Skip to main content

Environmental Profile of Nano-finished Textile Materials: Implications on Public Health, Risk Assessment, and Public Perception

  • Chapter
  • First Online:
Advances in Functional Finishing of Textiles

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

Antimicrobial modification via the use of nanomaterials or nanocomposites have emerged very strongly from recent past because of increasing public concerns related to the health hygiene. However, negative environmental implications, concerns related to human health and possible harmful effects on aquatic life after the left over/unexhausted baths are released to wastewaters have restricted the use of many antimicrobial agents more likely the synthetic ones. The increased use of nanomaterials necessitates assessing of the potential negative impacts of this novel technology on humans and the environment. Application of nano-biocomposites could be a good alternative to most of the synthetic antibacterial agents due to their high environmental compatibility, biodegradable, and non-toxic nature. This chapter has focused on the characteristics and achieved functionalities of nanofinished textile materials with their environmental health profile, implications on human health and possible risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahid M, Islam S, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  2. Islam S, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260

    Article  CAS  Google Scholar 

  3. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79:5–18

    Article  CAS  Google Scholar 

  4. Smijs TJ, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Q, Shen X, Gao H (2006) One-step synthesis of silver-poly(4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerization, the photoluminescence characteristics. Colloids Surf A Physicochem Eng Asp 275:45–49

    Article  CAS  Google Scholar 

  6. Dimitrov DS (2006) Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf A Physicochem Eng Asp 282–283:8–10

    Article  CAS  Google Scholar 

  7. Bashari A, Shakeri M, Shirvan AR, Najafabadi SAN (2018) Functional finishing of textiles via nanomaterials. In: Islam S, Butola BS (eds) Nanomaterials in the wet processing of textiles. Scrivener Publishing LLC, pp 1–70

    Google Scholar 

  8. Mucha H, Hofer D, Aßflag S, Swere M (2002) Antimicrobial finishes and modification. Melliand Text Berichte 83(4):53–56

    Google Scholar 

  9. Perelshtein I, Perkas N, Gedanken A (2016) Ultrasonic coating of textiles by antibacterial and antibiofilm nanoparticles. In: Handbook of ultrasonics and sonochemistry, vol 967

    Google Scholar 

  10. Syafiuddin A (2019) Toward a comprehensive understanding of textiles functionalized with silver nanoparticles. J Chin Chem Soc 1–22

    Google Scholar 

  11. Quincy III RB, Karandikar BM, MacDonald JG, Elshani T (2011) Dual element odor control in personal care products. Google patents

    Google Scholar 

  12. Cai K, Bossert J, Jandt KD (2006) Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B 49:136–144

    Article  CAS  Google Scholar 

  13. Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci 100:1588–1593

    Article  CAS  Google Scholar 

  14. Ikezawa S, Homyara H, Kubota T, Suzuki R, Koh S, Mutuga F, Yoshioka T, Nishiwaki A, Ninomiya Y, Takahashi M, Baba K, Kida K, Hara T, Famakinwa T (2001) Applications of TiO film for environmental purification deposited by controlled electron beam-excited plasma. Thin Solid Films 386:173–176

    Article  CAS  Google Scholar 

  15. Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven N–F–Co doped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602

    Google Scholar 

  16. Weibel A, Bouchet R, Knauth P (2006) Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177:229–236

    Article  CAS  Google Scholar 

  17. Verran J, Sandoval G, Allen NS, Edge M, Stratton J (2007) Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigm 73:298–304

    Article  CAS  Google Scholar 

  18. Reidy DJ, Holmes JD, Morris MA (2006) Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants. Ceram Int 32:235–239

    Article  CAS  Google Scholar 

  19. Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam HLI (2006) Selected applications of nanotechnology in textiles. Autex Res J 6:1–8

    Google Scholar 

  20. Michna A, Morga M, Adamczyk Z, Kubiak K (2019) Monolayers of silver nanoparticles obtained by green synthesis on macrocation modified substrates. Mater Chem Phys 227:224–235

    Article  CAS  Google Scholar 

  21. Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int 37:1131–1142

    Article  CAS  PubMed  Google Scholar 

  22. Syafiuddin A, Salmiati S, Hadibarata T, Salim MR, Kueh ABH, Sari AA (2017) A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst Eng 40:1349–1361

    Article  CAS  PubMed  Google Scholar 

  23. Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA (2018) Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J Environ Manage 218:59–70

    Article  CAS  PubMed  Google Scholar 

  24. Ullah H, Wilfred CD, Shaharun MS (2017) Synthesis of silver nanoparticles using ionic-liquid-based microwave-assisted extraction from polygonum minus and photodegradation of methylene blue. J Chin Chem Soc 64:1164–1171

    Article  CAS  Google Scholar 

  25. El-Rafie M, Mohamed A, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohyd Polym 80:779–782

    Article  CAS  Google Scholar 

  26. Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids Surf B Biointerfaces 89:196–202

    Article  CAS  PubMed  Google Scholar 

  27. Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107:659–663

    Article  CAS  Google Scholar 

  28. Becheri A, Durr M, Nostro PL, Baglioni P (2007) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  29. Behnajady MA, Modirshahla N, Hamzavi R (2006) Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst. J Hazard Mater 133:226–232

    Google Scholar 

  30. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  CAS  PubMed  Google Scholar 

  31. Tang E, Cheng G, Ma X, Pang X, Zhao Q (2006) Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl Surf Sci 252:5227–5232

    Article  CAS  Google Scholar 

  32. Xu T, Xie CS (2003) Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog Org Coat 46:297–301

    Article  CAS  Google Scholar 

  33. Vigneshwaran N, Kumar S, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology 17:5087–5095

    Article  CAS  Google Scholar 

  34. Li Q, Chen SL, Jiang WC (2007) Durability of nano ZnO antibacterial cotton fabric to sweat. J Appl Polym Sci 103:412–416

    Article  CAS  Google Scholar 

  35. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:829–858

    Article  CAS  Google Scholar 

  36. Wang ZL (2004) Nanostructures of zinc oxide. J Phys Condens Matter 7(6):26–33

    CAS  Google Scholar 

  37. Wang ZL (2007) Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A Mater Sci Process 88:7–15

    Google Scholar 

  38. Cubillo E, Pecharroman C, Aguilar E, Santaren J, Moya JS (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212

    Article  CAS  Google Scholar 

  39. Pape HL, Serena FS, Contini P, Devillers C, Maftah A, Leprat P (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954

    Article  Google Scholar 

  40. Wel Q, Yu L, Wu N, Hong S (2008) Preparation and characterization of copper nanocomposite textiles. J Ind Text 37(3):275–283

    Article  CAS  Google Scholar 

  41. Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles: a brief study. Colloids Surf A 297:63–70

    Article  CAS  Google Scholar 

  42. Park SH, Oh SG, Munb JY, Han SS (2006) Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf Biointerfaces 48:112–118

    Article  CAS  PubMed  Google Scholar 

  43. Yonezawa T, Kunitake T (1999) Practical preparation of anionic mercapto ligand stabilized gold nanoparticles and their immobilization. Colloids Surf A 149:193–199

    Article  CAS  Google Scholar 

  44. Zhang Y, Peng H, Huanga W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325:371–376

    Article  CAS  PubMed  Google Scholar 

  45. Jimenez G, Ogata N, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(γ-caprolactam)–clay blend. J Appl Polym Sci 64:2211–2220

    Article  CAS  Google Scholar 

  46. Kodgire P, Kalgaonkar R, Hambir S, Bulakh N, Jog JP (2001) PP/clay nanocomposites: effect of clay treatment on morphology and dynamic mechanical properties. J Appl Polym Sci 81:1786–1792

    Article  CAS  Google Scholar 

  47. Mlynarcikova Z, Brsig E, Legen J, Marcincin A, Alexy P (2005) Influence of the composition of polypropylene/organoclay nanocomposite fiber on their tensile strength. J Macromol Sci Part A Pure Appl Chem 42(5):543–554

    Article  CAS  Google Scholar 

  48. Pavlikova S, Thomann R, Reichert P, Mulhaupt R, Marcincin A, Borsig E (2003) Fiber spinning from poly(propylene)-organoclay nanocomposite. J Appl Polym Sci 89(3):604–611

