Skip to main content

Microbial Pesticides Towards Eco-friendly Agriculture: Present Status and Future Prospects in Sri Lanka

  • Chapter
  • First Online:
Agricultural Research for Sustainable Food Systems in Sri Lanka

Abstract

Microbial pesticides have become a promising option in integrated pest management of agriculture where less dependence on synthetic pesticides is in demand. Indigenous microorganisms, especially the soil and plant microbiomes, possess numerous desirable attributes to be developed as microbial pesticides. This review article provides a comprehensive and updated overview on the need of microbial pesticides in integrated and sustainable pest management, global and national view on the use of microbial pesticides, present and future biopesticide market at global and national levels, indigenous microorganisms as potential candidates for development of microbial pesticides, modes of action of those microorganisms as microbial antagonists, journey made by the Sri Lankan scientists to develop microbial pesticides and some examples of successful case studies towards the development of microbial pesticides. Further, it analyses the present status and suggests the attitudinal and aptitudinal changes needed towards commercialization of microbial pesticides in Sri Lanka.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe S (2009a) Systemic resistance induced by Trichoderma harzianum RU01 against Uromyces appendiculatus on Phaseolus vulgaris. J Natl Sci Found 37(3):203–207

    Google Scholar 

  • Abeysinghe S (2009b) Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RUOI on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathol J 8:9–16

    Article  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alam G (2000) A study of biopesticides and biofertilisers in Haryana, India. International Institute for Environment and Development

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12-03. Rome, FAO

    Google Scholar 

  • Amarasena PGDS, Mohotti KM, Ahangama D (2011) A locally isolated entomopathogenic fungus to control tea red spider mites (Oligonychus coffeae Acarina-Tetranychidae). Trop Agric Res 22(4):384–391

    Article  Google Scholar 

  • Amarasinghe LD (2008) Entomopathogenic nematodes from the coastal belt of Sri Lanka and their efficiency in controlling termites. Pest Technol 2(2):125–129

    Google Scholar 

  • Amarasinghe LD, Hominick WM (1993) Efficacy of entomopathogenic nematodes to control up-country live wood termite, Postelectrotermes militaris. Sri Lanka J Tea Sci 62(1):16–24

    Google Scholar 

  • Amarasinghe LD, Hominick WM, Ried AP, Briscoe B (1994) Entomopathogenic nematodes for control of the tea termite, Postelectrotermes militaris in Sri Lanka. J Helminthol 68(4):277–286

    Article  Google Scholar 

  • Aponso GLM, Magamage C, Ekanayake WM, Manuweera GK (2003) Analysis of water for pesticides in two major agricultural areas of the dry zone. Ann Sri Lanka Dep Agric 5:7–22

    Google Scholar 

  • Aravinna P, Priyantha N, Pitawala A, Yatigammana SK (2017) Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. J Environ Sci Health B 52(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Bajwa WI, Kogan M (2002) Compendium of IPM Definitions (CID). What is IPM and how is it defined in the worldwide literature? Integrated Plant Protection Center (IPPC), Oregon State University, Corvallis, OR, USA

    Google Scholar 

  • Berg G, Erlacher A, Grube M (2015) The edible plant microbiome: importance and health issues. In: Principles of plant-microbe interactions. Springer, Cham, pp 419–426

    Google Scholar 

  • Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E (2012) Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees 26(1):215–226. https://doi.org/10.1007/s00468-011-0626-y

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100(1):3–16

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Carson R (1962) The silent spring. Houghton Mifflin, Boston

    Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6(2):48–60

    Article  Google Scholar 

  • Chaminda KGS, Marapana RAUJ, Serasinghe RT, Karunagoda RP (2012) Environmental impact and use of agrochemical in cattle feed and its effect on milk in Magastota, Nuwara Eliya, Sri Lanka. In: Centre for Environmental Justice/Friends of the Earth Sri Lanka. First National symposium proceedings, pp 27–30

    Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 366(1573):1987–1998. https://doi.org/10.1098/rstb.2010.0390

    Article  PubMed  PubMed Central  Google Scholar 

  • Danthanarayana W (1967) Tea entomology in perspective. Tea Q 38(2):153–177

    Google Scholar 

  • Danthanarayana W, Vitarana SI (1987) Control of the live-wood tea termite Glyptotermes dilatatus using Heterorhabditis sp. (Nemat.). Agric Ecosyst Environ 19(4):333–342

    Article  Google Scholar 

  • De Costa DM, Erabadupitiya HRUT (2005) An integrated method to control postharvest diseases of banana using a member of the Burkholderia cepacia complex. Postharvest Biol Technol 36(1):31–39

    Article  Google Scholar 

  • De Costa DM, Subasinghe SSNS (1998) Antagonistic bacteria associated with the fruit skin of banana in controlling its postharvest diseases. Trop Sci 38(4):206–212

    Google Scholar 

  • De Costa DM, Amaradasa BS, Wegiriya RNBPMRCL (1997) Antagonists of Colletotrichum musae associated with banana fruit skin. J Natl Sci Found 25(2)

    Google Scholar 

  • De Costa DM, Samarasinghe SST, Dias HRD, Dissanayake DMN (2008a) Control of rice sheath blight by phyllosphere epiphytic microbial antagonists. Phytoparasitica 36(1):52–65

    Article  Google Scholar 

  • De Costa DM, Zahra ARF, Kalpage MD, Rajapakse EMG (2008b) Effectiveness and molecular characterization of Burkholderia spinosa, a prospective biocontrol agent for controlling postharvest diseases of banana. Biol Control 47(3):257–267

    Article  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 59–81

    Book  Google Scholar 

  • Department of Agriculture (2015) Pesticide statistics of the Office of the Registrar for the pesticides industry. Department of Agriculture, Peradeniya, Sri Lanka

    Google Scholar 

  • Edgington S, Priyanthie Fernando LC, Jones K (2008) Natural incidence and environmental profiling of the mite-pathogenic fungus Hirsutella thompsonii fisher for control of the coconut mite in Sri Lanka. Int J Pest Manag 54(2):123–127

    Article  Google Scholar 

  • Ekanayake EMMS, Manage PM, Liyanage GY (2018) Isolation of fungi as biological control agents against water hyacinth (Eichhornia crassipes). In: Proceedings of international forestry and environment symposium, February, 22, 98p

    Google Scholar 

  • Emerson FL, Mikunthan G (2015) Small scale production of Trichoderma viride on locally available liquid waste and other substrates. http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/948. Accessed 19 June 2018

  • EUPD (2010) European union pesticides database. http://ec.europa.eu/food/plant/protection/evaluation/database_act_subs_en.htm

  • European Commission (2000) Directive 2000/54/EC on the protection of workers from risks related to exposure to biological agents at work. Off J Eur Community 262:21–45

    Google Scholar 

  • Evans HC (1999) Biological control of weed and insect pests using fungal pathogens, with particular reference to Sri Lanka. Biocontrol News Inf 20(2):63N–68N

    Google Scholar 

  • FAO (2017) http://www.fao.org/faostat/en/#home

  • Fernando LCP, Kanagaratnam P, Narangoda NK (1995) Some studies on the use of Metarhizium anisopliae (Metsch.) Sor. For the control of Oryctes rhinoceros in Sri Lanka. Cocos 10:46–52

    Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Guillon ML (2003) Regulation of biological control agents in Europe. In: International symposium on biopesticides for developing countries. CATIE, Turrialba, pp 143–147

    Google Scholar 

  • Gunaratna LNR, Deshappriya N, Jayaratna DL (2014) Trichoderma as a promising biological control agent against damping off disease in big onion (A. cepa L.). In: Proceedings of 15th annual research symposium, Faculty of Graduate Studies, University of Kelaniya, Sri Lanka, 94 p, 2009

    Google Scholar 

  • Gunawardana DUM, De Costa DM (2016) Potential of using biocontrol agents as postharvest treatments to manage carrot soft rot. In: Proceedings of the 3rd symposium of Faculty of Agriculture Undergraduate Research Symposium, Faculty of Agriculture, University of Peradeniya, 16 December, p 130

    Google Scholar 

  • Gunnell D, Fernando R, Hewagama M, Priyangika WDD, Konradsen F, Eddleston M (2007) The impact of pesticide regulations on suicide in Sri Lanka. Int J Epidemiol 36(6):1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK (2006) Status of biopesticides – Indian scene. Toxicol Lett 164:S40

    Article  Google Scholar 

  • Hayward AC, Fegan N, Fegan M, Stirling GR (2010) Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108(3):756–770

    Article  CAS  PubMed  Google Scholar 

  • Herath HHMAU, Wijesundera RLC, Chandrasekharan NV, Wijesundera WSS, Kathriarachchi HS (2015) Isolation and characterization of Trichoderma erinaceum for antagonistic activity against plant pathogenic fungi. Curr Res Environ Appl Mycol 5(2):120–127

    Article  Google Scholar 

  • Herath HHMAU, Wijesundera RLC, Chandrasekharan NV, Wijesundera WSS (2017) Exploration of Sri Lankan soil fungi for biocontrol properties. Afr J Biotechnol 16(20):1168–1175

    Article  CAS  Google Scholar 

  • ICAMA (2008) Pesticide manual, the institute for the control of agrochemicals. Ministry of Agriculture, China. (in Chinese)

    Google Scholar 

  • International Agency for Research on Cancer (2016) 2,4-Dichlorophenoxyacetic acid (2,4 D) and some organochlorine insecticides in IARC monograph on the evaluation of carcinogenic risk to humans. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • International Agency for Research on Cancer (2017) Some organophosphate insecticides and herbicides in IARC monograph on the evaluation of carcinogenic risk to humans. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Jayasuriya KE, Thennakoon BI (2007) Biological control of Rigidoporus microporus, the cause of white root disease in rubber. J Rubber Res Inst Sri Lanka 75:61–70

    Google Scholar 

  • Jayetilleke J, Bandara JMRS (1989) Pesticide management by the hill country vegetable farmers. Trop Agric Res 1:121–131

    Google Scholar 

  • Jegathambigai V, Wijeratnam RSW, Wijesundera RLC (2009a) Control of Fusarium oxysporum wilts disease of Crossandra infundibuliformis var. Danica by Trichoderma viride and Trichoderma harzianum. Asian J Plant Pathol 3(3):50–60

    Article  Google Scholar 

  • Jegathambigai V, Wijeratnam RW, Wijesundera RLC (2009b) Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J Agric Sci 5:720–728

    Google Scholar 

  • Jegathambigai V, Wijeratnam RW, Wijesundera RLC (2010) Effect of Trichoderma sp. on Sclerotium rolfsii, the causative agent of collar rot on Zamioculcas zamiifolia and an on farm method to mass produce Trichoderma species. Plant Pathol J 9(2):47–55

    Article  Google Scholar 

  • Jeyaratnam J, de Alwis Seneviratne RS, Copplestone JF (1982) Survey of pesticide poisoning in Sri Lanka. Bull World Health Organ 60(4):615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyaseelan EC, Tharmila S, Niranjan K (2012) Antagonistic activity of Trichoderma spp. and Bacillus spp. against Pythium aphanidermatum isolated from tomato damping off. Arch Appl Sci Res 4(4):1623–1627

    Google Scholar 

  • Kanagaratnam P, Pethiyagoda U, Velu MS (1983) Effect of four commercial preparations of Bacillus thuringiensis on Opisina arenosella walker. Cocos 1:7–10

    Google Scholar 

  • Kannangara S, Dharmarathna RMGCS, Jayarathna DL (2017) Isolation, identification and characterization of Trichoderma species as a potential biocontrol agent against Ceratocystis paradoxa. J Agric Sci 12(1):51–62

    Google Scholar 

  • Kelaniyangoda DB, Ekanayake HMRK (2010) Puccinia melampodii diet and Holow. as a biological control agent of Parthenium hysterophorus. J Food Agric 1(1):13–19

    Article  Google Scholar 

  • Kiewnick S (2007) Practicalities of developing and registering microbial biological control agents. CAB Rev 2:1–11

    Article  Google Scholar 

  • Knipe DW, Metcalfe C, Gunnell D (2015) WHO suicide statistics–a cautionary tale. Ceylon Med J 60(1):35. https://doi.org/10.4038/cmj.v60i1.7464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57(1):1–12

    Article  Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Rev 6:1–26

    Google Scholar 

  • Kumar S (2015) Biopesticide: an environment friendly pest management strategy. J Biofertil Biopestici 6(1):e127. https://doi.org/10.4172/2155-6202.1000e127

    Article  Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9(53):3838–3852

    Google Scholar 

  • Lakshani PWY, Rajapaksha MKLK, Sendthuran K (2017) Pesticide residues in selected vegetables in several growing areas by GC/MS using QuEChERS technique. Ann Sri Lanka Dep Agric 19(2):188–208

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasinghe JP, Magamage C, Shiromi MGD, Aravinna AGP (2011) Organophosphate pesticide residues in food commodities in Sri Lanka: a review. Ann Sri Lanka Dep Agric 13:81–94

    Google Scholar 

  • Marrone PG (2007) Barriers to adoption of biological control agents and biological pesticides. In: CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources 2, 51. CAB International, Wallingford

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Meyling NV (2007) Methods for isolation of entomopathogenic fungi from the soil environment-laboratory manual, 18 pp

    Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Google Scholar 

  • Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VC, Cruz LM, Chubatsu LS, Pedrosa FO (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356(1–2):175–196

    Article  CAS  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6(4):245–252

    Article  CAS  PubMed  Google Scholar 

  • Naguleswaran V, Pakeerathan K, Mikunthan G (2014) Biological control: a promising tool for bulb-rot and leaf twisting fungal diseases in red onion (Allium cepa L.) in Jaffna district. World Appl Sci J 31(6):1090–1095

    Google Scholar 

  • Nøstbakken OJ, Hove HT, Duinker A, Lundebye AK, Berntssen MH, Hannisdal R, Lunestad BT, Maage A, Madsen L, Torstensen BE, Julshamn K (2015) Contaminant levels in Norwegian farmed Atlantic salmon (Salmo salar) in the 13-year period from 1999 to 2011. Environ Int 74:274–280

    Article  PubMed  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Padmajani MT, Bandara MACS, Aheeyar MMM (2014) Assessment of pesticide usage in up-country vegetable farming in Sri Lanka

    Google Scholar 

  • Paoli D, Giannandrea F, Gallo M, Turci R, Cattaruzza MS, Lombardo F, Lenzi A, Gandini L (2015) Exposure to polychlorinated biphenyls and hexachlorobenzene, semen quality and testicular cancer risk. J Endocrinol Investig 38(7):745–752

    Article  CAS  Google Scholar 

  • Popp J, PetÅ‘ K, Nagy J (2013) Pesticide productivity and food security. Agron Sustain Dev 33(1):243–255

    Article  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond B Biol Sci 363(1491):447–465

    Article  PubMed  Google Scholar 

  • Priyadarshani KAL, Kelaniyangoda DB (2013) Effect of bio control agent Trichoderma (T. viride and T. konnigiil on basal rot of Cloropytum comosum ‘Iaxum’ caused by Sclerotium rolfsii. In: Proceedings of international forestry and environment symposium, September 2013

    Google Scholar 

  • Queene CA, Safeena MIS, Zakeel MCM (2016) Identification of suitable potential pathogens for biocontrol of water hyacinth. In: 5th annual research sessions, South Eastern University of Sri Lanka, pp 231–236

    Google Scholar 

  • Rabindra RJ (2005) Current status of production and use of microbial pesticides in India and the way forward. In: Microbial biopesticide formulations and applications. Project Directorate of Biological Control, technical document, 55, pp 1–12

    Google Scholar 

  • Rajapakse RGAS, Fariz FS, Wickramarachchi WART, Dissanayake DMKK, Premarathne MPT, Kahawatte KJPK (2016) Morphological and molecular characterization of Trichoderma isolates used as bio-control agents in Sri Lanka. Trop Agric 164:17–27

    Google Scholar 

  • Samaranayaka GRPM, De Costa DM, Priyadarshani TDC (2017) Potential of managing carrot soft rot caused by Erwinia carotovora using a bacterial antagonist, Burkholderia spinosa. In: Proceedings of the 9th annual research symposium on sustainable agriculture for food security and poverty alleviation 2017, 21st September 2017, Faculty of Agriculture, Rajarata University of Sri Lanka, 74p

    Google Scholar 

  • Sarwar M (2015) Biopesticides: an effective and environmental friendly insect-pests inhibitor line of action. Int J Eng Adv Res Technol 1(2):10–15

    Google Scholar 

  • Shamalie BVT, Fonseka RM, Rajapaksha RGAS (2011) Effect of Trichoderma viride and Carbofuran (Curator) on management of root knot nematodes and growth parameters of gotukola (Centella asiatica L.). Trop Agric Res 23(1):61–69

    Article  Google Scholar 

  • Sharaniaya S, Loganathan P (2015) Vegetable growers perception of pesticide use practices and health effects in the Vavuniya District. Am Eurasian J Agric Environ Scie 15(7):1479–1485

    Google Scholar 

  • Shukla R, Shukla A (2012) Market potential for biopesticides: a green product for agricultural applications. Int J Manag Res Rev 2(1):91

    Google Scholar 

  • Sinha B (2012) Global biopesticide research trends: a bibliometric assessment. Indian J Agric Sci 82(2):95–101

    Google Scholar 

  • Sivakumar D, Wijeratnam RW, Wijesundera RLC, Abeyesekere M (2002) Control of postharvest diseases of rambutan using cinnamaldehyde. Crop Prot 21(9):847–852

    Article  CAS  Google Scholar 

  • Smit LA, van Wendel-de-Joode BN, Heederik D, Peiris-John RJ, van der Hoek W (2003) Neurological symptoms among Sri Lankan farmers occupationally exposed to acetylcholinesterase-inhibiting insecticides. Am J Ind Med 44(3):254–264

    Article  PubMed  Google Scholar 

  • Soe KT, De Costa DM (2012) Development of a spore-based formulation of microbial pesticides for control of rice sheath blight. Biocontrol Sci Tech 22(6):633–657

    Article  Google Scholar 

  • Sri Lankan Ministry of Health (1995) Annual health bulletin. Ministry of Health, Colombo, 1997

    Google Scholar 

  • Stockwell VO, McLaughlin RJ, Henkels MD, Loper JE, Sugar D, Roberts RG (1999) Epiphytic colonization of pear stigmas and hypanthia by bacteria during primary bloom. Phytopathology 89(12):1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Subasinghe SDSK, De Costa DM (2017) Potential of Burkholderia spinosa and Bacillus megaterium on plant growth promotion and suppression of selected soil-borne diseases of tomato (Solanum lycopersicum L.). In: Proceedings of the 4th symposium of Faculty of Agriculture Undergraduate Research Symposium, Faculty of Agriculture, University of Peradeniya, 12 January, 114

    Google Scholar 

  • Subasinghe MRVN, Amarasinghe KGAPK, Dharmadasa M (2013) Possibility of use of agricultural Byproducts for mass production of Beauveria bassiana (Balsamo) Vuillemin to control coffee berry borer (Hypothenemus hampi (Ferrari)). J Food Agric 6:1–2

    Article  Google Scholar 

  • Svinningen AE, Jegathambigai V, Mikunthan G (2010) Nomuraea rileyi: a plausible fungi selectively controlling lepidopteron, Parapoynx stratiotata L. damaging queen palm (Livistona rotundifolia L.). Agric Appl Biol Sci 75:279–293

    Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • UN (2017) The world population prospects. United Nations, Department of Economic and Social Affairs, Population Division. 2017 Revision. https://esa.un.org/unpd/wpp/. Accessed 18 July 2018

  • USEPA (2008) What are biopesticides? http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm. Accessed 12 June 2018

  • van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19(6):375–384

    Article  Google Scholar 

  • Watawala RC, Liyanage JA, Mallawatantri A (2010) Assessment of risks to water bodies due to residues of agricultural fungicide in intensive farming areas in the up-country of Sri Lanka using an indicator model. In: Proceedings of the National conference on water, food security, and climate change in Sri Lanka, BMICH, Colombo, June 9–11, 2009, vol 2. Water quality, environment, and climate change, p 69. IWMI

    Google Scholar 

  • WHO (2017) Agrochemicals, health and environment: directory of resources. http://www.who.int/heli/risks/toxics/chemicalsdirectory/en/index1.html. Accessed 12 June 2018

  • WHO The World Health Report (2001) Mental health: new understanding, new hope. World Health Organization, Geneva

    Google Scholar 

  • Widanapathirana CU, Dassanayake DLALA (2013) The use of plant parts in Pest control activities in traditional Sri Lankan agricultural systems. Int J Sci Technol Res 2(6):150–152

    Google Scholar 

  • Wijesinghe CJ, Wijeratnam RW, Samarasekara JKRR, Wijesundera RLC (2010a) Biological control of Thielaviopsis paradoxa on pineapple by an isolate of Trichoderma asperellum. Biol Control 53(3):285–290

    Article  Google Scholar 

  • Wijesinghe CJ, Wijeratnam RW, Samarasekara JKRR, Wijesundera RLC (2010b) Identification of Trichoderma asperellum from selected fruit plantations of Sri Lanka. J Natl Sci Found 38(2)

    Google Scholar 

  • Wijesinghe CJ, Wijeratnam RW, Samarasekara JKRR, Wijesundera RLC (2011) Development of a formulation of Trichoderma asperellum to control black rot disease on pineapple caused by (Thielaviopsis paradoxa). Crop Prot 30(3):300–306

    Article  Google Scholar 

  • Wijesundara RLC, Jeyanathan S, Liyanage NIS (1991) Some effects of isolates of Trichoderma on Rigidipourus lignosus

    Google Scholar 

  • Yapa SWCRYMUSB, Dharmadasa M, Fernandopulle MND (2007) Possibility of use of Beauveria bassiana (Balsamo) for the control of coffee Berry Borer (Hypothenemus hampei (Ferrari)) (Coleoptra: Scolytidae). In: Proceeding of 7th agricultural research symposium, Wayamba University of Sri Lanka, pp 121–124

    Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the efforts of all the Sri Lankan researchers who have contributed to the field of biological control of agricultural pests and the financial support provided by all the funding agencies for the research on biological control.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Costa, D.M. (2020). Microbial Pesticides Towards Eco-friendly Agriculture: Present Status and Future Prospects in Sri Lanka. In: De Silva, R.P., Pushpakumara, G., Prasada, P., Weerahewa, J. (eds) Agricultural Research for Sustainable Food Systems in Sri Lanka. Springer, Singapore. https://doi.org/10.1007/978-981-15-3673-1_7

Download citation

Publish with us

Policies and ethics