Skip to main content

Potential of Nano-Structured Drug Delivery System for Phytomedicine Delivery

  • Chapter
  • First Online:
Nanophytomedicine

Abstract

Based on the problems associated with the delivery of herbal medicines, various investigations have been carried out. The field of formulation and development appeared progressive when we see the reports published in the previous few decades. Recent advancements in this field are based on the necessities of improved solubility, release, biological absorption, targetability, safety, dosing schedule, stability, efficacy, and patient compliance along with the decreased dose and dose-dependent side effects. Formulation scientists are now interested in the exploitation of new drug delivery system (NDDS) to deliver phytomedicine at the required rate for the entire treatment period and to channelize the phytomolecules at the desired site of action. These systems are meant to meet the unmet medical conditions that cannot be met using conventional dosage forms. Nanocarriers such as nanoparticles, nanocapsules, lipid carriers, solid lipid nanoparticles, phytosomes, nanoemulsion, and many more have shown an array of advantages while delivering phytomolecules to the site of action. Due to the proven advantages over conventional dosage forms, nano-phytomedicines have immense potential in the improvement of deliverability of the isolated and established herbal molecules. This chapter, however, includes various aspects of justification for the immense potential of the nano-structured drug delivery system for phytomedicine delivery and future prospects. In addition, the area of nanostructured carrier systems in the potential delivery of phytomedicine, and the nano-phytomedicines which have been prepared for improved solubility, pharmacokinetic profile (ADME), bioavailability, targetability, efficacy, and safety are also highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rai VK, Mishra N, Yadav KS, Yadav NP (2018) Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release 270:203–225. https://doi.org/10.1016/j.jconrel.2017.11.049

    Article  CAS  PubMed  Google Scholar 

  2. Mishra N, Yadav KS, Rai VK, Yadav NP (2017) Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection. AAPS Pharm Sci Tech 18(2):381–392. https://doi.org/10.1208/s12249-016-0512-4

    Article  CAS  Google Scholar 

  3. Mishra N, Rai VK, Yadav KS, Sinha P, Kanaujia A, Chanda D et al (2016) Encapsulation of mentha oil in chitosan polymer matrix alleviates skin irritation. AAPS Pharm Sci Tech 17(2):482–492. https://doi.org/10.1208/s12249-015-0378-x

    Article  CAS  Google Scholar 

  4. Sinha P, Srivastava N, Rai VK, Mishra R, Ajayakumar PV, Yadav NP (2019) A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: combination of hydrophilic-lipophilic balance and response surface methodology. J Drug Deliv Sci Technol 52:870–884. https://doi.org/10.1016/j.jddst.2019.06.007

    Article  CAS  Google Scholar 

  5. Srivastava N, Patel DK, Rai VK, Pal A, Yadav NP (2018) Development of emulgel formulation for vaginal candidiasis: pharmaceutical characterization, in vitro and in vivo evaluation. J Drug Deliv Sci Technol 48:490–498. https://doi.org/10.1016/j.jddst.2018.10.013

    Article  CAS  Google Scholar 

  6. Rai V, Sharma A, Upadhyay D, Sarma G, Kaur N, Gupta G et al (2020) Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: a preclinical investigation. J Drug Deliv Sci Technol 56:101568

    Article  Google Scholar 

  7. Kumar B, Pandey M, Pottoo FH, Fayaz F, Sharma A, Sahoo PK (2020) Liposomes: novel drug delivery approach for targeting Parkinson’s disease. Curr Pharm Des. https://doi.org/10.2174/1381612826666200128145124

  8. Sharma S, Rabbani SA, Narang JK, Hyder Pottoo F, Ali J, Kumar S et al (2020) Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem Phys Lipids 228:104890. https://doi.org/10.1016/j.chemphyslip.2020.104890

    Article  CAS  PubMed  Google Scholar 

  9. Alam MS, Javed M, Pottoo F, Waziri A, Almalki F, Hasnain M et al (2019) QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto-dye. Appl Organomet Chem 33:e5071. https://doi.org/10.1002/aoc.5071

    Article  CAS  Google Scholar 

  10. Javed MN, Alam MS, Waziri A, Pottoo FH, Yadav AK, Hasnain MS et al (2019) Chapter 12 - QbD applications for the development of nanopharmaceutical products. In: Beg S, Hasnain MS (eds) Pharmaceutical quality by design. Academic, New York, pp 229–253

    Chapter  Google Scholar 

  11. Bhawana BRK, Buttar HS, Jain VK, Jain N (2011) Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 59(5):2056–2061. https://doi.org/10.1021/jf104402t

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh P, Bag S, Singha Roy A, Subramani E, Chaudhury K, Dasgupta S (2016) Solubility enhancement of morin and epicatechin through encapsulation in an albumin based nanoparticulate system and their anticancer activity against the MDA-MB-468 breast cancer cell line. RSC Adv 6(103):101415–101429. https://doi.org/10.1039/C6RA20441D

    Article  CAS  Google Scholar 

  13. Piazzini V, Monteforte E, Luceri C, Bigagli E, Bilia AR, Bergonzi MC (2017) Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv 24(1):380–390. https://doi.org/10.1080/10717544.2016.1256002

    Article  CAS  PubMed  Google Scholar 

  14. Ansari MA, Chung I-M, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M et al (2020) A current nanoparticles approaches in nose to brain drug delivery and anticancer therapy - a review. Curr Pharm Des. https://doi.org/10.2174/1381612826666200116153912

  15. Ansari MA, Badrealam KF, Alam A, Tufail S, Khalique G, Equbal MJ et al (2020) Recent nano-based therapeutic intervention of bioactive sesquiterpenes: prospects in cancer therapeutics. Curr Pharm Des. https://doi.org/10.2174/1381612826666200116151522

  16. Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel S, Fita I, Khalid M et al (2019) Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv 9:20192–20206. https://doi.org/10.1039/C9RA03102B

    Article  CAS  Google Scholar 

  17. Barkat MA, Pottoo FH, Singh SP, Ahmad FJ (2018) Therapeutic intervention of aloe gel containing nano-sized and micron-sized silver sulfadiazine gel on second-degree burn: a comparative study. Int J Low Extrem Wounds 17(3):176–183. https://doi.org/10.1177/1534734618791860

    Article  CAS  PubMed  Google Scholar 

  18. Barkat MA, Ahmad I, Ali R, Singh SP, Pottoo FH et al (2017) Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS Pharm Sci Tech 18(8):3274–3285. https://doi.org/10.1208/s12249-017-0817-y

    Article  CAS  Google Scholar 

  19. Lin H, Xie Q, Huang X, Ban J, Wang B, Wei X et al (2018) Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int J Nanomedicine 13:831–842. https://doi.org/10.2147/ijn.s150086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su J, Sripanidkulchai K, Hu Y, Chaiittianan R, Sripanidkulchai B (2013) Increased in situ intestinal absorption of phytoestrogenic diarylheptanoids from Curcuma comosa in nanoemulsions. AAPS Pharm Sci Tech 14(3):1055–1062. https://doi.org/10.1208/s12249-013-9996-3

    Article  CAS  Google Scholar 

  21. Chang LW, Hou ML, Tsai TH (2014) Silymarin in liposomes and ethosomes: pharmacokinetics and tissue distribution in free-moving rats by high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 62(48):11657–11665. https://doi.org/10.1021/jf504139g

    Article  CAS  PubMed  Google Scholar 

  22. Yang W, Yu XC, Chen XY, Zhang L, Lu CT, Zhao YZ (2012) Pharmacokinetics and tissue distribution profile of icariin propylene glycol-liposome intraperitoneal injection in mice. J Pharm Pharmacol 64(2):190–198. https://doi.org/10.1111/j.2042-7158.2011.01388.x

    Article  CAS  PubMed  Google Scholar 

  23. Li N, Feng L, Tan Y, Xiang Y, Zhang R, Yang M (2018) Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats. Molecules 23(7):1747. https://doi.org/10.3390/molecules23071747

