Skip to main content

Fabrication of Superhydrophobic Textiles

  • Chapter
  • First Online:
Advances in Functional Finishing of Textiles

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

Surface functionalization of natural and synthetic polymeric textile has become the most appealing and contemporary research area to develop multifunctional textiles according to the global demand. Textiles surfaces have been modified for properties like antibacterial, UV protection, antistatic, wrinkle resistant, superhydrophobic, hydrophilic, self-cleaning etc. by application of different inorganic and organic compounds. In this regards rigorous research has been conducted on finding best technique and their application method to mimic the nature so that superhydrophobic textile could be developed according to the demands of the da. In this chapter the fundamentals of hydrophobicity/wettability has been described to give comprehensive knowledge and the applied organic and inorganic material have been described briefly that have been used for fabrication of superhydrophobic textile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riaz S, Ashraf M, Hussain T, Hussain MT (2019) Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose 26(8):5159–5175

    Article  CAS  Google Scholar 

  2. Zhai L, Cebeci FC, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4(7):1349–1353

    Article  CAS  Google Scholar 

  3. Ashraf M, Campagne C, Perwuelz A, Champagne P, Leriche A, Courtois C (2013) Development of superhydrophilic and superhydrophobic polyester fabric by growing Zinc Oxide nanorods. J Colloid Interface Sci 394(1):545–553

    Article  CAS  PubMed  Google Scholar 

  4. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078

    Article  CAS  Google Scholar 

  5. Xue CH, Li M, Guo XJ, Li X, An QF, Jia ST (2017) Fabrication of superhydrophobic textiles with high water pressure resistance. Surf Coatings Technol 310:134–142

    Article  CAS  Google Scholar 

  6. Sohyun P, Jooyoun K, Chung Hee P (2015) Superhydrophobic textiles: review of theoretical definitions, fabrication and functional evaluation. J Eng Fabr Fibers 10(4):1–18

    Google Scholar 

  7. Su X, Li H, Lai X, Zhang L, Liao X, Wang J, Chen Z, He J, Zeng X (2018) Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation. ACS Appl Mater Interfaces 10(4):4213–4221

    Article  CAS  PubMed  Google Scholar 

  8. Lei S, Shi Z, Ou J, Wang F, Xue M, Li W, Qiao G, Guan X, Zhang J (2017) Durable superhydrophobic cotton fabric for oil/water separation. Colloids Surfaces A Physicochem Eng Asp 533:249–254

    Article  CAS  Google Scholar 

  9. Oh J-H, Ko T-J, Moon M-W, Park CH (2017) Nanostructured fabric with robust superhydrophobicity induced by a thermal hydrophobic ageing process †

    Google Scholar 

  10. Cortese B, Caschera D, Federici F, Ingo GM, Gigli G (2014) Superhydrophobic fabrics for oil-water separation through a diamond like carbon (DLC) coating. J Mater Chem A 2(19):6781–6789

    Article  CAS  Google Scholar 

  11. Xiang T, Han Y, Guo Z, Wang R, Zheng S, Li S, Li C, Dai X (2018) Fabrication of inherent anticorrosion superhydrophobic surfaces on metals. ACS Sustain Chem Eng 6(4):5598–5606

    Article  CAS  Google Scholar 

  12. Nosonovsky M (2007) Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23(6):3157–3161

    Article  CAS  PubMed  Google Scholar 

  13. Pan C, Shen L, Shang S, Xing Y (2012) Preparation of superhydrophobic and UV blocking cotton fabric via sol-gel method and self-assembly. Appl Surf Sci 259:110–117

    Article  CAS  Google Scholar 

  14. Ryu J, Kim K, Park JY, Hwang BG, Ko YC, Kim HJ, Han JS, Seo ER, Park YJ, Lee SJ (2017) Nearly perfect durable superhydrophobic surfaces fabricated by a simple one-step plasma treatment. Sci Rep 7(1):1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Young T (1805) III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. London 95:65–87

