Skip to main content

Functionalization of Graphene and Its Derivatives for Developing Efficient Solid-State Gas Sensors: Trends and Challenges

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

In the recent past, graphene and its potential derivatives (like graphene oxide (GO) and reduced graphene oxide (rGO)), owing to their unprecedentedly advantageous physicochemical properties, grabbed the limelight of the gas sensor research arena. However, in spite of the strikingly impressive properties of pristine graphene, this can seldom be employed as the gas sensing material, particularly for detecting reducing species due to extremely low resistance and agglomeration tendency among the layers of pristine graphene. To mitigate this problem, the researchers across the globe explored graphene oxide and reduced graphene oxide and succeeded partially. However, for the last couple of years, another alternative was intensively investigated by the researchers where the surface/edge of the graphene (or its derivatives) is functionalized through modification by metal, metal oxide nanoparticles, or polymer (these functionalizing elements are introduced either individually or combinedly). Till date, researchers have improvised numbers of covalent and non-covalent routes to functionalize the graphene with desirable surface properties, suitable for developing efficient solid-state gas sensor devices. Such functionalization of graphene surface plays favorable role for the adsorption–desorption of a particular target gas on the sensing surface (hence, enhanced sensitivity and/or selectivity) as well as tune the electrical property of graphene, favorable for fast and promising gas sensing performance. The present book chapter comprehensively summarizes the recent advancement and strategies on functionalization of graphene and its derivatives for the development of efficient gas sensor devices. Finally, concluding remarks are presented to discuss the challenges with focus on the future direction of research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X, Ma T, Pinna N, Zhang J (2017) Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater 27:1–30. https://doi.org/10.1002/adfm.201702168

    Article  CAS  Google Scholar 

  2. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators, B Chem 173:1–21. https://doi.org/10.1016/j.snb.2012.07.092

    Article  CAS  Google Scholar 

  3. Liu J, Tang J, Gooding JJ (2012a) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22:12435–12452. https://doi.org/10.1039/c2jm31218b

  4. Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem 221:1170–1181. https://doi.org/10.1016/j.snb.2015.07.070

    Article  CAS  Google Scholar 

  5. He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764–1772. https://doi.org/10.1039/c2sc20205k

    Article  CAS  Google Scholar 

  6. Cho B, Yoon J, Hahm MG, Kim DH, Kim AR, Kahng YH, Park SW, Lee YJ, Park SG, Kwon JD, Kim CS, Song M, Jeong Y, Nam KS, Ko HC (2014) Graphene-based gas sensor: metal decoration effect and application to a flexible device. J Mater Chem C 2:5280–5285. https://doi.org/10.1039/c4tc00510d

    Article  CAS  Google Scholar 

  7. Varghese S, Varghese S, Swaminathan S Singh K, Mittal V (2015a) Two-dimensional materials for sensing: graphene and beyond. Electronics 4. https://doi.org/10.3390/electronics4030651

  8. Yavari F, Koratkar N (2012) Graphene-based chemical sensors. https://doi.org/10.1021/jz300358t

  9. Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4. https://doi.org/10.1063/1.4983310

  10. Meng FL, Guo Z, Huang XJ (2015) Graphene-based hybrids for chemiresistive gas sensors. TrAC—Trends Anal Chem 68:37–47. https://doi.org/10.1016/j.trac.2015.02.008

    Article  CAS  Google Scholar 

  11. Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Santucci S, Ottaviano L (2013) Graphene oxide as a practical solution to high sensitivity gas sensing. J Phys Chem C 117:10683–10690. https://doi.org/10.1021/jp3085759

    Article  CAS  Google Scholar 

  12. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  13. Acharyya D, Bhattacharyya P (2016) Highly efficient room-temperature gas sensor based on TiO2 nanotube-reduced graphene-oxide hybrid device. IEEE Electron Device Lett 37:656–659. https://doi.org/10.1109/LED.2016.2544954

