Skip to main content

Structure and Rheology of Hydrogels: Applications in Drug Delivery

  • Chapter
  • First Online:
Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery

Abstract

Hydrogels are 3D network like structures comprising of hydrophilic polymers having copious amounts of water in their intersticial spaces and thus promising materials for the drug delivery platforms. Physical and chemical methods are employed to synthesize the hydrogels. Rheology provides the structure–property relationships to understand the various mechanisms of hydrogels which can tune the cross-linking density to assess the mechanical strength. Stimuli-responsive, in situ, and injectable hydrogels are being explored at different scales for the delivery of drugs, proteins, and biomolecules. This chapter provides an extensive overview of the different methods of fabrication, swelling properties, rheology, and developments in drug delivery applications of hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAG:

Bioactive glass

CGT:

Critical gelation temperature

DRF:

Tris (4-isocyanatophenyl) thiophosphate

LCST:

Lower critical solution temperature

McH+:

Merocyanine-H+

PBA:

Phenyl boronic acid

PEG:

Poly ethylene glycol

PEO:

Poly ethylene oxide

PMVE/MA:

Poly methylvinylether/maleic acid

PNIPAM:

Poly n-isopropylacrylamide

PPO:

Poly propylene oxide

PVA:

Poly vinyl alcohol

PVP:

Poly vinyl pyrrolidene

SAOS:

Small angle oscillatory shear

UCST:

Upper critical solution temperature

References

  • Ahmadi F, Oveisi Z, Samani M, Amoozgar Z (2015) Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res Pharm Sci 10:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121

    CAS  PubMed  Google Scholar 

  • Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels … a review. Saudi Pharm J 24:554–559

    PubMed  Google Scholar 

  • Alavi M, Karimi N, Safaei M (2017) Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 7:3–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Figueroa MJ, Blanco-Méndez J (2001) Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharm 215:57–65

    CAS  PubMed  Google Scholar 

  • Amoozgar Z, Park J, Lin Q, Yeo Y (2012) Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol Pharm 9:1262–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amri N, Ghemati D, Bouguettaya N, Aliouche D (2018) The swelling kinetics and rheological behavior of chitosan-PVA/Montmorillonite hybrid polymers. Period Polytech Chem Eng 63:179–189

    Google Scholar 

  • Aoyagi M, Kim Y, Hoffman JM (1992) Smart biomaterials. Membr Technol 1992:4

    Google Scholar 

  • Arguk Elles-Monal W, Goycoolea FM, Peniche C, Higuera-Ciapara I (1998) Rheological study of the chitosan/glutaraldehyde chemical gel system. Polym Gels Netw 6:429–440

    Google Scholar 

  • Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  • Augé A, Zhao Y (2016) What determines the volume transition temperature of UCST acrylamide–acrylonitrile hydrogels? RSC Adv 6:70616–70623

    Google Scholar 

  • Bajgrowicz-Cieslak M, Alqurashi Y, Elshereif MI et al (2017) Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films. RSC Adv 7:53916–53924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai AK, Shrivastava M (2002) Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). J Appl Polym Sci 85:1419–1428

    CAS  Google Scholar 

  • Bastings MM, Koudstaal S, Agostoni P et al (2015) An injectable and drug-loaded Supramolecular hydrogel for local catheter injection into the pig heart. J Vis Exp 100:52450

    Google Scholar 

  • Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Google Scholar 

  • Bhattarai N, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol Biosci 5:107–111

    CAS  PubMed  Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    CAS  PubMed  Google Scholar 

  • Buwalda SJ, Boere KWM, Dijkstra PJ et al (2014) Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 190:254–273

    CAS  PubMed  Google Scholar 

  • Byrne ME, Park K, Peppas NA (2002) Molecular imprinting within hydrogels. Adv Drug Deliv Rev 54:149–161

    CAS  PubMed  Google Scholar 

  • Cai X, Luo Y, Zhang W et al (2016) pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Inter 8:22442–22450

    CAS  Google Scholar 

  • Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 3:6

    PubMed Central  Google Scholar 

  • Chambon F, Petrovic ZS, MacKnight WJ, Winter HH (1986) Rheology of model polyurethanes at the gel point. Macromolecules 19:2146–2149

    CAS  Google Scholar 

  • Chen MH, Wang LL, Chung JJ et al (2017) Methods to assess shear-thinning hydrogels for application as injectable biomaterials. ACS Biomater Sci Eng 3:3146–3160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi B, Loh XJ, Tan A et al (2015) Introduction to in situ forming hydrogels for biomedical applications. In: Loh XJ (ed) BioEngineering in-situ gelling polymers, 1st edn. Springer Singapore, Singapore, pp 5–35

    Google Scholar 

  • Coviello T, Grassi M, Rambone G et al (1999) Novel hydrogel system from scleroglucan: Synthesis and characterization. J Control Release 60:367–378

    CAS  PubMed  Google Scholar 

  • Dimida S, Barca A, Cancelli N et al (2017) Effects of Genipin concentration on cross-linked chitosan scaffolds for bone tissue engineering: Structural characterization and evidence of biocompatibility features. Int J Polym Sci 2017:1–8

    Google Scholar 

  • Donnelly RF, Singh TRR, Garland MJ et al (2012) Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 22:4879–4890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverria C, Fernandes S, Godinho M et al (2018) Functional stimuli-responsive gels: Hydrogels and microgels. Gels 4:54

    PubMed Central  Google Scholar 

  • El-Sherbiny IM, McGill S, Smyth HDC (2010) Swellable microparticles as carriers for sustained pulmonary drug delivery. J Pharm Sci 99:2343–2356

    CAS  PubMed  Google Scholar 

  • Gao D, Hao X, Philbert MA, Kopelman R (2008) Bioeliminable nanohydrogels for drug delivery. Nano Lett 8:3320–3324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach G, Arndt K-F (2009) Hydrogel sensors and actuators. Springer Ser Chem Sensors Biosens 6:1–15

    Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579

    CAS  PubMed  Google Scholar 

  • Gupta S, Webster TJ, Sinha A (2011) Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J Mater Sci Mater Med 22:1763–1772

    CAS  PubMed  Google Scholar 

  • Han D, Lu Z, Chester SA, Lee H (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-Stereolithography. Sci Rep 8:1963

    PubMed  PubMed Central  Google Scholar 

  • Hardy JG, Larrañeta E, Donnelly RF et al (2016) Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm 13:907–914

    CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Tiwari S et al (2017) Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res Part A 105:2391–2404

    CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers · PVA Hydrogels. Anionic Polymerisation Nanocomposites. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 37–65

    Google Scholar 

  • Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Google Scholar 

  • Hennink W, De Jong S, Bos G et al (2004) Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 277:99–104

    CAS  PubMed  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges ∗. Polym with aligned carbon Nanotub Act Compos Mater 49:1993–2007

    CAS  Google Scholar 

  • Inoue N, Bessho M, Furuta M et al (2006) A novel collagen hydrogel cross-linked by gamma-ray irradiation in acidic pH conditions. J Biomater Sci Polym Ed 17:837–858

    CAS  PubMed  Google Scholar 

  • Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18:413–421

    CAS  Google Scholar 

  • Jǎtariu AN, Popa M, Curteanu S, Peptu CA (2011) Covalent and ionic co-cross-linking-an original way to prepare chitosan-gelatin hydrogels for biomedical applications. J Biomed Mater Res – Part A 98(A):342–350

    Google Scholar 

  • Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer (Guildf) 42:6851–6857

    CAS  Google Scholar 

  • Jung Y, Park W, Park H et al (2017) Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 156:403–408

    CAS  PubMed  Google Scholar 

  • Kashima K, Imai M (2012) Advanced membrane material from marine biological polymer and sensitive molecular-size recognition for promising separation technology. In: Advancing desalination. InTech, p 64

    Google Scholar 

  • Kim Y-J, Matsunaga YT (2017) Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5:4307

    CAS  PubMed  Google Scholar 

  • Kim B, La Flamme K, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89:1606–1613

    CAS  Google Scholar 

  • Kimura M, Fukumoto K, Watanabe J, Ishihara K (2004) Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J Biomater Sci Polym Ed 15:631–644

    CAS  PubMed  Google Scholar 

  • Kocen R, Gasik M, Gantar A, Novak S (2017) Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed Mater 12:025004

    PubMed  Google Scholar 

  • Kopeček J (2009) Hydrogels from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci A Polym Chem 47:5929–5946

    PubMed  PubMed Central  Google Scholar 

  • Kumar Parida U, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan-polyvinyl alcohol blended with Cloisite 30B for controlled release of the anticancer drug Curcumin. J Biomater Nanobiotechnol 2:414–425

    Google Scholar 

  • Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    CAS  PubMed  Google Scholar 

  • Lin G, Chang S, Hao H et al (2010) Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sensors Actuators B Chem 144:332–336

    CAS  Google Scholar 

  • Loebel C, Rodell CB, Chen MH, Burdick JA (2017) Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc 12:1521–1541

    CAS  PubMed  Google Scholar 

  • Maelys G, Neubi N, Opoku-Damoah Y et al (2018) Bio-inspired drug delivery systems: An emerging platform for targeted cancer therapy. Biomater Sci 6:958

    Google Scholar 

  • Maitra J, Shukla VK (2014) Cross-linking in Hydrogels – A Review. Am J Polym Sci 4:25–31

    CAS  Google Scholar 

  • Merkel TJ, Jones SW, Herlihy KP et al (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci 108:586–591

    CAS  PubMed  Google Scholar 

  • Mezger TG (2006) The rheology handbook, 2nd edn. Vincentz, Hannover, p 180

    Google Scholar 

  • Montembault A, Viton C, Domard A (2005) Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26:1633–1643

    CAS  PubMed  Google Scholar 

  • Muzzarelli R, El Mehtedi M, Bottegoni C et al (2015) Genipin-Crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 13:7314–7338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mythri G, Kavitha K, Kumar MR, Jagadeesh Singh SD (2011) Novel mucoadhesive polymers – a review. J Appl Pharm Sci 1:37–42

    Google Scholar 

  • Nguyen HH, Payré B, Fitremann J et al (2015) Thermoresponsive properties of PNIPAM-based hydrogels: Effect of molecular architecture and embedded gold nanoparticles. Langmuir 31:4761–4768

    CAS  PubMed  Google Scholar 

  • Omidian H, Park K (2010) Introduction to hydrogels. In: Ottenbrite RM, Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer New York, New York, NY, pp 1–16

    Google Scholar 

  • Palmerston Mendes L, Pan J, Torchilin V (2017) Dendrimers as Nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401

    PubMed Central  Google Scholar 

  • Panonnummal R, Sabitha M (2018) Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int J Biol Macromol 110:245–258

    CAS  PubMed  Google Scholar 

  • Papadakis C, Tsitsilianis C (2017) Responsive hydrogels from associative block copolymers: Physical gelling through Polyion Complexation. Gels 3:3

    PubMed Central  Google Scholar 

  • Peppas NA, Merrill EW (1976) Differential scanning calorimetry of crystallized PVA hydrogels. J Appl Polym Sci 20:1457–1465

    CAS  Google Scholar 

  • Peppas NA, Scott JE (1992) Controlled release from poly (vinyl alcohol) gels prepared by freezing-thawing processes. J Control Release 18:95–100

    CAS  Google Scholar 

  • Prasad HRY, Srivastava P, Verma KK (2004) Diapers and skin care: Merits and demerits. Indian J Pediatr 71:907–908

    CAS  PubMed  Google Scholar 

  • Qu J, Zhao X, Ma PX, Guo B (2018) Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater 72:55–69

    CAS  PubMed  Google Scholar 

  • Razzak MT, Darwis D, Zainuddin S (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

    CAS  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    CAS  Google Scholar 

  • Rizwan M, Yahya R, Hassan A et al (2017) pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers (Basel) 9:137

    Google Scholar 

  • Roy B (2015) J Biomed Sci 2:20–21

    Google Scholar 

  • Salehiyan R, Hyun K (2013) Effect of organoclay on non-linear rheological properties of poly(lactic acid)/poly(caprolactone) blends. Korean J Chem Eng 30:1013–1022

    CAS  Google Scholar 

  • Samimi Gharaie S, Dabiri S, Akbari M (2018) Smart shear-thinning hydrogels as injectable drug delivery systems. Polymers (Basel) 10:1317

    Google Scholar 

  • Saxena V, Hasan A, Sharma S, Pandey LM (2018) Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. Int J Polym Mater Polym Biomater 67:410–419

    CAS  Google Scholar 

  • Schwarte LM, Podual K, Peppas NA (1999) Cationic hydrogels for controlled release of proteins and other macromolecules. Tailored Polym Mater Control Deliv Syst 709:56–66

    Google Scholar 

  • Shah RK, Kim J-W, Agresti JJ et al (2008) Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 4:2303

    CAS  Google Scholar 

  • Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659

    CAS  Google Scholar 

  • Shibayama M, Sakai T (2012) CHAPTER 2. Fabrication, structure, mechanical properties, and applications of tetra-PEG hydrogels. In: Loh XJ, Scherman OA (eds) Polymeric and self assembled hydrogels: From fundamental understanding to applications. Royal Society of Chemistry, Cambridge, pp 7–38

    Google Scholar 

  • Shirakura T, Ray A, Kopelman R (2016) Polyethylenimine incorporation into hydrogel nanomatrices for enhancing nanoparticle-assisted chemotherapy. RSC Adv 6:48016–48024

    CAS  Google Scholar 

  • Siepmann J, Peppas NA (2011) Higuchi equation: Derivation, applications, use and misuse. Int J Pharm 418:6–12

    CAS  PubMed  Google Scholar 

  • Simonsen L, Hovgaard L, Mortensen PB, Brøndsted H (1995) Dextran hydrogels for colon-specific drug delivery. V. Degradation in human intestinal incubation models. Eur J Pharm Sci 3:329–337

    CAS  Google Scholar 

  • Singh V, Bushetti SS, Raju SA et al (2011) Polymeric ocular hydrogels and ophthalmic inserts for controlled release of timolol maleate. J Pharm Bioallied Sci 3:280–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song G, Zhang L, He C et al (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435

    CAS  Google Scholar 

  • Stenekes RJH, Talsma H, Hennink WE (2001) Formation of dextran hydrogels by crystallization. Biomaterials 22:1891–1898

    CAS  PubMed  Google Scholar 

  • Tan HS, Pfister WR (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today 2:60–69

    CAS  PubMed  Google Scholar 

  • ter Schiphorst J, van den Broek M, de Koning T et al (2016) Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. J Mater Chem A 4:8676–8681

    Google Scholar 

  • Thakur G, Rodrigues FC, Dathathri E et al (2018) Protein-based gels. Polymeric Gels. Elsevier, In, pp 31–54

    Google Scholar 

  • Thirumurugan A, Blessy V, Karthikeyan M (2018) Comparative study on doxorubicin loaded metallic nanoparticles in drug delivery against MCF-7 cell line. In: Applications of nanomaterials. Elsevier, pp 303–313

    Google Scholar 

  • Thoniyot P, Tan MJ, Karim AA et al (2015) Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010

    Google Scholar 

  • Tsung J, Burgess DJ (2012) Biodegradable polymers in drug delivery systems. In: Fundamentals and applications of controlled release drug delivery. Springer US, Boston, MA, pp 107–123

    Google Scholar 

  • Winter HH (1987) Can the gel point of a cross-linking polymer be detected by theG? -G? Crossover? Polym Eng Sci 27:1698–1702

    CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol (N Y N Y) 30:367–382

    CAS  Google Scholar 

  • Wissing S, Kayser O, Müller R (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    CAS  PubMed  Google Scholar 

  • Xu L, Qiu L, Sheng Y et al (2018) Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B 510:510

    Google Scholar 

  • Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39:3528–3540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Tyagi P, Kadam RS et al (2012) Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6:7595–7606

    CAS  PubMed  Google Scholar 

  • Yang H, Wang Q, Chen W et al (2015) Hydrophilicity/hydrophobicity reversable and redox-sensitive nanogels for anticancer drug delivery. Mol Pharm 12:1636–1647

    CAS  PubMed  Google Scholar 

  • Yim H, Park SJ, Bae YH, Na K (2013) Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials 34:7674–7682

    CAS  PubMed  Google Scholar 

  • Yu Y, Feng R, Li J, et al (2018) A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian J Pharm Sci

    Google Scholar 

  • Zhao Y-L, Stoddart JF (2009) Azobenzene-based light-responsive hydrogel system. Langmuir 25:8442–8446

    CAS  PubMed  Google Scholar 

  • Zhao F, Yao D, Guo R et al (2015) Composites of polymer hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nano 5:2054–2130

    CAS  Google Scholar 

  • Zhao T, Liu X, Li Y et al (2017) Fluorescence and drug loading properties of ZnSe:Mn/ZnS-paclitaxel/SiO2 nanocapsules templated by F127 micelles. J Colloid Interface Sci 490:436–443

    CAS  PubMed  Google Scholar 

  • Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA (2014) A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res – Part B Appl Biomater 102:1063–1073

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Thareja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marapureddy, S.G., Thareja, P. (2020). Structure and Rheology of Hydrogels: Applications in Drug Delivery. In: Chandra, P., Pandey, L. (eds) Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery . Springer, Singapore. https://doi.org/10.1007/978-981-15-4790-4_4

Download citation

Publish with us

Policies and ethics