    Article  CAS  PubMed Central  Google Scholar 

  24. Luo LH, Zheng PJ, Nie H, Chen YC, Tong D, Chen J et al (2016) Pharmacokinetics and tissue distribution of docetaxel liposome mediated by a novel galactosylated cholesterol derivatives synthesized by lipase-catalyzed esterification in non-aqueous phase. Drug Deliv 23(4):1282–1290. https://doi.org/10.3109/10717544.2014.980525

    Article  CAS  PubMed  Google Scholar 

  25. Di Costanzo A, Angelico R (2019) Formulation strategies for enhancing the bioavailability of silymarin: the state of the art. Molecules 24(11):2155. https://doi.org/10.3390/molecules24112155

    Article  CAS  PubMed Central  Google Scholar 

  26. Ke Z, Hou X, Jia XB (2016) Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D. Drug Des Devel Ther 10:2049–2060. https://doi.org/10.2147/dddt.s106356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma Y, Li H, Guan S (2015) Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev Ind Pharm 41(2):177–182. https://doi.org/10.3109/03639045.2014.947510

    Article  CAS  PubMed  Google Scholar 

  28. Barkat MA, Ahmad J, Khan MA, Beg S, Ahmad FJ (2018) Insights into the targeting potential of thymoquinone for therapeutic intervention against triple-negative breast cancer. Curr Drug Targets 19(1):70–80. https://doi.org/10.2174/1389450118666170612095959

    Article  CAS  PubMed  Google Scholar 

  29. Wei H, Liu T, Jiang N, Zhou K, Yang K, Ning W et al (2018) A novel delivery system of cyclovirobuxine D for brain targeting: angiopep-conjugated polysorbate 80-coated liposomes via intranasal administration. J Biomed Nanotechnol 14(7):1252–1262. https://doi.org/10.1166/jbn.2018.2581

    Article  CAS  PubMed  Google Scholar 

  30. Barkat MA, Rizwanullah M, Beg S, Pottoo FH, Siddiqui S et al (2019) Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS Pharm Sci Tech 20(2):87. https://doi.org/10.1208/s12249-019-1304-4

    Article  CAS  Google Scholar 

  31. Rohilla R, Garg T, Goyal AK, Rath G (2016) Herbal and polymeric approaches for liver-targeting drug delivery: novel strategies and their significance. Drug Deliv 23(5):1645–1661. https://doi.org/10.3109/10717544.2014.945018

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Yu T, Tian Y, Wang Y, Zhao R, Mao S (2018) Enhanced liver-targeting via coadministration of 10-hydroxycamptothecin polymeric micelles with vinegar baked Radix Bupleuri. Phytomedicine 44:1–8. https://doi.org/10.1016/j.phymed.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  33. Bartneck M, Warzecha KT, Tacke F (2014) Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg Nutr 3(6):364–376. https://doi.org/10.3978/j.issn.2304-3881.2014.11.02

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bisht S, Khan MA, Bekhit M, Bai H, Cornish T, Mizuma M et al (2011) A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. Lab Investig 91(9):1383–1395. https://doi.org/10.1038/labinvest.2011.86

    Article  CAS  PubMed  Google Scholar 

  35. Mandal AK, Das S, Basu MK, Chakrabarti RN, Das N (2007) Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J Pharmacol Exp Ther 320(3):994–1001. https://doi.org/10.1124/jpet.106.114215

    Article  CAS  PubMed  Google Scholar 

  36. Yamashita S, Katsumi H, Sakane T, Yamamoto A (2018) Bone-targeting dendrimer for the delivery of methotrexate and treatment of bone metastasis. J Drug Target 26(9):818–828. https://doi.org/10.1080/1061186X.2018.1434659

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Zheng L, Zhang J, Wu H, Wang N, Tong W et al (2018) A novel bone targeting delivery system carrying phytomolecule icaritin for prevention of steroid-associated osteonecrosis in rats. Bone 106:52–60. https://doi.org/10.1016/j.bone.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  38. Hsu CY, Yang SC, Sung CT, Weng YH, Fang JY (2017) Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomedicine 12:8227–8238. https://doi.org/10.2147/ijn.s147226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sinha P, Srivastava S, Mishra N, Singh DK, Luqman S, Chanda D et al (2016) Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. Drug Dev Ind Pharm 42(9):1434–1445. https://doi.org/10.3109/03639045.2016.1141931

    Article  CAS  PubMed  Google Scholar 

  40. Matouskova P, Marova I, Bokrova J, Benesova P (2016) Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technol Biotechnol 54(3):304–316. https://doi.org/10.17113/ftb.54.03.16.4413

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hajialyani M, Tewari D, Sobarzo-Sanchez E, Nabavi SM, Farzaei MH, Abdollahi M (2018) Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int J Nanomedicine 13:5023–5043. https://doi.org/10.2147/ijn.s174072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bo R, Sun Y, Zhou S, Ou N, Gu P, Liu Z et al (2017) Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. Int J Nanomedicine 12:6289–6301. https://doi.org/10.2147/ijn.s136820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tubesha Z, Imam MU, Mahmud R, Ismail M (2013) Study on the potential toxicity of a thymoquinone-rich fraction nanoemulsion in Sprague Dawley rats. Molecules 18(7):7460–7472. https://doi.org/10.3390/molecules18077460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu Y, Sun L, Zeng F, Wu S (2019) A conjugated-polymer-based ratiometric nanoprobe for evaluating in-vivo hepatotoxicity induced by herbal medicine via MSOT imaging. Photoacoustics 13:6–17. https://doi.org/10.1016/j.pacs.2018.11.002

    Article  PubMed  Google Scholar 

  45. Pottoo FH, Barkat MA, Ansari MA, Javed MN, Sajid Jamal QM et al (2019) Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.09.017

  46. Zhang M, Viennois E, Xu C, Merlin D (2016) Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 4(2):e1134415. https://doi.org/10.1080/21688370.2015.1134415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H et al (2013) Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 21(7):1345–1357. https://doi.org/10.1038/mt.2013.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L et al (2013) Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 4:1867. https://doi.org/10.1038/ncomms2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7. https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  50. Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA et al (2019) Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm Nanotechnol 7(3):206–219. https://doi.org/10.2174/2211738507666190425121509

    Article  CAS  PubMed  Google Scholar 

  51. Sharma S, Javed MN, Pottoo FH, Rabbani SA, Barkat MA et al (2019) Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol 7(3):220–233. https://doi.org/10.2174/2211738507666190429103814

    Article  CAS  PubMed  Google Scholar 

  52. Khan M, Shaik MR, Adil SF, Khan ST, Al-Warthan A, Siddiqui MRH et al (2018) Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Trans 47(35):11988–12010. https://doi.org/10.1039/c8dt01152d

    Article  CAS  PubMed  Google Scholar 

  53. Ya Q, Cheng L, Li R, Liu G, Zhang Y, Tang X et al (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 13:3311–3327. https://doi.org/10.2147/IJN.S165125

    Article  Google Scholar 

  54. Barkat MA, Beg S, Naim MJ, Pottoo FH, Singh SP et al (2018) Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent Pat Antiinfect Drug Discov 13(1):53–69. https://doi.org/10.2174/1574891X12666171006102833

    Article  CAS  PubMed  Google Scholar 

  55. El-Samaligy MS, Afifi NN, Mahmoud EA (2006) Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int J Pharm 308(1-2):140–148. https://doi.org/10.1016/j.ijpharm.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  56. Kesarwani K, Gupta R, Mukerjee A (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3(4):253–266. https://doi.org/10.1016/S2221-1691(13)60060-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ajazuddin SS (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81(7):680–689. https://doi.org/10.1016/j.fitote.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  58. Mendonça EAM, Lira MCB, Rabello MM, Cavalcanti IMF, Galdino SL, Pitta IR et al (2012) Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS Pharm Sci Tech 13(4):1355–1366. https://doi.org/10.1208/s12249-012-9853-9

    Article  CAS  Google Scholar 

  59. Mosaddik A, Ravinayagam V, Elaanthikkal S, Fessi H, Badri W, Elaissari A (2018) Development and use of polymeric nanoparticles for the encapsulation and administration of plant extracts. In: Cechinel Filho V (ed) Natural products as source of molecules with therapeutic potential: research & development, challenges and perspectives. Springer, Cham, pp 391–463

    Chapter  Google Scholar 

  60. Barupal AK, Gupta V, Ramteke S (2010) Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian J Pharm Sci 72(5):582–586. https://doi.org/10.4103/0250-474X.78524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morsi NM, Aboelwafa AA, Dawoud MHS (2016) Improved bioavailability of timolol maleate via transdermal transfersomal gel: statistical optimization, characterization, and pharmacokinetic assessment. J Adv Res 7(5):691–701. https://doi.org/10.1016/j.jare.2016.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhong H, Deng Y, Wang X, Yang B (2005) Multivesicular liposome formulation for the sustained delivery of breviscapine. Int J Pharm 301(1-2):15–24. https://doi.org/10.1016/j.ijpharm.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  63. Mei Z, Chen H, Weng T, Yang Y, Yang X (2003) Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 56(2):189–196

    Article  CAS  Google Scholar 

  64. Yen FL, Wu TH, Lin LT, Cham TM, Lin CC (2008) Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem Toxicol 46(5):1771–1777. https://doi.org/10.1016/j.fct.2008.01.021

    Article  CAS  PubMed  Google Scholar 

  65. Jain S, Jain S, Khare P, Gulbake A, Bansal D, Jain SK (2010) Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv 17(6):443–451. https://doi.org/10.3109/10717544.2010.483252

    Article  CAS  PubMed  Google Scholar 

  66. Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S (2012) Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2(2):71–81. https://doi.org/10.5681/bi.2012.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu M, Li H, Luo G, Liu Q, Wang Y (2008) Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res 31(4):547–554. https://doi.org/10.1007/s12272-001-1191-8

    Article  CAS  PubMed  Google Scholar 

  68. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG et al (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127(3):208–218. https://doi.org/10.1016/j.jconrel.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  69. Yanyu X, Yunmei S, Zhipeng C, Qineng P (2006) The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 307(1):77–82. https://doi.org/10.1016/j.ijpharm.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  70. Maiti K, Mukherjee K, Murugan V, Saha BP, Mukherjee PK (2009) Exploring the effect of Hesperetin-HSPC complex--a novel drug delivery system on the in vitro release, therapeutic efficacy and pharmacokinetics. AAPS Pharm Sci Tech 10(3):943–950. https://doi.org/10.1208/s12249-009-9282-6

    Article  CAS  Google Scholar 

  71. Zhao Y, Wang C, Chow AH, Ren K, Gong T, Zhang Z et al (2010) Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: formulation and bioavailability studies. Int J Pharm 383(1-2):170–177. https://doi.org/10.1016/j.ijpharm.2009.08.035

    Article  CAS  PubMed  Google Scholar 

  72. Zheng Y, Hou SX, Chen T, Lu Y (2006) Preparation and characterization of transfersomes of three drugs in vitro. Chin J Chin Mater Med 31(9):728–731

    CAS  Google Scholar 

  73. You J, Cui FD, Han X, Wang YS, Yang L, Yu YW et al (2006) Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion-solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil. Colloids Surf B Biointerfaces 48(1):35–41. https://doi.org/10.1016/j.colsurfb.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  74. Chao P, Deshmukh M, Kutscher HL, Gao D, Rajan SS, Hu P et al (2010) Pulmonary targeting microparticulate camptothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anti-Cancer Drugs 21(1):65–76. https://doi.org/10.1097/CAD.0b013e328332a322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, V.K., Gupta, G.D., Pottoo, F.H., Barkat, M.A. (2020). Potential of Nano-Structured Drug Delivery System for Phytomedicine Delivery. In: Beg, S., Barkat, M., Ahmad, F. (eds) Nanophytomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4909-0_6

Download citation

Publish with us

Policies and ethics