    Article  CAS  Google Scholar 

  14. Acharyya D, Saini A, Bhattacharyya P (2018b) Influence of rGO cladding in improving the sensitivity and selectivity of ZnO nanoflowers-based alcohol sensor. IEEE Sens J 18:1820–1827. https://doi.org/10.1109/jsen.2018.2790084

  15. Niu T, Li A (2015) From two-dimensional materials to heterostructures. Prog Surf Sci 90:21–45. https://doi.org/10.1016/j.progsurf.2014.11.001

    Article  CAS  Google Scholar 

  16. Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samorì P (2018) Chemical sensing with 2D materials. Chem Soc Rev 47:4860–4908. https://doi.org/10.1039/c8cs00417j

    Article  CAS  Google Scholar 

  17. Yao J, Sun Y, Yang M, Duan Y (2012) Chemistry, physics and biology of graphene-based nanomaterials: New horizons for sensing, imaging and medicine. J Mater Chem 22:14313–14329. https://doi.org/10.1039/c2jm31632c

    Article  CAS  Google Scholar 

  18. Perreault F, Fonseca De Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896. https://doi.org/10.1039/c5cs00021a

    Article  CAS  Google Scholar 

  19. Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L (2017) Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13:1–57. https://doi.org/10.1002/smll.201602660

    Article  CAS  Google Scholar 

  20. Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: A review. Sens Actuators, A Phys 270:177–194. https://doi.org/10.1016/j.sna.2017.12.028

    Article  CAS  Google Scholar 

  21. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sens J 11:3161–3170. https://doi.org/10.1109/JSEN.2011.2167608

    Article  CAS  Google Scholar 

  22. Irani V, Tavasoli A, Vahidi M (2018) Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption. J Colloid Interface Sci 527:57–67. https://doi.org/10.1016/j.jcis.2018.05.018

    Article  CAS  Google Scholar 

  23. Hazra A, Chattopadhyay PP, Bhattacharyya P, Member S (2015) Hybrid fabrication of highly rectifying p-n homojunction based on nanostructured. 3106:1–3. https://doi.org/10.1109/LED.2015.2416752

  24. Tang Q, Zhou Z, Chen Z (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5:4541–4583. https://doi.org/10.1039/c3nr33218g

    Article  CAS  Google Scholar 

  25. Alfano B, Massera E, Polichetti T, Miglietta ML, Di Francia G (2017) Effect of palladium nanoparticle functionalization on the hydrogen gas sensing of graphene based chemi-resistive devices. Sens Actuators, B Chem 253:1163–1169. https://doi.org/10.1016/j.snb.2017.07.146

    Article  CAS  Google Scholar 

  26. Cui S, Mao S, Lu G, Chen J (2013) Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J Phys Chem Lett 4:2441–2454. https://doi.org/10.1021/jz400976a

  27. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214. https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  28. Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981. https://doi.org/10.1039/c4cp04418e

    Article  CAS  Google Scholar 

  29. Salavagione HJ, Díez-Pascual AM, Lázaro E, Vera S, Gómez-Fatou MA (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: The role of the polymer. J Mater Chem A 2:14289–14328. https://doi.org/10.1039/c4ta02159b

    Article  CAS  Google Scholar 

  30. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1:10078. https://doi.org/10.1039/c3ta11774j

    Article  CAS  Google Scholar 

  31. Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531. https://doi.org/10.1021/cr500537t

    Article  CAS  Google Scholar 

  32. Yin PT, Kim TH, Choi JW, Lee KB (2014) Chemical and biosensors based on graphene materials. Chapter 10, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527677788

  33. Yin PT, Kim T-H, Choi J-W, Lee K-B (2013a) Prospects for graphene–nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15:12785. https://doi.org/10.1039/c3cp51901e

  34. Gao W (2015) The chemistry of graphene oxide. Graphene Oxide Reduct. Recipes, Spectrosc Appl 61–95. https://doi.org/10.1007/978-3-319-15500-5_3

  35. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  CAS  Google Scholar 

  36. Gong X, Liu G, Li Y, Yu DYW, Teoh WY (2016) Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem Mater 28:8082–8118. https://doi.org/10.1021/acs.chemmater.6b01447

    Article  CAS  Google Scholar 

  37. Dong R, Zhang T, Feng X (2018) Interface-assisted synthesis of 2D materials: trend and challenges. Chem Rev 118:6189–6325. https://doi.org/10.1021/acs.chemrev.8b00056

    Article  CAS  Google Scholar 

  38. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469. https://doi.org/10.1021/acsnano.5b05040

    Article  CAS  Google Scholar 

  39. Liu Y, Dong X, Chen P (2012b) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307. https://doi.org/10.1039/c1cs15270j

  40. Gorjizadeh N, Farajian AA, Esfarjani K, Kawazoe Y (2008) Spin and band-gap engineering in doped graphene nanoribbons. Phys Rev B 78:155427. https://doi.org/10.1103/PhysRevB.78.155427

    Article  CAS  Google Scholar 

  41. Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-Warthan AA, Tremel W (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3:18753–18808. https://doi.org/10.1039/c5ta02240a

    Article  CAS  Google Scholar 

  42. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CCM (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces 2:3092–3099. https://doi.org/10.1021/am100597d

    Article  CAS  Google Scholar 

  43. Zhang H, Feng J, Fei T, Liu S, Zhang T (2014a) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators, B Chem 190:472–478. https://doi.org/10.1016/j.snb.2013.08.067

  44. Acharyya D, Acharyya S, Huang K, Chung P, Ho M, Bhattacharyya P (2017) Highly sensitive ppb level methanol sensor by tuning C: O ratio of rGO-TiO2 nanotube hybrid structure. IEEE Trans Nanotechnol 16:1122–1128. https://doi.org/10.1109/TNANO.2017.2764124

    Article  CAS  Google Scholar 

  45. Acharyya D, Chaudhuri RR, Bhattacharyya P (2018a) Noise analysis-resonant frequency-based combined approach for concomitant detection of unknown vapor type and concentration. IEEE Trans Instrum Meas, 1–8. https://doi.org/10.1109/tim.2018.2867893

  46. Chaudhuri RR, Acharyya D, Ghosal S, Chung P, Ho M, Bhattacharyya P (2018) Understanding the apparent non-reliability in the sensing characteristics of MnO2 self-assembled hierarchical nanostructure. IEEE Trans Device Mater Reliab 18:628–635. https://doi.org/10.1109/TDMR.2018.2878257

    Article  Google Scholar 

  47. Sun C, Bai B (2017) Gas diffusion on graphene surfaces. Phys Chem Chem Phys 19:3894–3902. https://doi.org/10.1039/c6cp06267a

    Article  CAS  Google Scholar 

  48. Lee G, Yang G, Cho A, Han JW, Kim J (2016) Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys Chem Chem Phys 18:14198–14204. https://doi.org/10.1039/C5CP04422G

    Article  CAS  Google Scholar 

  49. Ghosh R, Santra S, Ray SK, Guha PK (2015) Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl Phys Lett 107:1–6. https://doi.org/10.1063/1.4933110

    Article  CAS  Google Scholar 

  50. Chee WK, Lim HN, Huang NM, Harrison I (2015) Nanocomposites of graphene/polymers: a review. RSC Adv 5:68014–68051. https://doi.org/10.1039/c5ra07989f

    Article  CAS  Google Scholar 

  51. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105. https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  52. Maity I, Acharyya D, Huang K, Chung P, Ho M, Bhattacharyya P (2018) A comparative study on performance improvement of ZnO nanotubes based alcohol sensor devices by Pd and rGO hybridization. IEEE Trans Electron Devices 65:3528–3534. https://doi.org/10.1109/TED.2018.2846784

    Article  CAS  Google Scholar 

  53. Maity I, Ghosh K, Rahaman H, Bhattacharyya P (2017) Selectivity tuning of graphene oxide based reliable gas sensor devices by tailoring the oxygen functional groups: a DFT study based approach. IEEE Trans Device Mater Reliab 17:738–745. https://doi.org/10.1109/TDMR.2017.2766291

    Article  CAS  Google Scholar 

  54. Meng FL, Li HH, Kong LT, Liu JY, Jin Z, Li W, Jia Y, Liu JH, Huang XJ (2012) Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles. Anal Chim Acta 736:100–107. https://doi.org/10.1016/j.aca.2012.05.044

    Article  CAS  Google Scholar 

  55. Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J (2012) Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J Mater Chem 22:11009. https://doi.org/10.1039/c2jm30378g

    Article  CAS  Google Scholar 

  56. Liu S, Yu B, Zhang H, Fei T, Zhang T (2014) Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens Actuators B Chem 202:272–278. https://doi.org/10.1016/j.snb.2014.05.086

    Article  CAS  Google Scholar 

  57. Ren H, Gu C, Joo SW, Zhao J, Sun Y, Huang J (2018) Effective hydrogen gas sensor based on NiO@rGO nanocomposite. Sens Actuators, B Chem 266:506–513. https://doi.org/10.1016/j.snb.2018.03.130

    Article  CAS  Google Scholar 

  58. Chen N, Li X, Wang X, Yu J, Wang J, Tang Z, Akbar SA (2013) Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens Actuators B Chem 188:902–908. https://doi.org/10.1016/j.snb.2013.08.004

    Article  CAS  Google Scholar 

  59. Kamal T (2017) High performance NiO decorated graphene as a potential H2 gas sensor. J Alloys Compd 729:1058–1063. https://doi.org/10.1016/j.jallcom.2017.09.124

    Article  CAS  Google Scholar 

  60. Zhou L, Shen F, Tian X, Wang D, Zhang T, Chen W (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5:1564–1569. https://doi.org/10.1039/c2nr33164k

    Article  CAS  Google Scholar 

  61. Liang S, Zhu J, Wang C, Yu S, Bi H, Liu X, Wang X (2014) Fabrication of α-Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol. Appl Surf Sci 292:278–284. https://doi.org/10.1016/j.apsusc.2013.11.130

    Article  CAS  Google Scholar 

  62. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B Solid-State Mater Adv Technol 139:1–23. https://doi.org/10.1016/j.mseb.2007.01.044

  63. Acharyya D, Huang KY, Chattopadhyay PP, Ho MS, Fecht HJ, Bhattacharyya P (2016) Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor. Analyst 141:2977–2989. https://doi.org/10.1039/c6an00326e

    Article  CAS  Google Scholar 

  64. Bhattacharyya P (2014) Technological journey towards reliable microheater development for MEMS gas sensors: a review. 14:589–599

    Google Scholar 

  65. Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, Van Den Brink J, Kelly PJ (2008) Doping graphene with metal contacts. Phys Rev Lett 101:4–7. https://doi.org/10.1103/PhysRevLett.101.026803

    Article  CAS  Google Scholar 

  66. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157. https://doi.org/10.1039/b923596e

    Article  CAS  Google Scholar 

  67. Ioniţă M, Vlăsceanu GM, Watzlawek AA, Voicu SI, Burns JS, Iovu H (2017) Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite materials. Compos Part B Eng 121:34–57. https://doi.org/10.1016/j.compositesb.2017.03.031

    Article  CAS  Google Scholar 

  68. He Y, Cui H (2012) Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. J Mater Chem 22:9086. https://doi.org/10.1039/c2jm16028e

    Article  CAS  Google Scholar 

  69. Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A (2013) Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5:5426. https://doi.org/10.1039/c3nr00747b

    Article  CAS  Google Scholar 

  70. Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015b) Recent advances in graphene based gas sensors. Sens Actuators, B Chem 218:160–183. https://doi.org/10.1016/j.snb.2015.04.062

  71. Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z (2010) Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale. 2:2733–2738. https://doi.org/10.1039/c0nr00473a

    Article  CAS  Google Scholar 

  72. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013) Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens Bioelectron 42:198–206. https://doi.org/10.1016/j.bios.2012.10.029

    Article  CAS  Google Scholar 

  73. Claussen JC, Kumar A, Jaroch DB, Khawaja MH, Hibbard AB, Porterfield DM, Fisher TS (2012) Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Adv Funct Mater 22:3399–3405. https://doi.org/10.1002/adfm.201200551

    Article  CAS  Google Scholar 

  74. Cui S, Wen Z, Mattson EC, Mao S, Chang J, Weinert M, Hirschmugl CJ, Gajdardziska-Josifovska M, Chen J (2013c) Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J Mater Chem A 1:4462. https://doi.org/10.1039/c3ta01673k

  75. Chu BH, Lo CF, Nicolosi J, Chang CY, Chen V, Strupinski W, Pearton SJ, Ren F (2011) Hydrogen detection using platinum coated graphene grown on SiC. Sens Actuators, B Chem 157:500–503. https://doi.org/10.1016/j.snb.2011.05.007

    Article  CAS  Google Scholar 

  76. Shafiei M, Arsat R, Yu J, Kalantar-Zadeh K, Wlodarski W, Dubin S, Kaner RB (2009) Pt/graphene nano-sheet based hydrogen gas sensor. Proc IEEE Sens 295–298. https://doi.org/10.1109/icsens.2009.5398157

  77. Shafiei M, Spizzirri PG, Arsat R, Yu J, Plessis J, Dubin S, Kaner RB, Kalantar-zadeh K, Wlodarsk W (2010) Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. 13796–13801

    Google Scholar 

  78. Lee JS, Oh J, Jun J, Jang J (2015) Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9:7783–7790. https://doi.org/10.1021/acsnano.5b02024

    Article  CAS  Google Scholar 

  79. Vedala H, Sorescu DC, Kotchey GP, Star A (2011) Chemical sensitivity of graphene edges decorated with metal nanoparticles. Nano Lett 11:2342–2347. https://doi.org/10.1021/nl2006438

    Article  CAS  Google Scholar 

  80. Wang DH, Hu Y, Zhao JJ, Zeng LL, Tao XM, Chen W (2014) Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing. J Mater Chem A 2:17415–17420. https://doi.org/10.1039/c4ta03740e

    Article  CAS  Google Scholar 

  81. Abideen ZU, Kim JH, Mirzaei A, Kim HW, Kim SS (2018) Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens Actuators, B Chem 255:1884–1896. https://doi.org/10.1016/j.snb.2017.08.210

    Article  CAS  Google Scholar 

  82. Shin DH, Lee JS, Jun J, An JH, Kim SG, Cho KH, Jang J (2015) Flower-like palladium nanoclusters decorated graphene electrodes for ultrasensitive and flexible hydrogen gas sensing. Sci Rep 5:12294. https://doi.org/10.1038/srep12294

  83. Johnson JL, Behnam A, Pearton SJ, Ural A (2010) Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv Mater 22:4877–4880. https://doi.org/10.1002/adma.201001798

    Article  CAS  Google Scholar 

  84. Karaduman I, Er E, Çelikkan H, Erk N, Acar S (2017) Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J Alloys Compd 722:569–578. https://doi.org/10.1016/j.jallcom.2017.06.152

    Article  CAS  Google Scholar 

  85. Cui S, Mao S, Wen Z, Chang J, Zhang Y, Chen J (2013b) Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138:2877. https://doi.org/10.1039/c3an36922f

  86. Song H, Li X, Cui P, Guo S, Liu W, Wang X (2017) Morphology optimization of CVD graphene decorated with Ag nanoparticles as ammonia sensor. Sens Actuators, B Chem 244:124–130. https://doi.org/10.1016/j.snb.2016.12.133

    Article  CAS  Google Scholar 

  87. Huang L, Wang Z, Zhang J, Pu J, Lin Y, Xu S, Shen L, Chen Q, Shi W (2014) Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2at room temperature. ACS Appl Mater Interfaces 6:7426–7433. https://doi.org/10.1021/am500843p

    Article  CAS  Google Scholar 

  88. Ao ZM, Yang J, Li S, Jiang Q (2008) Enhancement of CO detection in Al doped graphene. Chem Phys Lett 461:276–279. https://doi.org/10.1016/j.cplett.2008.07.039

    Article  CAS  Google Scholar 

  89. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961. https://doi.org/10.1021/nn201433r

    Article  CAS  Google Scholar 

  90. Zhu J, Chen M, He Q, Shao L, Wei S, Guo Z (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824. https://doi.org/10.1039/c3ra44621b

    Article  CAS  Google Scholar 

  91. Tung TT, Castro M, Kim TY, Suh KS, Feller JF (2012) Graphene quantum resistive sensing skin for the detection of alteration biomarkers. J Mater Chem 22:21754–21766. https://doi.org/10.1039/c2jm34806c

    Article  CAS  Google Scholar 

  92. Bai S, Zhao Y, Sun J, Tian Y, Luo R, Li D, Chen A (2015) Ultrasensitive room temperature NH3 sensor based on a graphene–polyaniline hybrid loaded on PET thin film. Chem Commun 51:7524–7527. https://doi.org/10.1039/C5CC01241D

    Article  CAS  Google Scholar 

  93. Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuators, B Chem 178:485–493. https://doi.org/10.1016/j.snb.2013.01.014

    Article  CAS  Google Scholar 

  94. Guo Y, Wang T, Chen F, Sun X, Li X, Yu Z, Wan P, Chen X (2016) Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8:12073–12080. https://doi.org/10.1039/c6nr02540d

    Article  CAS  Google Scholar 

  95. Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48:1729–1739. https://doi.org/10.1007/s10853-012-6931-z

    Article  CAS  Google Scholar 

  96. Al-mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173. https://doi.org/10.1021/jp103134u

    Article  CAS  Google Scholar 

  97. Parmar M, Balamurugan C, Lee DW (2013) PANI and graphene/PANI nanocomposite films-comparative toluene gas sensing behavior. Sens (Switzerland) 13:16611–16624. https://doi.org/10.3390/s131216611

    Article  CAS  Google Scholar 

  98. Jang WK, Yun J, Kim HI, Lee YS (2013) Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym Sci 291:1095–1103. https://doi.org/10.1007/s00396-012-2832-6

  99. Bai S, Guo J, Sun J, Tang P, Chen A, Luo R, Li D (2016) Enhancement of NO2—sensing performance at room temperature by graphene-modified polythiophene. Ind Eng Chem Res 55:5788–5794. https://doi.org/10.1021/acs.iecr.6b00418

    Article  CAS  Google Scholar 

  100. Yang Y, Li S, Yang W, Yuan W, Xu J, Jiang Y (2014) In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Interfaces 6:13807–13814. https://doi.org/10.1021/am5032456

    Article  CAS  Google Scholar 

  101. Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G, He D, Zhang L (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications

    Google Scholar 

  102. Gross MA, Sales MJA, Soler MAG, Pereira-da-Silva MA, da Silva MFP, Paterno LG (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv. 4:17917. https://doi.org/10.1039/c4ra01469c

    Article  CAS  Google Scholar 

  103. Bai H, Sheng K, Zhang P, Li C, Shi G (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21:18653. https://doi.org/10.1039/c1jm13918e

    Article  CAS  Google Scholar 

  104. Son M, Pak Y, Chee S, Auxilia FM, Kim K, Lee B, Lee S, Kang SK, Lee C, Lee JS, Kim KK, Jang YH, Lee H, Jung G, Ham M (2018) Charge transfer in graphene/ polymer interfaces for CO2 detection. 11

    Google Scholar 

  105. Yang Y, Yang X, Yang W, Li S, Xu J, Jiang Y (2018) Porous conducting polymer and reduced graphene oxide nanocomposites for room temperature gas detection. RSC Adv 8:20353–20353. https://doi.org/10.1039/C8RA90047G

    Article  CAS  Google Scholar 

  106. Son M et al (2017) Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res 11:3529–3536. https://doi.org/10.1007/s12274-017-1857-z

  107. Ji Q, Honma I, Paek SM, Akada M, Hill JP, Vinu A, Ariga K (2010) Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew Chem Int Ed 49:9737–9739. https://doi.org/10.1002/anie.201004929

  108. Tung TT, Huu CP, Janowska I, Kim TY, Castro M, Feller JF (2015) Hybrid films of graphene and carbon nanotubes for high performance chemical and temperature sensing applications. Small. https://doi.org/10.1002/smll.201403693

  109. Wiederoder MS, Nallon EC, Weiss M, McGraw SK, Schnee VP, Bright CJ, Polcha MP, Paffenroth R, Uzarski JR (2017) Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants. ACS Sens 2:1669–1678. https://doi.org/10.1021/acssensors.7b00550

    Article  CAS  Google Scholar 

  110. Mackin C, Schroeder V, Zurutuza A, Su C, Kong J, Swager TM, Palacios T (2018) Chemiresistive graphene sensors for ammonia detection. ACS Appl Mater Interfaces 10:16169–16176. https://doi.org/10.1021/acsami.8b00853

    Article  CAS  Google Scholar 

  111. Khurshid F, Jeyavelan M, Takahashi K, Leo Hudson MS, Nagarajan S (2018) Aryl fluoride functionalized graphene oxides for excellent room temperature ammonia sensitivity/selectivity. RSC Adv 8:20440–20449. https://doi.org/10.1039/c8ra01818a

    Article  CAS  Google Scholar 

  112. Hu N, Yang Z, Wang Y, Zhang L, Wang Y, Huang X, Wei H, Wei L, Zhang Y (2014) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25:025502. https://doi.org/10.1088/0957-4484/25/2/025502

    Article  CAS  Google Scholar 

  113. Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong ESW, Zhang Y (2012) Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens Actuators, B Chem 163:107–114. https://doi.org/10.1016/j.snb.2012.01.016

    Article  CAS  Google Scholar 

  114. Russo PA, Donato N, Leonardi SG, Baek S, Conte DE, Neri G, Pinna N (2012) Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angewandte 11053–11057. https://doi.org/10.1002/anie.201204373

  115. Kim JH, Katoch A, Kim HW, Kim SS (2016) Realization of ppm-level CO detection with exceptionally high sensitivity using reduced graphene oxide-loaded SnO2nanofibers with simultaneous Au functionalization. Chem Commun 52:3832–3835. https://doi.org/10.1039/c5cc10482c

    Article  CAS  Google Scholar 

  116. Abideen ZU, Kima JH, Mirzaeib A, Kimc HW, Kim SS (2016) Sensing behaviour to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens Actuators B 255:1884–1896. https://doi.org/10.1016/j.snb.2017.08.210

  117. Ghosal S, Bhattacharyya P (2017) A potential gas sensor device based on Pd/RGO/TiO2 nanotube ternary hybrid junction. Microelectron Reliab 78:299–306. https://doi.org/10.1016/j.microrel.2017.09.020

    Article  CAS  Google Scholar 

  118. Abideen ZU, Katoch A, Kim JH, Kwon YJ, Kim HW, Kim SS (2015) Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens Actuators, B Chem 221:1499–1507. https://doi.org/10.1016/j.snb.2015.07.120

    Article  CAS  Google Scholar 

  119. Choi SJ, Ryu WH, Kim SJ, Cho HJ, Kim ID (2014) Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4nanofibers for selective acetone detection. J Mater Chem B 2:7160–7167. https://doi.org/10.1039/c4tb00767k

    Article  CAS  Google Scholar 

  120. Tung TT, Castro M, Kim TY, Suh KS, Feller JF (2014) High stability silver nanoparticles-graphene/poly(ionic liquid)-based chemoresistive sensors for volatile organic compounds’ detection chemosensors and chemoreception. Anal Bioanal Chem 406:3995–4004. https://doi.org/10.1007/s00216-013-7557-y

    Article  CAS  Google Scholar 

  121. Zou Y, Wang Q, Xiang C, Tang C, Chu H, Qiu S, Yan E, Xu F, Sun L (2016) Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. Int J Hydrogen Energy 41:5396–5404. https://doi.org/10.1016/j.ijhydene.2016.02.023

    Article  CAS  Google Scholar 

  122. Peng R, Chen J, Nie X, Li D, Si P, Feng J, Zhang L, Ci L (2018) Reduced graphene oxide decorated Pt activated SnO2nanoparticles for enhancing methanol sensing performance. J Alloys Compd 762:8–15. https://doi.org/10.1016/j.jallcom.2018.05.177

    Article  CAS  Google Scholar 

  123. Meng F, Zheng H, Chang Y, Zhao Y, Li M, Wang C, Sun Y, Liu J (2018) One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE Trans Nanotechnol 17:212–219. https://doi.org/10.1109/TNANO.2017.2789225

    Article  CAS  Google Scholar 

  124. Abideen ZU, Kim J, Kim SS (2017) Sensors and actuators B: chemical optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties. Sens Actuators B. Chem 238:374–380. https://doi.org/10.1016/j.snb.2016.07.054

    Article  CAS  Google Scholar 

  125. Omidvar A, Mohajeri A (2014) Edge-functionalized graphene nanoflakes as selective gas sensors. Sens Actuators, B Chem 202:622–630. https://doi.org/10.1016/j.snb.2014.05.136

    Article  CAS  Google Scholar 

  126. Lalitha M, Lakshmipathi S (2017) Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone-Thrower-Wales (STW) and inverse Stone-Thrower-Wales (ISTW) defects. Phys Chem Chem Phys 19:30895–30913. https://doi.org/10.1039/c7cp06900f

    Article  CAS  Google Scholar 

  127. Wu J, Tao K, Zhang J, Guo Y, Miao J, Norford LK (2016) Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J Mater Chem A 4:8130–8140. https://doi.org/10.1039/c6ta01426g

    Article  CAS  Google Scholar 

  128. Nag S, Duarte L, Bertrand E, Celton V, Castro M, Choudhary V, Guegan P, Feller JF (2014) Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. J Mater Chem B 20:6571–6579. https://doi.org/10.1039/c4tb01041h

    Article  Google Scholar 

  129. Kang MA, Ji S, Kim S, Park CY, Myung S, Song W, Lee SS, Lim J, An KS (2018) Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv 8:11991–11996. https://doi.org/10.1039/c8ra01184b

    Article  CAS  Google Scholar 

  130. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504. https://doi.org/10.1088/0957-4484/20/18/185504

    Article  CAS  Google Scholar 

  131. Yu Z, Wang B, Li Y, Kang D, Chen Z, Wu Y (2017) The effect of rigid phenoxyl substituent on the NH3-sensing properties of tetra-α-(4-tert -butylphenoxyl)-metallophthalocyanine/reduced graphene oxide hybrids. RSC Adv 7:22599–22609. https://doi.org/10.1039/c7ra02740k

    Article  CAS  Google Scholar 

  132. Park MS, Kim KH, Kim MJ, Lee YS (2016) NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf A Physicochem Eng Asp 490:104–109. https://doi.org/10.1016/j.colsurfa.2015.11.028

    Article  CAS  Google Scholar 

  133. Duy LT, Trung TQ, Dang VQ, Hwang BU, Siddiqui S, Son IY, Yoon SK, Chung DJ, Lee NE (2016) Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv Funct Mater 26:4329–4338. https://doi.org/10.1002/adfm.201505477

    Article  CAS  Google Scholar 

  134. Zhou Y, Jiang Y, Xie T, Tai H, Xie G (2014) A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens Actuators, B Chem 203. https://doi.org/10.1016/j.snb.2014.06.105

  135. Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhänen T (2013) Ultrafast graphene oxide humidity sensors. ACS Nano 7. https://doi.org/10.1021/nn404889b

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acharyya, D., Bhattacharyya, P. (2020). Functionalization of Graphene and Its Derivatives for Developing Efficient Solid-State Gas Sensors: Trends and Challenges. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_10

Download citation

Publish with us

Policies and ethics