chem Int Ed 58:7087–7091

    Article  CAS  Google Scholar 

  139. Mao Y, Bao Y, Han DX, Li FH, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 38:55–60

    Article  CAS  PubMed  Google Scholar 

  140. Liu XQ, Wang T, Wang WJ, Zhou ZP, Yan YS (2019) A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J Ind Eng Chem 72:100–106

    Article  CAS  Google Scholar 

  141. Deng JH, Lu QJ, Hou YX, Liu ML, Li HT, Zhang YY, Yao SZ (2015) Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem 87:2195–2203

    Article  CAS  PubMed  Google Scholar 

  142. Copur F, Bekar N, Zor E, Alpaydin S, Bingol H (2019) Nanopaper-based photoluminescent enantioselective sensing of L-lysine by L-cysteine modified carbon quantum dots. Sens Actuators B Chem 279:305–312

    Article  CAS  Google Scholar 

  143. Han TQ, Yan T, Li YY, Cao W, Pang XH, Huang QJ, Wei Q (2015) Eco-friendly synthesis of electrochemiluminescent nitrogen-doped carbon quantum dots from diethylene triamine pentacetate and their application for protein detection. Carbon 91:144–152

    Google Scholar 

  144. Li Q, Ohulchanskyy TY, Liu RL, Koynov K, Wu DQ, Best A, Kumar R, Bonoiu A, Prasad PN (2010) Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C 114:12062–12068

    Google Scholar 

  145. Zheng M, Ruan SB, Liu S, Sun TT, Qu D, Zhao HF, Xie ZG, Gao HL, Jing XB, Sun ZC (2015) Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9:11455–11461

    Article  CAS  PubMed  Google Scholar 

  146. Bhunia SK, Maity AR, Nandi S, Stepensky D, Jelinek R (2016) Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. ChemBioChem 17:614–619

    Google Scholar 

  147. Zhang XD, Chen XK, Yang JJ, Jia HR, Li YH, Chen Z, Wu FG (2016) Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing Gram-positive bacteria. Adv Funct Mater 26:5958–5970

    Article  CAS  Google Scholar 

  148. Lin FM, Bao YW, Wu FG (2019) Carbon dots for sensing and killing microorganisms. C 5:33

    Google Scholar 

  149. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20–27

    Article  CAS  Google Scholar 

  150. Nandi S, Ritenberg M, Jelinek R (2015) Bacterial detection with amphiphilic carbon dots. Analyst 140:4232–4237

    Article  CAS  PubMed  Google Scholar 

  151. Yang JJ, Zhang XD, Ma YH, Gao G, Chen XK, Jia HR, Li YH, Chen Z, Wu FG (2016) Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces 8:32170–32181

    Article  CAS  PubMed  Google Scholar 

  152. Yang JJ, Gao G, Zhang XD, Ma YH, Chen XK, Wu FG (2019) One-step synthesized carbon dots with bacterial contact-enhanced fluorescence emission property: fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon 146:827–839

    Article  CAS  Google Scholar 

  153. Chandra S, Mahto TK, Chowdhuri AR, Das B, Sahu SK (2017) One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (III). Sens Actuators B Chem 245:835–844

    Google Scholar 

  154. Chandra S, Chowdhuri AR, Mahto TK, Samui A, Sahu SK (2016) One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like Escherichia coli. RSC Adv 6:72471–72478

    Google Scholar 

  155. Chen XK, Zhang XD, Li CC, Sayed SM, Sun W, Lin FM, Wu FG (2019) Superbright organosilica nanodots as a universal sensor for fast discrimination and accurate quantification of live/dead cells. Sens Actuators B Chem 295:49–55

    Article  CAS  Google Scholar 

  156. Lu F, Song YX, Huang H, Liu Y, Fu YJ, Huang J, Li H, Qu HH, Kang ZH (2017) Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon 120:95–102

    Article  CAS  Google Scholar 

  157. Chen XK, Zhang XD, Lin FM, Guo YX, Wu FG (2019) One-step synthesis of epoxy group-terminated organosilica nanodots: a versatile nanoplatform for imaging and eliminating multidrug-resistant bacteria and their biofilms. Small 15:1901647

    Article  CAS  Google Scholar 

  158. Ritenberg M, Nandi S, Kolusheva S, Dandela R, Meijler MM, Jelinek R (2016) Imaging Pseudomonas aeruginosa biofilm extracellular polymer scaffolds with amphiphilic carbon dots. ACS Chem Biol 11:1265–1270

    Article  CAS  PubMed  Google Scholar 

  159. Ran HH, Cheng XT, Bao YW, Hua XW, Gao G, Zhang XD, Jiang YW, Zhu YX, Wu FG (2019) Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. J Mater Chem B 7:5104–5114

    Article  CAS  PubMed  Google Scholar 

  160. Belkahla H, Boudjemaa R, Caorsi V, Pineau D, Curcio A, Lomas JS, Decorse P, Chevillot-Biraud A, Azaïs T, Wilhelm C, Randriamahazaka H, Hémadi M (2019) Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia. Nanoscale Adv 1:2571–2579

    Article  CAS  Google Scholar 

  161. Zhang ML, Hu LL, Wang HB, Song YX, Liu Y, Li H, Shao MW, Huang H, Kang ZH (2018) One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale 10:12734–12742

    Article  CAS  PubMed  Google Scholar 

  162. Wang ZY, Qu YN, Gao XT, Mu CJ, Bai JP, Pu QS (2014) Facile preparation of oligo(ethylene glycol)-capped fluorescent carbon dots from glutamic acid for plant cell imaging. Mater Lett 129:122–125

    Google Scholar 

  163. Li W, Zhang HR, Zheng YJ, Chen S, Liu YL, Zhuang JL, Liu WR, Lei BF (2017) Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging. Nanoscale 9:12976–12983

    Article  CAS  PubMed  Google Scholar 

  164. Tripathi S, Sarkar S (2014) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–616

    Article  CAS  Google Scholar 

  165. Pan LL, Sun S, Zhang L, Jiang K, Lin HW (2016) Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8:17350–17356

    Article  CAS  PubMed  Google Scholar 

  166. Lan MH, Zhao SJ, Zhang ZY, Yan L, Guo L, Niu GL, Zhang JF, Zhao JF, Zhang HY, Wang PF, Zhu GY, Lee CS, Zhang WJ (2017) Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res 10:3113–3123

    Article  CAS  Google Scholar 

  167. Lu SY, Sui LZ, Liu JJ, Zhu SJ, Chen AM, Jin MX, Yang B (2017) Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv Mater 29:1603443

    Article  CAS  Google Scholar 

  168. Yang CH, Zhu SJ, Li ZL, Li Z, Chen C, Sun L, Tang W, Liu R, Sun Y, Yu M (2016) Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chem Commun 52:11912–11914

    Article  CAS  Google Scholar 

  169. Wu ZL, Liu ZX, Yuan YH (2017) Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J Mater Chem B 5:3794–3809

    Article  CAS  PubMed  Google Scholar 

  170. Shamsipur M, Barati A, Karami S (2017) Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 124:429–472

    Article  CAS  Google Scholar 

  171. Li QJ, Zhou M, Yang QF, Wu Q, Shi J, Gong AH, Yang MY (2016) Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem Mater 28:8221–8227

    Article  CAS  Google Scholar 

  172. Jiang K, Wang YH, Cai CZ, Lin HW (2018) Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv Mater 30:1800783

    Article  CAS  Google Scholar 

  173. Jiang K, Gao XL, Feng XY, Wang YH, Li ZJ, Lin HW (2020) Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics. Angew Chem Int Ed 59:1263–1269

    Article  CAS  Google Scholar 

  174. Jiang L, Ding HZ, Lu SY, Geng T, Xiao GJ, Zou B, Bi H (2020) Photoactivated fluorescence enhancement in F,N-doped carbon dots with piezochromic behavior. Angew Chem Int Ed 59:9986–9991

    Google Scholar 

  175. Lu SY, Xiao GY, Sui LZ, Feng TL, Yong X, Zhu SJ, Li BJ, Liu ZY, Zou B, Jin MX, Tse JS, Yan H, Yang B (2017) Piezochromic carbon dots with two-photon fluorescence. Angew Chem Int Ed 56:6187–6191

    Article  CAS  Google Scholar 

  176. Zhan Y, Geng T, Liu YL, Hu CF, Zhang XJ, Lei BF, Zhuang JL, Wu X, Huang D, Xiao GJ, Zou B (2018) Near-ultraviolet to near-infrared fluorescent nitrogen-doped carbon dots with two-photon and piezochromic luminescence. ACS Appl Mater Interfaces 10:27920–27927

    Article  CAS  PubMed  Google Scholar 

  177. Zhu SJ, Zhang JH, Tang SJ, Qiao CY, Wang L, Wang HY, Liu X, Li B, Li YF, Yu WL, Wang XF, Sun HC, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater 22:4732–4740

    Article  CAS  Google Scholar 

  178. Alam AM, Park BY, Ghouri ZK, Park M, Kim HY (2015) Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem 17:3791–3797

    Article  CAS  Google Scholar 

  179. Li JY, Liu Y, Shu QW, Liang JM, Zhang F, Chen XP, Deng XY, Swihart MT, Tan KJ (2017) One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33:1043–1050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Gen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Chen, X., Wu, FG. (2020). Carbon Nanodots for Cell Imaging. In: Wu, FG. (eds) Fluorescent Materials for Cell Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-15-5062-1_3

Download citation

Publish with us

Policies and ethics