    Article  Google Scholar 

  16. Zisman WA (1963) Influence of constitution on adhesion. Ind Eng Chem 55(10):18–38

    Article  CAS  Google Scholar 

  17. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  18. Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans A Math Phys Eng. Sci. 367(1894):1631–1672

    Article  CAS  PubMed  Google Scholar 

  19. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  20. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  21. Marmur A (2003) Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 19(20):8343–8348

    Article  CAS  Google Scholar 

  22. Patankar NA (2004) Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213

    Article  CAS  PubMed  Google Scholar 

  23. Michael N, Bhushan B (2007) Hierarchical roughness makes superhydrophobic states stable. Microelectron Eng 84(3):382–386

    Article  CAS  Google Scholar 

  24. Schindler WD, Hauser PJ (2004) Chemical finishing of textiles: Woodhead publishing series in textiles, vol. null. CRC

    Google Scholar 

  25. Gao L, McCarthy TJ (2008) Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24(17):9183–9188

    Article  CAS  PubMed  Google Scholar 

  26. Seo K, Kim M, Kim DH (2014) Candle-based process for creating a stable superhydrophobic surface. Carbon N Y 68:583–596

    Article  CAS  Google Scholar 

  27. Abo-Shosha MH, El-Hilw ZH, Aly AA, Amr A, Nagdy ASIE (2008) Paraffin wax emulsion as water repellent for cotton/polyester blended fabric. J Ind Text 37(4):315–325

    Article  CAS  Google Scholar 

  28. Zero Discharge of Hazardous (2012) Durable water and soil repellent chemistry in the textile industry: A research report-P05 water repellency project

    Google Scholar 

  29. Agents classified by the IARC monographs, Volumes 1–124–IARC. [Online]. Available: https://monographs.iarc.fr/agents-classified-by-the-iarc/. Accessed on 10 Jul 2019

  30. T. Cotton Foundation Memphis JW, Keeling JP, Bordovsky J, Everitt KF, Bronson RK, Boman, and Jr., Mullinix, BG (1997) J Cotton Sci 13(2), Cotton Foundation

    Google Scholar 

  31. Conder JM, de Voogt P, Mabury SA, Cousins IT, Buck RC, Franklin J, Berger U, Kannan K, Jensen AA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Baran JR (2002) Fluorinated surfactants and repellents: Second edition, revised and expanded surfactant science series. vol 97. By Erik Kissa (Consultant, Wilmington, DE). Marcel Dekker: New York. 2001. xiv + 616 pp. $195.00. ISBN 0-8247-0472-X., J Am Chem Soc 123(36): 8882

    Google Scholar 

  33. Commision European (2006) Directive 2006/122/ECOF the European parliament and of the council of 12 December 2006 amending for the 30th time council directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to res. Off J Eur Union L 372:32–34

    Google Scholar 

  34. Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 77(3):213–225

    Article  Google Scholar 

  35. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34

    Article  CAS  PubMed  Google Scholar 

  36. Gao X, Jiang L (2004) Biophysics: Water-repellent legs of water striders. Nature 432(7013):36

    Article  CAS  PubMed  Google Scholar 

  37. Byun D, Hong J, Ko JH, Lee YJ, Park HC, Byun B-K, Lukes JR (2009) Wetting characteristics of insect wing surfaces. J Bionic Eng 6(1):63–70

    Article  Google Scholar 

  38. Roduner E (2006) Size matters: Why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  PubMed  Google Scholar 

  39. Roduner E (2006) Nanoscopic materials: Size-dependent phenomena. RSC Pub, Cambridge

    Google Scholar 

  40. Joshi M (2011) Nanotechnology: A new route to high performance textiles. pp. 272–293

    Google Scholar 

  41. Xue C-H, Jia S-T, Chen H-Z, Wang M (2016) Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater 9(3):035001

    Article  CAS  Google Scholar 

  42. Huang L, Lau SP, Yang HY, Leong ESP, Yu SF, Prawer S (2005) Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J Phys Chem B 109(16):7746–7748

    Article  CAS  PubMed  Google Scholar 

  43. Wu L, Zhang J, Li B, Wang A (2013) Mimic nature, beyond nature: Facile synthesis of durable superhydrophobic textiles using organosilanes. J Mater Chem B 1(37):4756

    Article  CAS  PubMed  Google Scholar 

  44. Taylor P, Roe B, Kotek R, Zhang X (2012) Durable hydrophobic cotton surfaces prepared using silica nanoparticles and multifunctional silanes. J Text Inst 103(December):385–393

    Google Scholar 

  45. Berendjchi A, Khajavi R, Yazdanshenas ME (2011) Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res Lett 6:594

    Article  PubMed  PubMed Central  Google Scholar 

  46. A. P. Dr. Kumar BS (2015) Self-cleaning finish on cotton textile using sol-gel derived TiO2 nano finish\n. IOSR J Polym Text Eng 2(1): 01–05

    Google Scholar 

  47. Kathirvelu S, D’Souza L, Dhurai B (2008) A comparative study of multifunctional finishing of cotton and P/C blended fabrics treated with titanium dioxide/zinc oxide nanoparticles. Indian J Sci Technol 1(7):1–12

    Google Scholar 

  48. Bozzi A, Yuranova T, Kiwi J (2005) Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J Photochem Photobiol A Chem 172(1):27–34

    Article  CAS  Google Scholar 

  49. Ates ES, Unalan HE (2012) Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films 520(14):4658–4661

    Article  CAS  Google Scholar 

  50. Park Y, Park CH, Kim J (2014) A quantitative analysis on the surface roughness and the level of hydrophobicity for superhydrophobic ZnO nanorods grown textiles. Text Res J 84(16):1776–1788

    Article  CAS  Google Scholar 

  51. Kamegawa T, Shimizu Y, Yamashita H (2012) Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Adv Mater 24(27):3697–3700

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Li S, Huang F, Wang F, Duan W, Li J, Shen Y, Xie A (2012) Functionalization of cotton fabrics with rutile TiO2 nanoparticles: Applications for superhydrophobic, UV-shielding and self-cleaning properties. Russ J Phys Chem A 86(3):413–417

    Article  CAS  Google Scholar 

  53. Huang JY, Li SH, Ge MZ, Wang LN, Xing TL, Chen GQ, Liu XF, Al-Deyab SS, Zhang KQ, Chen T, Lai YK (2015) Robust superhydrophobic TiO2 @fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3(6):2825–2832

    Article  CAS  Google Scholar 

  54. Awungacha Lekelefac C, Busse N, Herrenbauer M, Czermak P (2015) Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy (2015): 1–18, Hindawi Publishing Corporation

    Google Scholar 

  55. Zhang H, Zhu LL, Sun RJ (2014) Structure and properties of cotton fibers modified with titanium sulfate and urea under hydrothermal conditions. J Eng Fiber Fabr 9(1):67–75

    Google Scholar 

  56. Bae GY, Min BG, Jeong YG, Lee SC, Jang JH, Koo GH (2009) Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J Colloid Interface Sci 337(1):170–175

    Article  CAS  PubMed  Google Scholar 

  57. Hao LF, An QF, Xu W, Wang QJ (2010) Synthesis of fluoro-containing superhydrophobic cotton fabric with washing resistant property using nano-SiO2 sol-gel method. Adv Mater Res 121–122:23–26

    Article  CAS  Google Scholar 

  58. Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010) Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr Polym 79(3):526–532

    Article  CAS  Google Scholar 

  59. Nadanathangam V, Vigneshwaran N, Kumar S, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites at CIRCOT, Mumbai view project functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Train Adv Microsc View Proj Train Adv Nanotechnol (17): 5087–5095

    Google Scholar 

  60. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341(12):2012–2018

    Article  CAS  PubMed  Google Scholar 

  61. Jalan V, Butola BS (2018) Influence of binder type on color characteristics of cotton fabric colored with a photochromic colorant. J Nat Fibers 15(2):229–238

    Article  CAS  Google Scholar 

  62. Athauda TJ, Ozer RR (2012) Investigation of the effect of dual-size coatings on the hydrophobicity of cotton surface. Cellulose 19(3):1031–1040

    Article  CAS  Google Scholar 

  63. Yu M, Gu G, Meng W-D, Qing F-L (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253(7):3669–3673

    Article  CAS  Google Scholar 

  64. Jeong SA, Kang TJ (2016) Superhydrophobic and transparent surfaces on cotton fabrics coated with silica nanoparticles for hierarchical roughness. Text Res J. pp. 1–9

    Google Scholar 

  65. Te Hsieh C, Wu FL, Yang SY (2008) Superhydrophobicity from composite nano/microstructures: Carbon fabrics coated with silica nanoparticles. Surf Coatings Technol 202(24):6103–6108

    Article  CAS  Google Scholar 

  66. Zimmermann J, Reifler FA, Fortunato G, Gerhardt LC, Seeger S (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18(22):3662–3669

    Article  CAS  Google Scholar 

  67. Zhao Y, Tang Y, Wang X, Lin T (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256(22):6736–6742

    Article  CAS  Google Scholar 

  68. Xue C-H, Jia S-T, Zhang J, Tian L-Q (2009) Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films 517(16):4593–4598

    Article  CAS  Google Scholar 

  69. Zhou C, Chen Z, Yang H, Hou K, Zeng X, Zheng Y, Cheng J (2017) Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl Mater Interfaces 9(10):9184–9194

    Article  CAS  PubMed  Google Scholar 

  70. Nanotex–Stain, Moisture, Odor & Wrinkle Resistant Apparel Fabrics. [Online]. Available: https://www.nanotex.com/. Accessed on 07 Jul 2019

  71. Schoeller Textil AG, Nanosphere–Technologies, Schoeller Textiles AG. Schoeller Website, 2019. [Online]. Available: https://www.schoeller-textiles.com/en/technologies/nanosphere. Accessed on 07 Jul 2019

  72. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces [4]. Nature 388(6641): 431–432. Nature Publishing Group, Jul-1997

    Google Scholar 

  73. Jiang Y, Wang Z, Yu X, Shi F, Xu H, Zhang X, Smet M, Dehaen W (2005) Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: Toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir 21(5):1986–1990

    Article  CAS  PubMed  Google Scholar 

  74. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chemie-Int Ed 43(3):357–360

    Article  CAS  Google Scholar 

  75. Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L (2006) Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater 18(4):432–436

    Article  CAS  Google Scholar 

  76. Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chemie-Int Ed 44(37):6009–6012

    Article  CAS  Google Scholar 

  77. Russell TP (2002) Surface-responsive materials. Science 297(5583): 964–967. American Association for the Advancement of Science, 09-Aug-2002

    Google Scholar 

  78. Motornov M, Minko S, Eichhorn KJ, Nitschke M, Simon F, Stamm M (2003) Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes. Langmuir 19(19):8077–8085

    Article  CAS  Google Scholar 

  79. Zhang J, Lu X, Huang W, Han Y (2005) Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide film. Macromol Rapid Commun 26(6):477–480

    Article  CAS  Google Scholar 

  80. Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B 103(12):2188–2194

    Article  CAS  Google Scholar 

  81. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chemie-Int Ed 44(32):5115–5118

    Article  CAS  Google Scholar 

  82. Zhang P, Lv FY (2015) A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82: 1068–1087, Pergamon, 15-Mar-2015

    Google Scholar 

  83. Liu B, Wang L, Gao Y, Tian T, Min J, Yao J, Xiang Z, Huang C, Hu C (2014) Synthesis and characterization of photoreactive silica nanoparticles for super-hydrophobic cotton fabrics application. Text Res J 85(8):795–803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shagufta Riaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf, M., Riaz, S. (2020). Fabrication of Superhydrophobic Textiles. In: Shahid, M., Adivarekar, R. (eds) Advances in Functional Finishing of Textiles. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3669-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3669-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3668-7

  • Online ISBN: 978-981-15-3669-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics