Skip to main content

Deciphering the Key Factors for Heavy Metal Resistance in Gram-Negative Bacteria

  • Chapter
  • First Online:
Microbial Versatility in Varied Environments

Abstract

Heavy metals (HMs) are versatile elements of nature with five times higher atomic weight and density than water. HMs are ubiquitous in nature due to the industrial, domestic, agricultural, medical and technological applications. These are toxic at trace levels and therefore attract more and more interest for their least bioaccumulation and thus high persistence in the environment. Among HMs, arsenic, cadmium, chromium, lead and mercury rank as priority metals that are of public health significance and ecological concern. Interestingly, bacteria have been found as efficient tool for heavy metal degradation as well as resistance. Several bacteria have been reported for the HM accumulation which has been controlled by the metal resistance gene, carried on genome or in plasmid. In nature, Gram-negative bacteria are dependent on plant-derived simple carbon (C) compounds. In HMs abundant flora and fauna, they survive by different cellular mechanisms like metal sorption, mineralization, uptake and accumulation, extracellular precipitation, enzymatic mechanisms for oxidation or reduction to a less toxic form and efflux of heavy metals from the cells to adapt in HM stresses. Hence, here we focus on the mechanism of microbial interaction with these heavy metals which can open the new horizon for the exploitation of Gram-negative bacteria and their gene pool as HM remediator agents, biological indicator and plant growth promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HS, Ismail MI, Mostafa MT, Sulaymon HA (2014) Biosorption of heavy metals: a review. J Chem Sci Technol v3:74–102

    Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effects of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilera-Arreola MG, Hernández-Rodríguez C, Zúñiga G, Figueras MJ, Garduño RA et al (2007) Virulence potential and genetic diversity of Aeromonas caviae, Aeromonas veronii, and Aeromonas hydrophila clinical strains from Mexico and Spain: a comparative study. Can J Microbiol 53:877–887

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2014) Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol (Praha) 59(4):321–332

    Article  CAS  Google Scholar 

  • Ahmad I, Hayat S, Ahmad A, Inam A, Samiullah (2005) Effect of heavy metal on survival of certain groups of indigenous soil microbial population. J Appl Sci Environ Manage 9(1):115–121

    Google Scholar 

  • Aksoy E, Salazar J, Koiwa H (2014) Cadmium determinant 1 is a putative heavy-metal transporter in Arabidopsis thaliana. FASEB J 28(617):4

    Google Scholar 

  • Alam M, Imran M (2017) Metal tolerance analysis of gram-negative bacteria from hospital effluents of Northern India. J Appl Pharm Sci 7(4):174–180

    CAS  Google Scholar 

  • Altimira F, Yá̃ez C, Bravo G, González M, Rojas L et al (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of Central Chile. BMC Microbiol 12:193. https://doi.org/10.1186/1471-2180-12-193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Areonmit PJ, Sajjaphan K, Sadowsky MJ (2010) Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J Microbiol Biotechnol 20(1):169–178

    Article  Google Scholar 

  • ATSDR (2017) Substance priority list. Available from: https://www.atsdr.cdc.gov/ SPL

  • Azarbad H, Van GCAM, NikliÅ„ska M, Laskowski R, Röling WFM et al (2016) Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing stress-on-stress responses. Int J Mol Sci 17:20

    Article  CAS  Google Scholar 

  • Barkay T, Susan M, Miller Anne Summers O (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27(2–3):355–384

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32(2):191–198

    Article  CAS  PubMed  Google Scholar 

  • Bopp LH, Ehrlich HL (1988a) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  • Bopp LH, Ehrlich HL (1988b) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  • Braun V (1998) Pumping iron through cell membranes. Science 282:2202–2203

    Article  CAS  PubMed  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Campos VL, Moraga R, Yánez J, Zaror CA, Mondaca MA (2005) Chromate reduction by Serratia marcescens isolated from tannery effluent. Bull Environ Contam Toxicol 75(2):400–406

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Gutierrz-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14(2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. PNAS U S A 88(20):8915–8919

    Article  CAS  Google Scholar 

  • Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15(6):338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P et al (2002) Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl Microbiol Biotechnol 60:352–360

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yoshinaga M, Garbinski LD, Rosen BP (2016) Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Mol Microbiol 100:945–953. https://doi.org/10.1111/mmi.13371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81(7):768–775

    CAS  Google Scholar 

  • Chourey K, Thompson MR, Morrell-Falvey J, VerBerkmoes NC, Brown SD et al (2006) Global molecular and morphological effects of 24-h chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol 72:6331–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifton JC (2007) Mercury exposure and public health. Pediatr Clin N Am 54(2):237–269

    Article  Google Scholar 

  • Dian C (2018) Effects of heavy metals on soil microbial community. IOP Conf Ser Earth Environ Sci 113:12009. https://doi.org/10.1088/1755-1315/113/1/012009

    Article  Google Scholar 

  • Espariz M, Checa SK, Audero ME, Pontel LB, Soncini FC (2007) Dissecting the Salmonella response to copper. Microbiology 153:2989–2997

    Article  CAS  PubMed  Google Scholar 

  • Etesami H (2017) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues. Mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  PubMed  CAS  Google Scholar 

  • Fazeli M, Hassanzadeh P, Alaei S (2010) Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol 30(2):152–159

    Article  PubMed  CAS  Google Scholar 

  • Figueira EMDAP, Gusmão LAI, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    Google Scholar 

  • Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92(5):837–843

    Article  CAS  PubMed  Google Scholar 

  • Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147(4):965–972

    Article  CAS  PubMed  Google Scholar 

  • Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V et al (2015) Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas. PLoS One 10:e0139011. https://doi.org/10.1371/journal.pone.0139011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840. https://doi.org/10.1007/BF01935534

    Article  CAS  Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soil: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Gomathy M, Sabarinathan KG (2010) Microbial mechanisms of heavy metal tolerance- a review. Agric Rev 31(2):133–138

    Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious and not readily available. Plant Physiol 104:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gülser F, ErdoÄŸan E (2008) The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ Monit Assess 145(1):127–133

    Article  PubMed  CAS  Google Scholar 

  • Harmin T, Abdullah S, Idris SRS, Mushrifah A, Nurina B (2018) Arsenic resistance and biosorption by isolated rhizobacteria from the roots of Ludwigia octovalvis. Int J Microbiol 2018:1–10

    Google Scholar 

  • Hasnain, Yasmin S, Yasmin A (1993) The effects of lead resistant pseudomonads on the growth of Triticum aestivum seedlings under lead stress. Environ Pollut 81:179–184

    Article  CAS  PubMed  Google Scholar 

  • Hiniker A, Collet JF, Bardwell JC (2005) Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280:33785–33791

    Article  CAS  PubMed  Google Scholar 

  • Ianeva OD (2009) Mechanisms of bacteria resistance to heavy metals. Mikrobiol Z 71(6):54–65

    CAS  PubMed  Google Scholar 

  • Jaiganesh T, Rani JDV, Girigoswami A (2012) Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochim Acta A 92:29–32

    Article  CAS  Google Scholar 

  • James KJ, Hancock MA, Moreau V, Molina F, Coulton JW (2008) TonB induces conformational changes in surface-exposed loops of FhuA, outer membrane receptor of Escherichia coli. Protein Sci 17:1679–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • JarosÅ‚awiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiol (United Kingdom) 160(1):12–25

    Google Scholar 

  • Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8:1336

    Article  CAS  Google Scholar 

  • Khan Z, Rehman A, Hussain SZ, Nisar MA (2016) Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Exp 6:54. https://doi.org/10.1186/s13568-016-0225-9

    Article  CAS  Google Scholar 

  • Khyle GQ, Bonifacio D, Cybelle MF, Meng-Wei W (2018) Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and gram-positive Staphylococcus epidermidis. Sustain Environ Res 28(5):206–213

    Article  CAS  Google Scholar 

  • Kotuby-Amacher J, Gambrell RP, Amacher MC (1992) The distribution and environmental chemistry of lead in soil at an abandoned battery reclamation site. Eng Aspects Metal Waste Manag:1–24

    Google Scholar 

  • Liebert CA, Watson A, Summers O (2000) The quality of merC, a module of the mer mosaic. J Mol Evol 51:607–622

    Article  CAS  PubMed  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira EMDAP (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzym Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  • Lima de Silva AA, de Carvalho MA, de Souza SA, Dias PM, Filho d S et al (2012) Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazil J Microbiol 43(4):1620–1631

    Article  CAS  Google Scholar 

  • Lin J, Zhang W, Cheng J, Yang X, Zhu K et al (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 8:14888. https://doi.org/10.1038/ncomms14888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Marsh TL, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67(4):1517–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. Egypt J Aquat Res 43:65–74

    Article  Google Scholar 

  • Matos D, Sa C, Cardoso P, Pires A, Rocha SM et al (2019) The role of volatiles in Rhizobium tolerance to cadmium: effects of aldehydes and alcohols on growth and biochemical endpoints. Ecotoxicol Environ Saf 186:109759

    Article  CAS  PubMed  Google Scholar 

  • McEldowney S (2000) The impact of surface attachment on cadmium accumulation by Pseudomonas fluorescens H2. FEMS Microbiol Ecol 33(2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Mills AL, Colwell RR (1977) Microbiological effects of metal ions in Chesapeake Bay water and sediment. Bull Environ Contam Toxicol 18:99–103

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei N, Rastegari H, Kargar M (2013) Antibiotic resistance pattern among gram- negative mercury resistant bacteria isolated from contaminated environments, jundishapur. J Microbiol 6(10):e8085

    Google Scholar 

  • Ndeddy ARJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, alcaligenes faecalis and Bacillus subtilis on germination, growth and heavy metal (cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytorem 18(2):200–209

    Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 25:198–203

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750. https://doi.org/10.1007/s002530051457

    Article  CAS  PubMed  Google Scholar 

  • Outten FW, Outten CE, Hale J, O’Halloran TV (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029

    Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Dutta S, Mukherjee PK, Paul AK (2005) Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J Basic Microbiol 45(3):207–218

    Article  CAS  PubMed  Google Scholar 

  • Parkhill J, Brown NL (1990) Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501, the 19bp spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res 18:5157–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Valdespino A, Celestino-Mancera M, Villegas-Rodríguez VL, Curiel-Quesada E (2013) Characterization of mercury-resistant clinical Aeromonas species. Brazil J Microbiol 44(4):1279–1283. https://doi.org/10.1590/S1517-83822013000400036

    Article  Google Scholar 

  • Prajakta BM, Suvarna PP, Singh RP, Rai AR (2019) Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere. SN Appl Sci 1:1143. https://doi.org/10.1007/s42452-019-1149-1

    Article  CAS  Google Scholar 

  • Prince RW, Cox CD, Vasil ML (1993) Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 175:2589–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintelas C, da Silva VB, Silva B, Figueiredo H, Tavares T (2011) Optimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr(VI). Environ Technol 32:1541–1549

    Article  CAS  PubMed  Google Scholar 

  • Rajapaksha RMCP, Tobor-KapÅ‚on MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70(5):2966–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Gachhui R, Pahan K, Chaudhury J, Mandal A (1989) Detoxification of mercury and organomercurials by nitrogen-fixing soil bacteria. J Biosci 14(2):173–182

    Article  CAS  Google Scholar 

  • Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. PNAS U S A 97:652–656

    Article  CAS  Google Scholar 

  • Ridge PG, Zhang Y, Gladyshev VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS One 3:e1378. https://doi.org/10.1371/journal.pone.0001378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robin RS, Muduli PR, Vardhan KV, Ganguly D, Abhilash KR et al (2012) Heavy metal contamination and risk assessment in the marine environment of Arabian Sea, along the southwest coast of India. A J Chem 2(4):191–208. https://doi.org/10.5923/j.chemistry.20120204.03

  • Romanenko VI, Korenkov VN (1977) A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Mikrobiolo 46:414–417

    CAS  Google Scholar 

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  CAS  PubMed  Google Scholar 

  • RóżaÅ„ska A, Chmielarczyk A, Romaniszyn D, Majka G, Bulanda M (2018) Antimicrobial effect of copper alloys on Acinetobacter species isolated from infections and hospital environment. Antimicrob Resist Infect Control 7:10. https://doi.org/10.1186/s13756-018-0300-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadler WR, Trudinger PA, Mineral D (1967) The inhibition of microorganisms by heavy metals. 2(3):158–168. https://doi.org/10.1007/BF00201912

  • Samanovic MI, Ding C, Thiele DJ, Darwin KH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11(2):106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saranraj P, Stella D, Reetha D, Mythili K (2010) Bioadsorption of chromium resistant Enterococcus casseliflavus isolated from tannery effluents. J Ecobiotechnol 2(7):17–22

    Google Scholar 

  • Sayel H, Bahafid W, Joutey NT, Derraz K, Benbrahim KF (2012) Cr (VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Ann Microbiol 62(3):1269–1277

    Article  CAS  Google Scholar 

  • Shakoori AR, Muneer B (2002) Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater. Folia Microbiologica (Praha) 47:43–50

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Azad SA (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Micro Biochem Technol 07(06):384–393

    Article  CAS  Google Scholar 

  • Silva AADL, Agostinho ARDC, Márcia ALDS, Sérgio ALTD, Patrícia MDSF et al (2012) Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol 43(4):1620–1631

    Google Scholar 

  • Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Singh RN, Srivastava AK, Kumar S, Dubey RC et al (2011) Structural analysis and 3D-modelling of fur protein from Bradyrhizobium japonicum. J Appl Sci Environ Sani 6(3):357–366

    CAS  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 56:14–25. https://doi.org/10.1002/jobm.201500267

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Manchanda G, Li ZF, Rai AR (2017) Insight of proteomics and genomics in environmental bioremediation. In: Bhakta JN (ed) Handbook of research on inventive bioremediation techniques. IGI Global, Hershey. https://doi.org/10.4018/978-1-5225-2325-3

    Chapter  Google Scholar 

  • Singh RP, Manchanda G, Maurya IK, Maheshwari NK, Tiwari PK et al (2019) Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. Biocatal Agric Biotechnol 17:507–513. https://doi.org/10.1016/j.bcab.2019.01.014

    Article  Google Scholar 

  • Subhashini DV, Singh RP, Manchanda G (2017) OMICS approaches: tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research. ISBN: 9788171641703. https://books.google.co.in/books?id=vSaLtAEACAAJ

  • Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K (1998) Expression and regulation ofthe arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi J, Hemmi H, Tanahashi K, Amano N, Nakayama T et al (2000) Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Appl Microbiol Biotechnol 54(4):581–588

    Article  CAS  PubMed  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69(4):2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker U, Madamwar D (2005) Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. W J Microbiol Biotechnol 21:891–899

    Article  CAS  Google Scholar 

  • Tipayno SC, Truu J, Samaddar S, Truu M, Preem JK (2018) The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecol Evol 8:6157–6168. https://doi.org/10.1002/ece3.4170

    Article  PubMed  PubMed Central  Google Scholar 

  • Tornabene TG, Edwards HW (1972) Microbial uptake of lead. Science 176:1334–1335

    Article  CAS  PubMed  Google Scholar 

  • Tornabene TG, Peterson SL (1975) Interaction of lead and bacterial lipids. Appl Microbiol 29:680–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H et al (2009) Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75:719–728

    Article  CAS  PubMed  Google Scholar 

  • Tsolis RM, Bäumler AJ, Heffron F (1995) Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun 63(5):1739–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpeinen R, Kairesalo T, Haggblom M (2002) Microbial activity community structure in arsenic, chromium and copper contaminated soils. J Environ Microbiol 35(6):998–1002

    Google Scholar 

  • Turpeinen R, Kairesalo T, Haggblom M (2004) Microbial community structure and activity in arsenic, chromium and copper contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  CAS  PubMed  Google Scholar 

  • US Department of Health and Human Services, Public Health Service (1999) Toxicological profile for mercury. US Department of Health and Human Services, Atlanta, pp 1–600

    Google Scholar 

  • Vergara-Figueroa J, Alejandro-Martín S, Pesenti H, Cerda F, Fernández-Pérez A et al (2019) Obtaining nanoparticles of Chilean natural zeolite and its ion exchange with copper salt (Cu2+) for antibacterial applications. Material 12(13):E2202. https://doi.org/10.3390/ma12132202

    Article  CAS  Google Scholar 

  • Vinodini N, Chatterjee PK, Chatterjee P, Chakraborti S, Nayanatara A et al (2015) Protective role of aqueous leaf extract of Moringa oleifera on blood parameters in cadmium exposed adult wistar albino rats. Int J Curr Res Acad Rev 3:192–199

    CAS  Google Scholar 

  • Viti C (2006) Response of microbial communities to different doses of chromate in soil microcosms. J Appl Soil Ecol 34:125–139

    Article  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Si M, Song Y, Zhu W, Gao F et al (2015) Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 11:e1005020. https://doi.org/10.1371/journal.ppat.1005020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wintz HT, Fox VC (2002) Functional genomics and gene regulation in biometals research. Biochem Soc Trans 30:766–768

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y et al (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci 7:755. https://doi.org/10.3389/fpls.2016.00755

  • Xu Q, Shi G (2000) The toxic effects of single Cd and interaction of Cd with Zn on some physiological index of [Oenanthe javanica (Blume) DC]. J Nanjing Normal Uni 23(4):97–100

    Google Scholar 

  • Yang HC, Fu HL, Lin YF, Rosen BP (2012) Pathways of arsenic uptake and efflux. Curr Top Membr 69:325–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YJ, Singh RP, Lan X, Zhang CS, Sheng DH et al (2019) Synergistic effect of Pseudomonas putida II-2 and Achromobacter sp. QC36 for the effective biodegradation of the herbicide quinclorac. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2019.109826

  • Zhang XX, Rainey PB (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10:3284–3294

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Xu YB, Xu JX, Zhang XH, Xu SH et al (2015) Combined toxic effects of heavy metals and antibiotics on a Pseudomonas fluorescens strain ZY2 isolated from swine wastewater. Int J Mol Sci 16:2839–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.P., Anwar, M.N., Singh, D., Bahuguna, V., Manchanda, G., Yang, Y. (2020). Deciphering the Key Factors for Heavy Metal Resistance in Gram-Negative Bacteria. In: Singh, R., Manchanda, G., Maurya, I., Wei, Y. (eds) Microbial Versatility in Varied Environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-3028-9_7

Download citation

Publish with us

Policies and ethics