    Article  CAS  Google Scholar 

  49. Razafimahefa L, Chlebicki S, Vroman I, Devaux E (2005) Effect of nanoclay on the dyeing ability of PA6 nanocomposite fibers. Dyes Pigm 66(1):55–60

    Article  CAS  Google Scholar 

  50. Williams LB, Holland M, Eberl DD, Brunet T, De Courrsou LB (2004) Killer clays! Natural antibacterial clay minerals. Miner Soc Bull 139:3–8

    Google Scholar 

  51. Haydel SE, Remenih CM, Williams LB (2008) Broad spectrum in vitro antibacterial activities of clay minerals against antibiotic susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61(2):353–361

    Google Scholar 

  52. Seckin T, Onal Y, Yesilada O, Gultek A (1997) Preparation and characterization of a clay–polyvinylpyridinium matrix for the removal of bacterial cells from water. J Mater Sci 32:5993–5999

    Article  CAS  Google Scholar 

  53. Hu CH, Xu ZR, Xia MS (2005) Antibacterial effect of Cu2+-exchanged montmorillonite on aeromonashydrophlia and discussion on its mechanism. Vet Microbiol 109:83–88

    Article  CAS  PubMed  Google Scholar 

  54. Zhou NL, Liu Y, Li L, Meng N, Huang YX, Zhang J, Wei SH, Shen J (2008) A new nanocomposite biomedical material of polymer/clay–Cts–Ag nanocomposites. J Mol Catal A Chem 281:192–199

    Article  CAS  Google Scholar 

  55. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359

    Article  CAS  PubMed  Google Scholar 

  56. Voncina B, Vivod V, Jausovec D (2007) B-cyclodextrin as retarding reagent in polyacrylonitrile dyeing. Dyes Pigm 74(3):642–646

    Article  CAS  Google Scholar 

  57. Martin Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  CAS  Google Scholar 

  58. Martel B, Morcellet M, Ruffin D, Ducoroy L, Weltrowski M (2002) Finishing of polyester fabrics with cyclodextrins and polycarboxylic acids as crosslinking agents. J Incl Phenom Macrocycl Chem 44:443–446

    Article  CAS  Google Scholar 

  59. Savarino P, Viscardi G, Quagliotto P, Montoneri E, Barni E (1999) Reactivity and effects of cyclodextrins in textile dyeing. Dyes Pigm 42(2):143–147

    Article  CAS  Google Scholar 

  60. Martel B, Ruffin D, Weltrowski M, Lekchiri Y, Morcellet M (2002) Water soluble polymers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: a study of the preparation parameters. J Appl Polym Sci 97:433–442

    Article  CAS  Google Scholar 

  61. Ducoroy L, Martel B, Bacquet B, Morcellet M (2007) Ion exchange textile from the finishing of PET fabrics with cyclodextrins and citric acid for the sorption of metallic cations in water. J Incl Phenom Macrocycl Chem 57:271–277

    Article  CAS  Google Scholar 

  62. Volodkin DV, Ball V, Voegel JC, Mohwald H, Dimova R, Marchi-Artzner V (2007) Control of the interaction between membranes or vesicles: adhesion, fusion and release of dyes. Colloids Surf A Physicochem Eng Asp 303:89–96

    Article  CAS  Google Scholar 

  63. Mao J (2002) Durable antimicrobial finish for cotton with new technology. AATCC Rev 2(12):15–18

    CAS  Google Scholar 

  64. Benita S (1996) Microencapsulation: methods and industrial application. Marcel Dekker, New York

    Google Scholar 

  65. Karsa DR, Stephensone RA (1993) Encapsulation and controlled release. The Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  66. Watnasirichaikul S, Davies NM, Rades T, Tucker IG (2000) Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res 17:6

    Article  Google Scholar 

  67. Zhang XX, Fan YF, Tao XM, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88:300–307

    Article  CAS  Google Scholar 

  68. Shim JW, Kim JW, Han SH, Chang IS, Kim HK, Kang HH, Lee OS, Suh KD (2002) Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids Surf A 207(1–3):105–111

    Article  CAS  Google Scholar 

  69. Oku T, Kusunose T, Niihara K, Suganuma K (2000) Chemical synthesis of silver nanoparticles encapsulated in boron nitride nanocages. J Mater Chem 10:255–257

    Article  CAS  Google Scholar 

  70. Huwyler J, Yang JJ, Pardridge WM (1997) Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 282(3):1541–1546

    CAS  PubMed  Google Scholar 

  71. Barani H, Montazer M (2008) A review on applications of liposomes in textile processing. J Liposome Res 18:249–262

    Article  CAS  PubMed  Google Scholar 

  72. Montazer M, Taghavi FA, Toliyat T, Moghadam MB (2007) Optimization of dyeing of wool with madder and liposomes by central composite design. J Appl Polym Sci 106:1614–1621

    Article  CAS  Google Scholar 

  73. Montazer M, Zolfaghari AR, Toliat T, Moghadam MB (2009) Modification of wool surface by liposomes for dyeing with weld. J Liposome Res 19(3):173–179

    Article  CAS  PubMed  Google Scholar 

  74. Park SH, Oh SG, Mun JY, Han SS (2005) Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids Surf B 44:117–122

    Article  CAS  Google Scholar 

  75. Balogh L, Tomalia DA, Hagnarue GL (2000) A revolution of nanoscale proportions, chemical innovation. Am Chem Soc 30(3):19–26

    CAS  Google Scholar 

  76. He JA, Valluzzi R, Yang K, Dolukhanyan T, Sung C, Kumar J, Tripathy SK, Samuelson L, Balogh L, Tomalia DA (1999) Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chem Mater 11:3268–3274

    Article  CAS  Google Scholar 

  77. Tan NB, Tomalia DA, Linm JS (1999) A small angle scattering of dendrimer-copper sulfide nanocomposite. Polymer 40:2537–2545

    Article  CAS  Google Scholar 

  78. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, Manus ATM (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:8–21

    Article  CAS  Google Scholar 

  79. Raveendran P, Goyal A, Blatchford MA, Wallen SL (2006) Stabilization and growth of silver nanocrystals in dendritic polyol dispersions. Mater Lett 60:897–900

    Article  CAS  Google Scholar 

  80. Lacasse K, Baumann W (2004) Textile chemicals: environmental data and facts. Springer, Berlin

    Book  Google Scholar 

  81. Heine E, Knops HG, Schaefer K, Vangeyte P, Moeller M (2007) Antimicrobial functionalization of textile materials. In: Duquesne S, Magniez C, Camino G (eds) Multifunctional barriers for flexible structure: textile, leather and paper. Springer, Berlin Heidelberg, pp 125–138

    Google Scholar 

  82. Maillard JY (2005) Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Ther Clin Risk Manag 1:307–320

    PubMed  PubMed Central  Google Scholar 

  83. NPIRS (2012) National Pesticide Information Retrieval System

    Google Scholar 

  84. PAN (2012) PAN pesticide database

    Google Scholar 

  85. Sun G, Worley SD (2005) Chemistry of durable and regenerable biocidal textiles. J Chem Educ 82:60–64

    Article  CAS  Google Scholar 

  86. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  87. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  PubMed  Google Scholar 

  89. Lorenz C, Windler L, Lehmann RP, Schuppler M, Von Goetz N, Hungerbühler K, Nowack B (2012) Characterization of silver release from commercially available functional (nano) textiles. Chemosphere 89:817–824

    Article  CAS  PubMed  Google Scholar 

  90. KEMI (2012) Antibacterial substances leaking out with the washing water—analyses of silver, triclosan and triclocarban in textiles before and after washing. Swedish Chemicals Agency, Sundbyberg

    Google Scholar 

  91. Orhan M, Kut D, Gunesoglu C (2007) Use of triclosan as antibacterial agent in textiles. Indian J Fibre Text Res 32:114–118

    CAS  Google Scholar 

  92. Erdem AK, Yurudu NOS (2008) The evaluation of antibacterial activity of fabrics impregnated with dimethyltetradecyl (3-(trimethoxysilyl) propyl) ammonium chloride. J Biol Chem 2:115–122

    Google Scholar 

  93. USEPA (2008) Memorandum: zinc 2-pyridinethiol-1-oxide (Zinc Omadine®): occupational and residential exposure risk assessment for new uses (textiles) on EPA Reg Numbers 1258–840 and 1258–841. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  94. Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabrics. Proc Inst Mech Eng Part L J Mater Des Appl 223:91–102

    Google Scholar 

  95. Biba E (2014) The sunscreen pill. Nature 515:124–125

    Article  Google Scholar 

  96. Damiani E, Baschong W, Greci L (2007) UV-filter combinations under UV-A exposure: concomitant quantification of overall spectral stability and molecular integrity. J Photochem Photobiol B 87:95–104

    Article  CAS  PubMed  Google Scholar 

  97. Kockler J, Oelgemoller M, Robertson S, Glass BD (2012) Photostability of sunscreens. J Photochem Photobiol C 13:91–110

    Article  CAS  Google Scholar 

  98. Oresajo C, Yatskayer M, Galdi A, Foltis P, Pillai S (2010) Complementary effects of antioxidants and sunscreens in reducing UV-induced skin damage as demonstrated by skin biomarker expression. J Cosmet Laser Ther 12:157–162

    Article  PubMed  Google Scholar 

  99. Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM (2015) A sunblock based on bioadhesive nanoparticles. Nat Mater 14:1278–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tolbert SH, McFadden PD, Loy DA (2016) New hybrid organic/inorganic polysilsesquioxane-silica particles as sunscreens. ACS Appl Mater Interfaces 8:3160–3174

    Article  CAS  PubMed  Google Scholar 

  101. Selishchev DS, Karaseva IP, Uvaev VV, Kozlov DV, Parmon VN (2013) Effect of preparation method of functionalized textile materials on their photocatalytic activity and stability under UV irradiation. Chem Eng J 224:114–120

    Article  CAS  Google Scholar 

  102. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposites for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33:91–98

    Article  CAS  Google Scholar 

  103. Bazant P, Kuritka I, Munster L, Kalina L (2015) Microwave solvothermal decoration of the cellulose surface by nanostructured hybrid Ag/ZnO particles: a joint XPS, XRD and SEM study. Cellulose 22:1275–1293

    Article  CAS  Google Scholar 

  104. El Shafei A, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohyd Polym 83:920–925

    Google Scholar 

  105. Montazer M, Amiri MM, Malek RMA (2013) In situ synthesis and characterization of nano ZnO on wool: influence of nano photo reactor on wool properties. J Photochem Photobiol A 89:1057–1063

    Article  CAS  Google Scholar 

  106. Ibrahim NA, El-Zairy EM, Eid BM, Emam E, Barkat SR (2017) A new approach for imparting durable multifunctional properties to linen-containing fabrics. Carbohyd Polym 157:1085–1093

    Article  CAS  Google Scholar 

  107. Hsu CH, Chen LC, Lin YF (2013) Preparation and optoelectronic characteristics of ZnO/CuO-Cu2O complex inverse heterostructure with GaP buffer for solar cell applications. Materials 6:4479–4488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jiang T, Xie T, Chen L, Fu Z, Wang D (2013) Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale 5:2938–2944

    Article  CAS  PubMed  Google Scholar 

  109. Prasad V, Arputharaj A, Bharimalla AK, Patil PG, Vigneshwaran N (2016) Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO. Appl Surf Sci 390:936–940

    Article  CAS  Google Scholar 

  110. Shaheen TI, El-Naggar ME, Abdelgawad AM, Hebeish A (2016) Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. Int J Biol Macromol 83:426–432

    Article  CAS  PubMed  Google Scholar 

  111. Montazer M, Seifollahzadeh S (2011) Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. J Photochem Photobiol 87:877–883

    Article  CAS  Google Scholar 

  112. Zhang M, Tang B, Sun L, Wang X (2014) Reducing photoyellowing of wool fabrics with silica coated ZnO nanoparticles. Text Res J 84:1840–1848

    Article  CAS  Google Scholar 

  113. Barik S, Khandual A, Behera L, Badamali SK, Luximon A (2017) Nano-Mg–Al-layered double hydroxide application to cotton for enhancing mechanical, UV protection and flame retardancy at low cytotoxicity level. Cellulose 24:1107–1120

    Article  CAS  Google Scholar 

  114. Lee S (2009) Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers. Fibers Polym 10:295–301

    Article  CAS  Google Scholar 

  115. Dadvar S, Tavanai H, Morshed M (2011) UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles. J Nanopart Res 13:5163–5169

    Article  CAS  Google Scholar 

  116. Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. J Adv Mater 28:98–105

    Article  CAS  Google Scholar 

  117. Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS Appl Mater Interfaces 1:2256–2261

    Article  CAS  PubMed  Google Scholar 

  118. Cai G, Xu Z, Yang M, Tang B, Wang X (2017) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448

    Article  CAS  Google Scholar 

  119. Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges. Project on Emerging Nanotechnologies of the Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  120. Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38:1528–1530

    Article  CAS  PubMed  Google Scholar 

  121. Choi O, Cleuenger TE, Deng BL, Surampalli RY, Ross L, Hu ZQ (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

    Article  CAS  PubMed  Google Scholar 

  122. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  CAS  PubMed  Google Scholar 

  123. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  124. Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35

    Article  CAS  Google Scholar 

  125. Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360

    Article  CAS  PubMed  Google Scholar 

  126. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero JY (2010) Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44:2689–2694

    Article  CAS  PubMed  Google Scholar 

  127. Carp O (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  128. Stumm W, Morgan JJ (1995) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, NewYork, NY, USA

    Google Scholar 

  129. Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  PubMed  Google Scholar 

  130. Borm P (2005) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  131. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Google Scholar 

  132. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270

    Article  CAS  Google Scholar 

  133. Metz KM, Mangham AN, Bierman MJ, Jin S, Hamers RJ, Pedersen JA (2009) Engineered nanomaterial transformation under oxidative environmental conditions: development of an in vitro biomimetic assay. Environ Sci Technol 43:1598–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  135. Buffle J, Wilkinson KJ, Van Leeuwen HP (2009) Chemodynamics and bioavailability in natural waters. Environ Sci Technol 43:7170–7174

    Article  CAS  PubMed  Google Scholar 

  136. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  137. Talapin DV, Yin Y (2001) Themed issue: chemical transformations of nanoparticles. J Mater Chem 21:11454

    Article  CAS  Google Scholar 

  138. Dabrowski A (2001) Adsorption: from theory to practice. Adv Coll Interface Sci 93:135–224

    Article  CAS  Google Scholar 

  139. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  PubMed  Google Scholar 

  140. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Coll Interface Sci 162:87–106

    Article  CAS  Google Scholar 

  141. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44:2412–2418

    Article  CAS  PubMed  Google Scholar 

  142. Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361

    Article  PubMed  CAS  Google Scholar 

  143. Mueller NC, Nowack B (2010) Nanoparticles for remediation—solving big problems with little particles. Elements 6:395–400

    Article  CAS  Google Scholar 

  144. Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Coll Interface Sci 121:77–110

    Article  CAS  Google Scholar 

  145. Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45:4570–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. BMU (Hrsg.) (2011) Verantwortlicher Umgang mit Nanotechnologien. Bericht der Themengruppen der NanoKommission der deutschen Bundesregierung. http://www.bmu.de/service/publikationen/downloads/details/artikel/ergebnisse-aus-der-zweitennanodialog-phase-2009

  147. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surface and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957

    Article  CAS  PubMed  Google Scholar 

  148. Limbach LK, Bereiter R, Müller E, Krebs R, Galli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833

    Article  CAS  PubMed  Google Scholar 

  149. Burkhardt M, Zuleeg S, Kagi R, Eugster J, Boller M, Siegrist H (2010) Verhalten von Nanosilber in Klaranlagen und dessen Einfluss auf die Nitrifikationsleistung von Belebtschlamm. Umweltwiss Schadst Forsch 22:529–540

    Article  CAS  Google Scholar 

  150. Nickel C, Hellack B, Gartiser S, Flach F, Schiwy A, Maes H, Schaffer A, Gabsch S, Stintz M, Erdinger L, Kuhlbusch TAJ (2012) Fate and behaviour of TiO2 nanomaterials in the environment, influenced by their shape, size and surface area. UBA-Text 25/2012. Umweltbundesamt

    Google Scholar 

  151. Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, Juchli M, Krumeich F, Ludwig C, Prikopsky K, Rossier M, Saner D, Sigg A, Hellweg S, Günther D, Stark WJ (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 78:520–524

    Article  CAS  Google Scholar 

  152. Motojima S, Noda Y, Hoshiya S, Hishikawa Y (2003) Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region. J Appl Phys 944:2325–2330

    Article  CAS  Google Scholar 

  153. Rosace G (2015) Radiation protection finishes for textiles. In: Paul R (ed) Functional finishes for textiles. Woodhead Publishing, pp 487–512

    Google Scholar 

  154. Chen HC, Lee KC, Lin JH, Koch M (2007) Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J Mater Process Technol 184:124–130

    Article  CAS  Google Scholar 

  155. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  CAS  Google Scholar 

  156. Yang JC, Liao W, Deng SB, Cao ZJ, Wang YZ (2016) Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohyd Polym 151:434–440

    Article  CAS  Google Scholar 

  157. Soutter W (2012) Nanomaterials for environmentally friendly flame retardants. https://www.azonano.com/article.aspx?ArticleID=3087

  158. Gashti MP, Alimohammadi F, Shamei A (2012) Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surf Coat Technol 206:3208–3215

    Article  CAS  Google Scholar 

  159. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame-retardant thin film on PET fabric. Polym Degrad Stabil 96:745–750

    Article  CAS  Google Scholar 

  160. Yang CQ, Xu L, Li S, Jiang Y (1998) Non-formaldehyde durable press finishing of cotton fabrics by combining citric acid with polymers of maleic acid. Text Res J 68:457–464

    Article  CAS  Google Scholar 

  161. Lam Y, Kan C, Yuen C (2010) Effect of concentration of titanium dioxide acting as catalyst or co-catalyst on the wrinkle-resistant finishing of cotton fabric. Fibers Polym 11:551–558

    Article  CAS  Google Scholar 

  162. Hebeish A, El-Bisi M, El-Shafei A (2015) Green synthesis of silver nanoparticles and their application to cotton fabrics. Int J Biol Macromol 72:1384–1390

    Article  CAS  PubMed  Google Scholar 

  163. Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids Surf B 89:196–202

    Article  CAS  Google Scholar 

  164. Atlas RM, Pramer D (1990) Focus on bioremediation. ASM News 56:7–15

    Google Scholar 

  165. Chung KT, Stevens SEJ (1993) Degradation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  166. Wong PK, Yuen PY (1996) Decolorization and degradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744

    Article  CAS  Google Scholar 

  167. Sharma MK, Sobti RC (2000) Rec effect of certain textile dyes in Bacillus subtilis. Mutat Res 465:27–38

    Article  CAS  PubMed  Google Scholar 

  168. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  169. Shin KS, Oh IK, Kim CJ (1997) Production and purification of remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb Technol 24:130–137

    Article  CAS  Google Scholar 

  171. Dilek FB, Taplamacioglu HM, Tarlan E (1999) Color and AOX removal from pulping effluents by algae. Appl Microbiol Biotechnol 52:585–591

    Article  CAS  Google Scholar 

  172. Murthy DSV, Levine RL, Hallas LE (1988) Principles of organism selection for the degradation of glyphosate in a sequencing batch reactor. In: Proceedings of the 43rd industrial waste conference, 10–12 May. Lewis Publisher, pp 267–274

    Google Scholar 

  173. Jilani S (2015) Bioremediation application for textile effluent treatment. Middle-East J Sci Res 231:26–34

    Google Scholar 

Download references

Acknowledgements

Financial support provided by Southwest University Chongqing, China as Postdoctoral Fellow for Luqman Jameel Rather and Showkat Ali Ganie is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, L.J., Zhou, Q., Ganie, S.A., Li, Q. (2020). Environmental Profile of Nano-finished Textile Materials: Implications on Public Health, Risk Assessment, and Public Perception. In: Shahid, M., Adivarekar, R. (eds) Advances in Functional Finishing of Textiles. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3669-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3669-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3668-7

  • Online ISBN: 978-981-15-3669-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics