Skip to main content

Carbon Fiber Surface Treatment for Enhanced Interfacial Properties: A Review

  • Conference paper
  • First Online:
Trends in Manufacturing and Engineering Management

Abstract

Pristine carbon fibers are intrinsically brittle, fuzzy, non-polar and possess graphite-based planes which are highly crystallized. These characteristics are limiting to effective interfacial bonding between fiber and matrix. Therefore, the ability to modify the surface of carbon fibers present an avenue for enhancing surface functionalities and increasing surface energy which results in improved interfacial properties (wettability) and mechanical properties. In this paper, the current novel techniques for carbon fiber surface treatment are presented. The current direction of the field is reviewed, and emerging technologies are discussed. The comparative study conducted provides insight for optimal selection of treatment approaches depending on the requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan X, Zhu B, Cai X, Liu J, Qiao K, Yu J (2017) Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing. Appl Surf Sci 401:414–423. https://doi.org/10.1016/J.APSUSC.2016.12.234

    Article  Google Scholar 

  2. Lin SP, Han JL, Yeh JT, Chang FC, Hsieh KH (2007) Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks. Eur Polym J 43:996–1008. https://doi.org/10.1016/j.eurpolymj.2006.12.001

    Article  Google Scholar 

  3. Zabihi O, Ahmadi M, Li Q, Shafei S, Huson MG, Naebe M (2017) Carbon fibre surface modification using functionalized nanoclay: a hierarchical interphase for fibre-reinforced polymer composites. Compos Sci Technol 148:49–58. https://doi.org/10.1016/j.compscitech.2017.05.013

    Article  Google Scholar 

  4. Li W, Yao SY, Ma KM, Chen P (2013) Effect of plasma modification on the mechanical properties of carbon fiber/phenolphthalein polyaryletherketone composites. Polym Compos 34:368–375. https://doi.org/10.1002/pc.22385

    Article  Google Scholar 

  5. Liu J, Tian Y, Chen Y, Liang J, Zhang L, Fong H (2010) A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Mater Chem Phys 122:548–555. https://doi.org/10.1016/J.MATCHEMPHYS.2010.03.045

    Article  Google Scholar 

  6. Zhao Z, Teng K, Li N, Li X, Xu Z, Chen L, Niu J, Fu H, Zhao L, Liu Y (2017) Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos Struct 159:761–772. https://doi.org/10.1016/J.COMPSTRUCT.2016.10.022

    Article  Google Scholar 

  7. Li F, Liu Y, Qu C-B, Xiao H-M, Hua Y, Sui GX, Fu S-Y (2015) Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polym (Guildf) 59:155–165. https://doi.org/10.1016/J.POLYMER.2014.12.067

    Article  Google Scholar 

  8. Tiwari S, Bijwe J (2014) Surface treatment of carbon fibers—a review. Procedia Technol 14:505–512. https://doi.org/10.1016/j.protcy.2014.08.064

    Article  Google Scholar 

  9. Gao B, Zhang R, He M, Sun L, Wang C, Liu L, Zhao L, Cui H, Cao A (2016) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos Part A Appl Sci Manuf 90:433–440. https://doi.org/10.1016/j.compositesa.2016.08.012

    Article  Google Scholar 

  10. Sui X, Shi J, Yao H, Xu Z, Chen L, Li X, Ma M, Kuang L, Fu H, Deng H (2017) Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos Part A Appl Sci Manuf 92:134–144. https://doi.org/10.1016/J.COMPOSITESA.2016.11.004

    Article  Google Scholar 

  11. Morgan P (2005) Carbon fibers and their composites. Taylor & Francis. https://doi.org/10.1016/j.tube.2011.07.006

  12. Paul R, Dai L (2018) Interfacial aspects of carbon composites. https://www.tandfonline.com/doi/full/10.1080/09276440.2018.1439632. https://doi.org/10.1080/09276440.2018.1439632

  13. Sharma M, Gao S Mäder E, Sharma H, Wei LY, Bijwe J (2014) Carbon fiber surfaces and composite interphases. https://www.sciencedirect.com/science/article/pii/S0266353814002358. https://doi.org/10.1016/j.compscitech.2014.07.005

  14. Drzal LT, Rich MJ, Koenig MF, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices: II. The effect of fiber finish. J Adhes 16:3–152. https://doi.org/10.1080/00218468308074911

  15. Wu Q, Zhao R, Ma Q, Zhu J (2018) Effects of degree of chemical interaction between carbon fibers and surface sizing on interfacial properties of epoxy composites. Compos Sci Technol 163:34–40. https://doi.org/10.1016/j.compscitech.2018.05.013

    Article  Google Scholar 

  16. Kamae T, Drzal LT (2012) Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase—Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos Part A Appl Sci Manuf 43:1569–1577. https://doi.org/10.1016/j.compositesa.2012.02.016

    Article  Google Scholar 

  17. Qian J, Wu J, Liu X, Zhuang Q, Han Z (2013) Improvement of interfacial shear strengths of polybenzobisoxazole fiber/epoxy resin composite by n-TiO2 coating. J Appl Polym Sci 127:2990–2995. https://doi.org/10.1002/app.37970

    Article  Google Scholar 

  18. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase. Compos Part B Eng 69:335–341. https://doi.org/10.1016/j.compositesb.2014.10.014

    Article  Google Scholar 

  19. Loos MR, Yang J, Feke DL, Manas-Zloczower I, Unal S, Younes U (2013) Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Compos Part B Eng 44:740–744. https://doi.org/10.1016/J.COMPOSITESB.2012.01.038

    Article  Google Scholar 

  20. Pokharel P, Lee DS (2014) High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chem Eng J 253:356–365. https://doi.org/10.1016/J.CEJ.2014.05.046

    Article  Google Scholar 

  21. Wang Z, Huang X, Xian G, Li H (2016) Effects of surface treatment of carbon fiber: Tensile property, surface characteristics, and bonding to epoxy. Polym Compos 37:2921–2932. https://doi.org/10.1002/pc.23489

    Article  Google Scholar 

  22. Baghery Borooj M, Mousavi Shoushtari A, Nosratian Sabet E, Haji A (2016) Influence of oxygen plasma treatment parameters on the properties of carbon fiber. J Adhes Sci Technol 30:2372–2382. https://doi.org/10.1080/01694243.2016.1182833

    Article  Google Scholar 

  23. Moosburger-Will J, Jäger J, Strauch J, Bauer M, Strobl S, Linscheid FF, Horn S (2017) Interphase formation and fiber matrix adhesion in carbon fiber reinforced epoxy resin: influence of carbon fiber surface chemistry. Compos Interfaces 24:691–710. https://doi.org/10.1080/09276440.2017.1267513

    Article  Google Scholar 

  24. Baghery Borooj M, Mousavi Shoushtari A, Haji A, Nosratian Sabet E (2016) Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology. Compos Sci Technol 128:215–221. https://doi.org/10.1016/j.compscitech.2016.03.020

    Article  Google Scholar 

  25. Chang T (1999) Plasma surface treatment in composites manufacturing. J Ind Technol 15:1–7

    Google Scholar 

  26. Farrow GJ, Jones C (1994) The effect of low power nitrogen plasma treatment of carbon fibres on the interfacial shear strength of carbon fibre/epoxy composites. J Adhes 45:29–42. https://doi.org/10.1080/00218469408026627

    Article  Google Scholar 

  27. Corujeira Gallo S, Charitidis C, Dong H (2017) Surface functionalization of carbon fibers with active screen plasma. J Vac Sci Technol A Vac Surf Film 35:021404. https://doi.org/10.1116/1.4974913

  28. Jones C, Sammann E (1990) The effect of low power plasmas on carbon fibre surfaces. Carbon N Y 28:509–514. https://doi.org/10.1016/0008-6223(90)90046-2

    Article  Google Scholar 

  29. Jang BZ (1992) Control of interfacial adhesion in continuous carbon and kevlar fiber reinforced polymer composites. Compos Sci Technol 44:333–349. https://doi.org/10.1016/0266-3538(92)90070-J

    Article  Google Scholar 

  30. Moosburger-Will J, Lachner E, Löffler M, Kunzmann C, Greisel M, Ruhland K, Horn S (2018) Adhesion of carbon fibers to amine hardened epoxy resin: influence of ammonia plasma functionalization of carbon fibers. Appl Surf Sci 453:141–152. https://doi.org/10.1016/j.apsusc.2018.05.057

    Article  Google Scholar 

  31. Bousquet A, Awada H, Hiorns RC, Dagron-Lartigau C, Billon L (2014) Conjugated-polymer grafting on inorganic and organic substrates: a new trend in organic electronic materials. https://www.sciencedirect.com/science/article/pii/S0079670014000380. https://doi.org/10.1016/j.progpolymsci.2014.03.003

  32. Subramanian RV, Jakubowski JJ (1978) Electropolymerization on graphite fibers. Polym Eng Sci 18:590–600. https://doi.org/10.1002/pen.760180708

    Article  Google Scholar 

  33. Harris B, Braddell OG, Almond DP, Lefebvre C, Verbist J (1993) Study of carbon fibre surface treatments by dynamic mechanical analysis. J Mater Sci 28:3353–3366. https://doi.org/10.1007/BF00354259

    Article  Google Scholar 

  34. Kainourgios P, Kartsonakis IA, Dragatogiannis DA, Koumoulos EP, Goulis P, Charitidis CA (2017) Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins. Appl Surf Sci 416:593–604. https://doi.org/10.1016/j.apsusc.2017.04.214

    Article  Google Scholar 

  35. Semitekolos D, Kainourgios P, Jones C, Rana A, Koumoulos EP, Charitidis CA (2018) Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation. Compos Part B Eng 155:237–243. https://doi.org/10.1016/j.compositesb.2018.08.027

    Article  Google Scholar 

  36. Luo W, Zhang B, Zou H, Liang M, Chen Y (2017) Enhanced interfacial adhesion between polypropylene and carbon fiber by graphene oxide/polyethyleneimine coating. J Ind Eng Chem 51:129–139. https://doi.org/10.1016/j.jiec.2017.02.024

    Article  Google Scholar 

  37. Zhang RL, Gao B, Ma QH, Zhang J, Cui HZ, Liu L (2016) Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites. Mater Des 93:364–369. https://doi.org/10.1016/j.matdes.2016.01.003

    Article  Google Scholar 

  38. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327. https://doi.org/10.1002/marc.200800754

    Article  Google Scholar 

  39. Wu Y, Lin X, Shen X, Sun X, Liu X, Wang Z, Kim JK (2015) Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon N Y 89:102–112. https://doi.org/10.1016/j.carbon.2015.02.074

    Article  Google Scholar 

  40. Fischer F, Kreling S, Jäschke P, Frauenhofer M, Kracht D, Dilger K (2012) Laser surface pre-treatment of CFRP for adhesive bonding in consideration of the absorption behaviour. J Adhes 88:350–363. https://doi.org/10.1080/00218464.2012.660042

    Article  Google Scholar 

  41. Ran B, Jing C, Yang C, Li X, Li Y (2018) Synthesis of efficient bacterial adhesion-resistant coatings by one-step polydopamine-assisted deposition of branched polyethylenimine-g-poly(sulfobetaine methacrylate) copolymers. Appl Surf Sci 450:77–84. https://doi.org/10.1016/J.APSUSC.2018.04.184

    Article  Google Scholar 

  42. Xiong S, Wang Y, Zhu J, Yu J, Hu Z (2016) Poly(ε-caprolactone)-grafted polydopamine particles for biocomposites with near-infrared light triggered self-healing ability. Polym (Guildf). 84:328–335. https://doi.org/10.1016/J.POLYMER.2016.01.005

    Article  Google Scholar 

  43. Kim HJ, Song JH (2019) Improvement in the mechanical properties of carbon and aramid composites by fiber surface modification using polydopamine. Compos Part B Eng 160:31–36. https://doi.org/10.1016/j.compositesb.2018.10.027

    Article  Google Scholar 

  44. Merenda A, Ligneris E des, Sears K, Chaffraix T, Magniez K, Cornu D, Schütz JA, Dumée LF (2016) Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes. Sci Rep 6:31565. https://doi.org/10.1038/srep31565

  45. Fu J, Zhang M, Jin L, Liu L, Li N, Shang L, Li M, Xiao L, Ao Y (2019) Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self assembly GO/SiO2 multilayers films on carbon fibers surface. Appl Surf Sci 470:543–554. https://doi.org/10.1016/j.apsusc.2018.11.168

    Article  Google Scholar 

  46. Beggs KM, Randall JD, Servinis L, Krajewski A, Denning R, Henderson LC (2018) Increasing the resistivity and IFSS of unsized carbon fibre by covalent surface modification. React Funct Polym 129:123–128. https://doi.org/10.1016/j.reactfunctpolym.2017.06.016

    Article  Google Scholar 

  47. Wang B, Duan Y, Zhang J, Zhao X (2016) Microwave radiation effects on carbon fibres interfacial performance. Compos Part B Eng 99:398–406. https://doi.org/10.1016/J.COMPOSITESB.2016.06.032

    Article  Google Scholar 

  48. Yuan JM, Fan ZF, Yang QC, Li W, Wu ZJ (2018) Surface modification of carbon fibers by microwave etching for epoxy resin composite. Compos Sci Technol 164:222–228. https://doi.org/10.1016/j.compscitech.2018.05.043

    Article  Google Scholar 

  49. Lee ES, Lee CH, Chun YS, Han CJ, Lim DS (2017) Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites. Compos Part B Eng 116:451–458. https://doi.org/10.1016/j.compositesb.2016.10.088

  50. Montes-Morán MA, Martínez-Alonso A, Tascón JMD, Paiva MC, Bernardo CA (2001) Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon N Y 39:1057–1068. https://doi.org/10.1016/S0008-6223(00)00220-7

    Article  Google Scholar 

  51. Fu YF, Xu K, Li J, Sun ZY, Zhang FQ, Chen DM (2012) The influence of plasma surface treatment of carbon fibers on the interfacial adhesion properties of UHMWPE composite. Polym Plast Technol Eng 51:273–276. https://doi.org/10.1080/03602559.2011.617406

    Article  Google Scholar 

  52. Reitz V, Meinhard D, Ruck S, Riegel H, Knoblauch V (2017) A comparison of IR- and UV-laser pretreatment to increase the bonding strength of adhesively joined aluminum/CFRP components. Compos Part A Appl Sci Manuf 96:18–27. https://doi.org/10.1016/J.COMPOSITESA.2017.02.014

    Article  Google Scholar 

  53. Encinas N, Oakley BR, Belcher MA, Blohowiak KY, Dillingham RG, Abenojar J, Martínez MA (2014) Surface modification of aircraft used composites for adhesive bonding. Int J Adhes Adhes 50:157–163. https://doi.org/10.1016/J.IJADHADH.2014.01.004

    Article  Google Scholar 

  54. Wetzel M, Holtmannspötter J, Gudladt H-J, Czarnecki JV (2013) Sensitivity of double cantilever beam test to surface contamination and surface pretreatment. Int J Adhes Adhes 46:114–121. https://doi.org/10.1016/J.IJADHADH.2013.06.002

    Article  Google Scholar 

  55. Gude MR, Prolongo SG, Ureña A (2012) Adhesive bonding of carbon fibre/epoxy laminates: correlation between surface and mechanical properties. Surf Coatings Technol 207:602–607. https://doi.org/10.1016/J.SURFCOAT.2012.07.085

    Article  Google Scholar 

  56. Hui C, Qingyu C, Jing W, Xiaohong X, Hongbo L, Zhanjun L (2018) Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber. Appl Surf Sci 441:538–545. https://doi.org/10.1016/j.apsusc.2018.01.158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwame Anane-Fenin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anane-Fenin, K., Akinlabi, E.T., Perry, N. (2021). Carbon Fiber Surface Treatment for Enhanced Interfacial Properties: A Review. In: Vijayan, S., Subramanian, N., Sankaranarayanasamy, K. (eds) Trends in Manufacturing and Engineering Management. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4745-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4745-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4744-7

  • Online ISBN: 978-981-15-4745-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics