Skip to main content

Oxidative Stress and Antioxidant Defence in Fabaceae Plants Under Abiotic Stresses

  • Chapter
  • First Online:
The Plant Family Fabaceae

Abstract

Legumes, grown worldwide under various climate conditions, are strongly appreciated for their nutritional value and impact in terms of environmental benefits and enhanced sustainability. Several environmental and anthropogenic factors can affect legume crop productivity, among which are the deleterious abiotic stresses, namely drought, salinity, temperature, heavy metals. Different abiotic stresses impair legume growth and performance by triggering a common scenario within the cell that is extensive oxidative damage. Thus, a better understanding of the molecular mechanisms underlying the oxidative stress response in legumes will lead to innovative agronomic and scientific developments, promoting the future competitiveness of the system. The chapter will present and discuss the state of the art concerning the hallmarks of oxidative damage and plant antioxidant response as well as the impact of oxidative injury on genome integrity. The focus will be on the DNA damage response and the way plants use this complex molecular network to cope with stress. Besides dissecting the cellular mechanisms, an in-depth evaluation of the several environmental and anthropogenic factors that are stress determinants is provided. In this context, the role of emerging players as miRNAs will be discussed. This chapter provides new insights on legume profiles of antioxidant stress response resulting from ‘omics’, covering issues of model legumes versus legume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran L-S (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Araújo SS, Balestrazzi A, Faè M, Morano M, Carbonera D, Macovei A (2016) MtTdp2α-overexpression boosts the growth phase of Medicago truncatula cell suspension and increases the expression of key genes involved in antioxidant response and genome stability. Plant Cell Tissue Organ Cult 127:675–680

    Google Scholar 

  • Araújo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A (2019). Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Sci. Rep. 9:10466

    Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S, Asamizu E, Nakamura Y, Sato S, Tabata S (2005) Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. Mol. Plant-Microbe Int. 18:487–498

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Come D (2000) Antioxidantsystems in sunflower (Helianthus annuus L.) seeds as affected bypriming. Seed Sci Res 10:35–42

    Article  CAS  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Donà M, Carbonera D (2011a) Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30:287–295

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2011b) Seed imbibition in Medicago truncatula Gaertn.: expression profiles ofDNArepair genes in relation to PEG-mediated stress. J Plant Physiol 168:706–713

    Article  CAS  PubMed  Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Datteé Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol. Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    Google Scholar 

  • Bhardwaj J, Yadav SK (2012) Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram under drought stress. Am J Plant Physiol 7:17–29

    Article  CAS  Google Scholar 

  • Becana M, Salin ML (1989) Superoxide dismutases in nodules of leguminous plants. Can J Bot 67:415–421

    Article  CAS  Google Scholar 

  • Becana M, Paris FJ, Sandalio LM, del Rio LA (1989) Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. Plant Physiol 90:1286–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS, Byrn P, Cassman KG, Cooper M, Delmer D, Greene T (2013) The US drought of 2012 in perspective: a call to action. Glob Food Secur 2:139–143

    Article  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J 16:176–185

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Castro I, Moutinho-Pereira J, Correia C, Egea-Cortines M, Matos M, Rosa E, Carnide V, Lino-Neto T(2019) Evaluating stress responses in cowpea under drought stress. J Plant Physiol 241:153001

    Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Change 4:287–291

    Article  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye SQ, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:1–14

    Article  CAS  Google Scholar 

  • Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genom 7:272

    Article  CAS  Google Scholar 

  • Confalonieri M, Faè M, Balestrazzi A, Donà M, Macovei A, Valassi A, Giraffa G, Carbonera D (2013) Enhanced osmotic stress tolerance in Medicago truncatula plants overexpressing the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2). Plant Cell Tissue Organ Cult 116:187–203

    Article  CAS  Google Scholar 

  • Considine MJ, Siddique KHM, Foyer CH (2017) Nature’s pulse power: legumes, food security and climate change. J Exp Bot 68:1815–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook DR (1999) Medicago truncatula-a model in the making! Curr. Opin. Plant Biol. 2:301–304

    Article  CAS  Google Scholar 

  • Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Gupta D, Palma J, Corpas F (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, Switzerland, pp 1–22

    Google Scholar 

  • Cullis C, Chimwamurombe P, Barker N, Kunert K, Vorster J (2018) Orphan legumes growing in dry environments: marama bean as a case study. Front. Plant Sci. 9:1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalton DA (1995) Antioxidant defenses of plants and fungi. In: Ahmad S (ed) Oxidative stress and antioxidant defenses in biology. Chapman and Hall, New York, NY, pp 298–355. ISBN 0-412-03971-0

    Chapter  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA 83:3811–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Langeberg L, Robbins M (1992) Purification and characterization of monodehydroascorbate reductase from soybean root nodules. Arch Biochem Biophys 292:281–286

    Article  CAS  PubMed  Google Scholar 

  • Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993a) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol 102:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Langeberg L, Treneman N (1993b) Correlations between the ascorbate–glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87:365–370

    Article  CAS  Google Scholar 

  • David SS, O’Shea VL, Sucharita Kundu S (2007) Base-excisionrepair of oxidative DNA damage. Nature 447:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Rio LA, Sandalio LM, Corpas FJ, Lopez-Huertas E, Palma JM, Pastori GM (1998) Activated oxygen-mediated metabolic functions of leaf peroxisomes. Physiol Plant 104:673–680

    Article  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:1–20

    Article  CAS  Google Scholar 

  • Dias MC, Mariz-Ponte N, Santos C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 137:121–129

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV (2010) Ethylene production under high temperature stress causes premature leaf senescence in soybean. Funct Plant Biol 37:1071–1084

    Article  CAS  Google Scholar 

  • Donà M, Confalonieri M, Minio A, Biggiogera M, Buttafava A, Raimondi E, Delledonne M, Ventura L, Sabatini ME, Macovei A, Giraffa G, Carbonera D, Balestrazzi A (2013) RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1α depletion in Medicago truncatula. J Exp Bot 64:1941–1951

    Article  PubMed  CAS  Google Scholar 

  • Donà M, Ventura L, Balestrazzi A, Buttafava A, Carbonera D, Confalonieri M, Giraffa G, Macovei A (2014) Dose-dependent reactive species accumulation and preferential double strand breaks repair are featured in the gamma-ray response in Medicago truncatula cells. Plant Mol Biol Rep 32:129–141

    Article  CAS  Google Scholar 

  • Donà M, Sabatini ME, Biggiogera M, Confalonieri M, Minio A, Delledonne M, Giraffa G, Carbonera D, Araujo S, Balestrazzi A (2017) MtTdp1alpha-depleted Medicago truncatulaplants show reduced cuticle permeability and altered expression of defense genes. Biol Plant 61:192–196

    Article  CAS  Google Scholar 

  • Doria E, Pagano A, Ferreri C, Larocca AV, Macovei A, Araújo S, Balestrazzi A (2019) How does the seed pre-germinative metabolism fight against imbibition damage? Emerging roles of fatty acid cohort and antioxidant defence. Front. Plant Sci. In press

    Google Scholar 

  • Duan C, Fang C, Yang W, Chen Y, Cui S (2018) Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol Environ Saf 156:106–115

    Article  CAS  PubMed  Google Scholar 

  • Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, de Felipe M, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208(1):73–79

    Article  CAS  Google Scholar 

  • Faè M, Balestrazzi A, Confalonieri M, Donà M, Macovei A, Valassi A, Giraffa G, Carbonera D (2014) Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2a (tyrosyl-DNA phosphodiesterase 2 alpha) in Medicago truncatula plants. Plant Cell Rep 33:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A Rev Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33:79–97

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW, Miller AJ, Kunert K, Vorster J, Cullis C, Ozga JA, Wahlqvist ML, Liang Y, Shou H, Shi K, Yu J, Fodor N, Kaiser BN, Wong FL, Valliyodan B, Considine MJ (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112

    Article  PubMed  Google Scholar 

  • Frugoli J, Harris J (2001) Medicago truncatula on the move! Plant Cell 13:458–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujihara S, Abe H, Minakawa Y, Akao S, Yoneyama T (1994) Polyamines in nodules from various plant-microbe symbiotic associations. Plant Cell Physiol 35:1127–1134

    Article  CAS  Google Scholar 

  • Gao R, Austin RS, Amyot L, Hannoufa A (2016) Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. BMC Genom 17:658

    Article  CAS  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci. Rep. 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Guler NS, Pehlivan N (2016) Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biol Hung 67:169–183

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JMC, Halliwell B (2018) Mini-Review: oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 502:183–186

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Watanabe Y, Tran UT, Le DT, Tanaka M, Nguyen KH, Tran L-SP (2015) Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. Front Plant Sci 6:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular-genetics. Plant J. 2:487–496

    Article  Google Scholar 

  • HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczwk] from a physiological perspective. Front Plant Sci 7:1–20

    Article  Google Scholar 

  • He Y, Fu J, Yu C, Wang X, Jiang Q, Hong J, Lu K, Xue G, Yan C, James A, Xu L, ChenJ Jiang D (2015) Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J Exp Bot 66:6877–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez JA, Campillo A, Jimenez A, Alarcon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Jiménez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Hopkins A, Del Prado A (2007) Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review. Grass Forage Sci 62:118–126

    Article  CAS  Google Scholar 

  • Hu X, Zhang A, Zhang J, Jiang M (2006) Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol 47:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhang H, Ding Y (2013) Identification of conserved microRNAs and their targets in the model legume Lotus japonicus. J Biotechnol 164:520–524

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Liu Y, Cui Z, Fang Y, He HH, Liu BR, Wu GL (2018) Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crops Res. 221:1–6

    Article  Google Scholar 

  • Jatan R, Tiwari S, Asif MH, Lata C (2019) Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ Exp Bot 157:217–227

    Article  CAS  Google Scholar 

  • Kaneko Y, Newcomb EH (1987) Cytochemical localization of uricase and catalase in developing root nodules of soybean. Protoplasma 140:1–12

    Article  Google Scholar 

  • Kar M (2018) Determination of the expression level of stress-related genes in Cicer arietinum root cell under Cd stress and the relationship to H2O2 concentrations. Ecotoxicology 27:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D (2017) MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 7:4632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klapheck S, Zopes H, Levels HG, Bergmann L (1988) Properties and localization of the homoglutathione synthetase from Phaseolus coccineus leaves. Physiol Plant 74:733–739

    Article  CAS  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG, Almerão MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimarães FC, Abdelnoor RV, Nascimento LC, Carazzolle MC, Pereira GAG, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genom 12:307

    Article  CAS  Google Scholar 

  • Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    Article  CAS  Google Scholar 

  • Imtiaz M, Ashraf M, Rizwan MS, Nawaz MA, Rizwan M, Mehmood S, Yousaf B, Yuan Y, Ditta A, Mumtaz MA, Ali M, Mahmood S, Tu S (2018) Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: effects on cell death, ROS and antioxidative systems. Ecotoxicol Environ Saf 158:139–144

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K (2012) Tran L-SP Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS One 7:e42411

    Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2014) Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 19:18003–18024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Wan L, Bi S, Wan X, Li Z, Cao J, Tong Z, Xu H, He F, Li X (2017) Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes (Basel) 8:E119

    Article  CAS  Google Scholar 

  • Lopez-Gomez M, Hidalgo-Castellanos J, Munoz-Sanchez JR, Mari-Pena AJ, Lluch C, Herrera-Cervera JA (2017) Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage. Plant Physiol Biochem 116:9–17

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Carbonera D (2010) The tyrosyl-DNA phosphodiesterase gene family in Medicago truncatulaGaertn.: bioinformatic investigation and expression profiles inresponse to copper- and PEG-mediated stress. Planta 232:393–407

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Faè M, Carbonera D (2011a) New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol Biochem 49:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Buttafava A, Carbonera D (2011b) The TFIIS and TFIIS-like gene from Medicago truncatula are involved in oxidative stress response. Gene 470:20–30

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Faè M, Biggiogera M, de Sousa Araújo S, Carbonera D, Balestrazzi A (2018a) Ultrastructural and molecular analyses reveal enhanced nucleolar activity in medicago truncatula cells overexpressing the MtTdp2α Gene. Front. Plant Sci. 9:596

    Google Scholar 

  • Macovei A, Pagano A, Sabatini ME, Grandi S, Balestrazzi A (2018b) The human tyrosyl-DNA phosphodiesterase 1 (hTdp1) inhibitor NSC120686 as an exploratory tool to investigate plant Tdp1 genes. Genes 9:e186

    Google Scholar 

  • Maghsoodi M, Razmjoo J (2015) Identify physiological markers for drought tolerance in alfalfa. Agron J 107:149–157

    Article  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matamoros MA, Kim A, Penuelas M, Ihling C, Griesser E, Hoffmann R, Fedorova M, Frolov A, Becana M (2018) Protein carbonylation and glycation in legume nodules. Plant Physiol 177:1510–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews C, Arshad M, Hannoufa A (2019) Alfalfa response to heat stress is modulated by microRNA156. Physiol Plant 165:830–842

    Article  CAS  PubMed  Google Scholar 

  • Menéndez AB, Calzadilla PI, Sansberro PA, Espasandin FD, Gazquez A, Bordenave CD, Maiale SJ, Rodríguez AA, Maguire VG, Campestre MP, Garriz A, Rossi FR, Romero FM, Solmi L, Salloum MS, Monteoliva MI, Debat JH, Ruiz OA (2019) Polyamines and legumes: joint stories of stress, nitrogen fixation and environment. Front Plant Sci 10:1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  • Moller IM, Rogowska-Wrzesinska A, Rao RSP (2011) Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J. Proteomics 74:2228–2242

    Article  CAS  PubMed  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22:861–887

    Article  CAS  PubMed  Google Scholar 

  • Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU (2016) Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci Rep 6:39447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murillo-Amador B, Yamada S, Yamaguchi T, Rueda-Puente E, Ávila-Serrano N, García-Hernández JL, López-Aguilar R, Troyo-Diéguez E, Nieto-Garibay A (2007) Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J Agron Crop Sci 193:413–421

    Article  CAS  Google Scholar 

  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019a) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20:2541

    Article  CAS  PubMed Central  Google Scholar 

  • Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C (2019b) Grain legumes and fear of salt stress: focus onmechanisms and management strategies. Int J Mol Sci 20:799

    Article  CAS  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    Article  CAS  Google Scholar 

  • Nair AS, Abraham TK, Jaya DS (2008) Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguicolata L.) varieties. J Environ Biol 29:689–691

    CAS  PubMed  Google Scholar 

  • Naya L, Ladrera R, Ramos J, Gonzalez EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernández G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9:e84416

    Google Scholar 

  • Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A (2018) Integrating plant and animal biology for the search of novel DNA damage biomarkers. Mut Res Rev Mut Res 775:21–38

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50:452–465

    Article  CAS  PubMed  Google Scholar 

  • Osman HS (2015) Enhancing antioxidant yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agric Sci 60:389–402

    Article  Google Scholar 

  • Pagano A, Araújo SDS, Macovei A, Leonetti P, Balestrazzi A (2017) The seed repair response during germination: disclosing correlations between DNA repair, antioxidant response, and chromatin remodeling in Medicago truncatula. Front Plant Sci 8:1972

    Google Scholar 

  • Pagano A, de Sousa Araújo S, Macovei A, Dondi D, Lazzaroni S, Balestrazzi A (2019) Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in Medicago truncatula. Plant Cell Environ 42:259–269

    Google Scholar 

  • Pagano A, Macovei A, Araujo S, Forti C, Balestrazzi A (2020) Medicago truncatula, an informative model to investigate the DNA damage response during seed germination. In: Set de Bruijn FJ (ed) The Model Legume Medicago truncatula, vol 2. Wiley. (ISBN 9781119409168)

    Google Scholar 

  • Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Paparella S, Araujo S, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Parreira JR, Balestrazzi A, Fevereiro P, De Sousa Araujo S (2018) Maintaining genome integrity during seed development in Phaseolus vulgaris L.: evidence from a transcriptomic profiling study. Genes 9:E463

    Google Scholar 

  • Patel PK, Hemantaranjan A, Sarma BK, Singh R (2011) Growth and antioxidant system under drought stress in chickpea (Cicer arietinum L.) as sustained by salicylic acid. J Stress Physiol Biochem 7:130–144

    Google Scholar 

  • Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C (2014) Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst) 19:114–129

    Article  CAS  Google Scholar 

  • Puppo A, Dimitrijevic L, Rigaud J (1982) Possible involvement of nodule superoxide dismutase and catalase in leghemoglobin protection. Planta 156:374–379

    Article  CAS  PubMed  Google Scholar 

  • Quan WL, Liu X, Wang HQ, Chan ZL (2016) Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front Plant Sci 6:1256

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragland M, Theil EC (1993) Ferritin (mRNA, protein) and iron concentrations during soybean nodule development. Plant Mol Biol 21:555–560

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S (2019) Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. Planta 249:1267–1284

    Article  CAS  PubMed  Google Scholar 

  • Sabatini ME, Pagano A, Araujo A, Balestrazzi A, Macovei A (2017) The tyrosyl-DNA phosphodiesterase 1β (Tdp1β) gene discloses an earlyresponse to abiotic stresses. Genes 8:305

    Article  PubMed Central  CAS  Google Scholar 

  • Sabatini ME, Donà M, LeonettiP Minio A, Delledonne M, CarboneraD Confalonieri M, Giraffa G, Balestrazzi A (2015) Depletion oftyrosyl-DNA Phosphodiesterase 1 alpha (MtTdp1alpha) affects transposon expression in Medicago truncatula. J Int Plant Biol 58:618–622

    Article  CAS  Google Scholar 

  • Saglam A, Saruhan N, Terzi R, Kadioglu A (2011) The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. Russ J Plant Physiol 58:60–68

    Article  CAS  Google Scholar 

  • Sainz M, Diaz P, Monza J, Borsani O (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus Japonicus. Physiol Plant 140:45–56

    Article  CAS  Google Scholar 

  • Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9:128–132

    Article  CAS  PubMed  Google Scholar 

  • Satour P, Youssef C, Chatelain E, Vu BL, Teulat B, Job C, Job D, Montrichard F (2018) Patterns of protein carbonylation during Medicago truncatula seed maturation. Plant Cell Environ 41:2183–2194

    CAS  PubMed  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: Gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor, New York, NY, pp 343–406. ISBN 0-87969-502-1

    Google Scholar 

  • Sharma PI, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Sharma L, Priya M, Bindumadhava H, Nair RM, Nayyar H (2016) Influence of high temperature stress on growth, phenology and yield performance of mungbean (Vigna radiata (L.) Wilczek) under managed growth conditions. Sci Hort 213:379–391

    Article  Google Scholar 

  • Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Cicco N, Paraggio M, Scopa A (2010) Regulation of the ascorbate–glutathione cycle in plants under drought stress. In: Anjum N, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht

    Google Scholar 

  • Sun Z, Wang Y, Mou F, Tian Y, Chen L, Zhang S, Jiang Q, Li X (2016) Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Front. Plant Sci 6:160

    Article  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2016) Novel and nodulation-regulated microRNAs in soybean roots. Front Plant Sci 6:1273

    Google Scholar 

  • Szittya G, Moxo S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genom 9:593

    Article  CAS  Google Scholar 

  • Tripathi P, Rabara RC, Shulaev V, Shen QJ, Rushton PJ (2015) Understanding water-stress responses in soybean using hydroponics system-a systems biology perspective. Front Plant Sci 6:1145

    PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Sharma S, Ganie SA, Tahir M, Mir RR, Pandey R (2019) Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers. Biotech 9:413

    Google Scholar 

  • Valliyodan B, Ye H, Song L, Murphy M, Shannon JG, Nguyen HT (2017) Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J Exp Bot 68:1835–1849

    CAS  PubMed  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wang CQ, Xu HJ, Liu T (2011) Effect of selenium on ascorbate-glutathione metabolism during PEG-induced water deficit in Trifolium repens L. J Plant Growth Regul 30:436–444

    Article  CAS  Google Scholar 

  • Wu J, Wang L, Wang S (2017) MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Gene 628:78–86

    Article  CAS  PubMed  Google Scholar 

  • Xia X-J, Zhou Y-H, Shi K, Zhou J, Foyer CH, Yu J-Q (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 2019:9732325

    PubMed  PubMed Central  Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55:782–786

    Article  CAS  Google Scholar 

  • Yasar F, Uzal O, Yasar TO (2013) Investigation of the relationship between the tolerance to drought stress levels and antioxidant enzyme activities in green bean (Phaseolus Vulgaris L.) genotypes. Afr J Agric Res 8:5759–5763

    Google Scholar 

  • Yoshiyama KO, Sakaguchi K, Kimura S (2013) DNA damage response in plants: conserved and variable response compared to animals. Biology 2:1338–1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Jia T, Chen X (2017) The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Shi S, Liu Z, Yang F, Yin G (2019) Drought tolerance in alfalfa (Medicago sativa L.) varieties ia associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol 232:226–240

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Hivrale V, Zhang X, Valliyodan B, Lelandais-Brière C, Farmer AD, May GD, Crespi M, Nguyen HT, Sunkar R (2016) Small RNA profiles in soybean primary root tips under water deficit. BMC Syst Biol 10:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorb C, Geifus C-M, Dietz K-J (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Balestrazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gualtieri, ., Pagano, A., Macovei, A., Balestrazzi, . (2020). Oxidative Stress and Antioxidant Defence in Fabaceae Plants Under Abiotic Stresses. In: Hasanuzzaman, M., Araújo, S., Gill, S. (eds) The Plant Family Fabaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-4752-2_18

Download citation

Publish with us

Policies and ethics