Skip to main content

Biological Strategies Against Biofilms

  • Chapter
  • First Online:
Microbial Biotechnology: Basic Research and Applications

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Biofilms are microbial aggregates which consist of extracellular polymeric substances (EPSs) produced by the microorganism itself that adhere to biological environments such as in rivers, streams, and alimentary canal or living tissues of mammals or nonbiological surfaces like in wastewater treatment plant, tickling beds, indwelling medical devices (IMDs), and industrial or potable water system piping. Constituents of EPS are microorganism originated components of homologous proteins, polysaccharides, lipids, and DNA. The formation of biofilm involves the migration of microbial cells, the interaction between them through cell-to-cell signaling, synthesis of EPS, and in later stages, interaction between cell and EPS.

Biofilms have a unique biochemical profile rendering structural integrity to the microorganisms which the planktonic counterparts lack. This structural stability protects them from various troubles present in their environment such as antibiotics, the host’s defense mechanism, harsh nutritive conditions, predators, etc. The survival of microorganisms in biofilms although beneficial to them gives rise to a significant amount of problems in humans in various essential fields including that of medicine and industries like pharmaceutical, food, and marine industries causing adverse health effects as well as economic loses. This resistance of microorganisms, therefore, is a major concern to handle in controlling biofilms. Various traditional strategies to control biofilms of pathogenic/spoilage bacterial species, which are either physical/mechanical removal of biofilms by cleaning, selection of appropriate bactericidal material, preconditioning of surfaces by methods like ultrasonication and plasma treatment, or chemical removal using antimicrobial agents such as disinfectants/sanitizers, are not always successful. In light of the above problems of biofilm control by conventional methods, in recent times, progress has been taking place in the field of fundamental biofilm research discovering novel methods of controlling biofilms. In the current chapter, we tend to discuss these recent and cutting-edge methods which are much more effective as an antibiofilm strategy focusing mainly on the use of biological components such as enzymes, phages, and antimicrobial molecules (AMPs, QS inhibitors) for the improvisation of areas of healthcare and food safety and in industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    CAS  PubMed  Google Scholar 

  • Acharya KR, Ackerman SJ (2014) Eosinophil granule proteins: form and function. J Biol Chem 289(25):17406–17415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann HW (2009) Phage classification and characterization. Methods Mol Biol 501:127–140

    CAS  PubMed  Google Scholar 

  • Aguinaga A, Francés ML, Del Pozo JL, Alonso M, Serrera A, Lasa I, Leiva J (2011) Lysostaphin and clarithromycin: a promising combination for the eradication of Staphylococcus aureus biofilms. Int J Antimicrob Agents 37:585–587

    CAS  PubMed  Google Scholar 

  • Ahiwale S, Tamboli N, Thorat K, Kulkarni R, Ackermann HW, Kapadnis B (2011) In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage. Curr Microbiol 62:335–340

    CAS  PubMed  Google Scholar 

  • Alisky J, Iczkowski K, Rapoport A, Troitsky N (1998) Bacteriophages show promise as antimicrobial agents. J Infect 36(1):5–15

    CAS  PubMed  Google Scholar 

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  • Ansari JM, Abraham NM, Massaro J, Murphy K, Smith-Carpenter J, Fikrig E (2017) Anti-biofilm activity of a self-aggregating peptide against Streptococcus mutans. Front Microb 8:488

    Google Scholar 

  • Artini M, Papa R, Scoarughi GL, Galano E, Barbato G, Pucci P, Selan L (2013) Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. J Appl Microbiol 114(1):266–277

    CAS  PubMed  Google Scholar 

  • Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova Kayumov AR (2017) Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci Rep 7:46068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils - a review. Food Chem Toxicol 46:446–475

    CAS  PubMed  Google Scholar 

  • Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchegiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, van Leeuwen WB, Jabalameli F (2016) Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PLoS One 11(10):e0164622

    PubMed  PubMed Central  Google Scholar 

  • Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726

    CAS  PubMed  Google Scholar 

  • Bedi MS, Verma V, Chibber S (2009) Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microb Biotechnol 25:1145–1151

    CAS  Google Scholar 

  • Beloin C, Renard S, Ghigo JM, Lebeaux D (2014) Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 18:61–68

    CAS  PubMed  Google Scholar 

  • Böhme A, Risse-Buhl U, Küsel K (2009) Protists with different feeding modes change biofilm morphology. FEMS Microbiol Ecol 69(2):158–169

    PubMed  Google Scholar 

  • Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brady A, Loughlin R, Gilpin D, Kearney P, Tunney M (2006) In vitro activity of tea tree oil against clinical skin isolates of methicillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. J Med Microbiol 55:1375–1380

    CAS  PubMed  Google Scholar 

  • Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30:435–446

    CAS  PubMed  Google Scholar 

  • Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine MN, Fontaine-Aupart MP (2008) Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 74:2135–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R (2015) Biofilm-associated persistence of food-borne pathogens. Food Microbiol 45:167–178

    CAS  PubMed  Google Scholar 

  • Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP, Miller S (2014) Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio 5(4):e01379–e01314

    PubMed  PubMed Central  Google Scholar 

  • Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA (2005) Non-O157 Shiga toxin producing Escherichia coli infections in the United States,1983–2002. J Infect Dis 192:1422–1429

    PubMed  Google Scholar 

  • Burt SA (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253

    CAS  PubMed  Google Scholar 

  • Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47(5):267–274

    CAS  Google Scholar 

  • Castillo-Ruiz M, Vinés ED, Montt C, Fernández J, Delgado JM, Hormazábal JC, Bittner M (2011) Isolation of a novel Aggregatibacter actinomycetemcomitans serotype b bacteriophage capable of lysing bacteria within a biofilm. Appl Environ Microbiol 77(9):3157–3159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerca N, Oliveira R, Azeredo J (2007) Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett Appl Microbiol 45:313–317

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Duttal TK, De A, Das M, Ghosh S (2018) Impact of bacterial biofilm in veterinary medicine: an overview. Int J Curr Microbiol App Sci 7(4):3228–3239

    Google Scholar 

  • Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8(6):769–783

    CAS  PubMed  Google Scholar 

  • Chhibber S, Bedi MS, Verma V (2009a) Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol 25:1145–1151

    Google Scholar 

  • Chhibber S, Verma V, Harjai K (2009b) Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother 64:1212–1218

    PubMed  Google Scholar 

  • Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Høiby N, Bjarnsholt T, Givskov M (2012) Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 67:1198–1206

    CAS  PubMed  Google Scholar 

  • Cirino IC, Menezes-Silva SM, Silva HT, de Souza EL, Siqueira-Júnior JP (2014) The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 60:290–293

    CAS  PubMed  Google Scholar 

  • Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Mocchegiani F, Silvestri C, Licci A, Skerlavaj B, Zanetti M, Saba V, Scalise G (2006) Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides 27:2104–2110

    CAS  PubMed  Google Scholar 

  • Cirioni O, Giacometti A, Ghiselli R, Kamysz W, Silvestri C, Orlando F, Mocchegiani F, Vittoria AD, Kamysz E, Saba V, Scalise G (2007) The lipopeptides Pal-Lys-Lys-NH2 and Pal-Lys-Lys soaking alone and in combination with intraperitoneal vancomycin prevent vascular graft biofilm in a subcutaneous rat pouch model of staphylococcal infection. Peptides 28:1299–1303

    CAS  PubMed  Google Scholar 

  • Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24(5):212–218

    CAS  PubMed  Google Scholar 

  • Clutterbuck AL, Woods EJ, Knottenbelt DC, Clegg PD, Cochrane CA, Percival SL (2007) Biofilms and their relevance to veterinary medicine. Vet Microbiol 121(1–2):1–17

    CAS  PubMed  Google Scholar 

  • Coelho FA, Pereira MO (2013) Exploring new treatment strategies for Pseudomonas aeruginosa biofilm infections based on plant essential oils. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, vol 1. Formatex Research Center, Badajoz, pp 83–89

    Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96

    Google Scholar 

  • Corbin BD, McLean RJC, Aron GM (2001) Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm. Can J Microbiol 47:680–684

    CAS  PubMed  Google Scholar 

  • Cornelissen A, Ceyssens PJ, T’Syen J, Van Praet H, Noben JP, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage phi 15 displays virion-associated biofilm degradation properties. PLoS One 6:e18597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox SD, Gustafson JE, Mann CM, Markham JL, Liew YC, Hartland RP, Bell HC, Warmington JR, Wyllie SG (1998) Tea tree oil causes K leakage and inhibits respiration in Escherichia coli. Lett Appl Microbiol 26:335–358

    Google Scholar 

  • Craigen B, Dashiff A, Kadouri DE (2011) The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J 5:21–31

    PubMed  PubMed Central  Google Scholar 

  • Crouzet M, Le Senechal C, Brözel VS, Costaglioli P, Barthe C, Bonneu M, Vilain S (2014) Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 14:253

    PubMed  PubMed Central  Google Scholar 

  • Curtin JJ, Donlan RM (2006) Using bacteriophages to reduce formation of catheter associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50:1268–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes Rendus de l'Académie des Sciences Paris 165:373–375

    Google Scholar 

  • d’Herelle F (1918) Technique de la recherche du microbe filtrant bactériophage (Bacteriophagum intestinale). Comptes Rendus des Seances de la Societe de Biologie Paris 81:1060–1062

    Google Scholar 

  • Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and Dispersin B combination. J Antimicrob Chemother 64:88–93

    CAS  PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberrg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    CAS  PubMed  Google Scholar 

  • de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathol 10:e1004152

    Google Scholar 

  • de la Fuente-Núñz C, Korolik V, Bains M, Nguyen U, Breidenstein EBM, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704

    Google Scholar 

  • De Martino L, De Feo V, Formisano C, Mignola E, Senatore F (2009) Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (link) Ietswaart growing wild in Campania (Southern Italy). Molecules 14:2735–2746

    PubMed  PubMed Central  Google Scholar 

  • de Oliveira MMM, Brugnera DF, Cardoso MDG, Alves E, Piccoli RH (2010) Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 21:549–553

    Google Scholar 

  • de Oliveira MMM, Brugnera DF, Do Nascimento JA, Batista NN, Piccoli RH (2012) Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur Food Res Technol 234:821–832

    Google Scholar 

  • Debarbieux L, Pirnay JP, Verbeken G, De Vos D, Merabishvili M, Huys I, Patey O, Schoonjans D, Vaneechoutte M, Zizi M, Rohde C (2016) A bacteriophage journey at the European medicines agency. FEMS Microbiol Lett 363(2):fnv225. https://doi.org/10.1093/femsle/fnv225

    Article  CAS  PubMed  Google Scholar 

  • Dolan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17:66–72

    Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosler S, Mataraci E (2013) In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 49:53–58

    CAS  PubMed  Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhart L, Fischer H, Barken KB, Tolker-Nielsen T, Tschachler E (2007) DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br J Dermatol 156:1342–1345

    CAS  PubMed  Google Scholar 

  • Fabian D, Sabol M, Domaracka K, Bujnakova D (2006) Essential oils–their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol In Vitro 20:1435–1445

    PubMed  Google Scholar 

  • Fagerlund A, Langsrud S, Schirmer BC, Moretro T, Heir E (2016) Genome analysis of Listeria monocytogenes sequence type 8 strains persisting in salmon and poultry processing environments and comparison with related strains. PLoS One 11(3):e0151117

    Google Scholar 

  • Fleming D, Chahin L, Rumbaugh K (2017) Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother 61(2):e01998–e01916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54(1):397–404

    Google Scholar 

  • García AB, Percival SL (2011) Zoonotic infections: the role of biofilms. In: Biofilms and veterinary medicine. Springer, Berlin, pp 69–110

    Google Scholar 

  • Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Silvestri C, Orlando F, Kamysz W, Licci A, Nadolski P, Della Vittoria A, Łukasiak J, Scalise G, Saba V (2007) Pretreatment with the protegrin IB-367 affects gram positive biofilm and enhances the therapeutic efficacy of linezolid in animal models of central venous catheter infection. J Parenter Enter Nutr 31:463–468

    CAS  Google Scholar 

  • Gordya N, Yakovlev A, Kruglikova A, Tulin D, Potolitsina E, Suborova T, Bordo D, Rosano C, Chernysh S (2017) Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PLoS One 12:e0173559

    PubMed  PubMed Central  Google Scholar 

  • Gründling A, Missiakas DM, Schneewind O (2006) Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol 188:6286–6297

    PubMed  PubMed Central  Google Scholar 

  • Gutierrez D, Briers Y, Rodríguez-Rubio L, Martínez B, Rodríguez A, Lavigne R, García P (2015) Role of the pre-neck appendage protein (Dpo7) from phage vB SepiS-phiIPLA7 as an anti-biofilm agent in staphylococcal species. Front Microbiol 6:1315

    PubMed  PubMed Central  Google Scholar 

  • Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:825

    PubMed  PubMed Central  Google Scholar 

  • Hanlon GW, Denyer SP, Olliff SJ, Ibrahim LJ (2001) Reduction of exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753

    CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Anderson MH, Shi W, Eckert R (2009) Design and activity of a ‘dual-targeted’ antimicrobial peptide. Int J Antimicrob Agents 33:532–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann S, Sneppen K, Krishna S (2012) Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc Natl Acad Sci U S A 109:12828–12833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hell E, Giske CG, Nelson A, Römling U, Marchini G (2010) Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50(2):211–215

    CAS  PubMed  Google Scholar 

  • Henderson P (2010) Fouling and anti-fouling in other industries –power stations, desalination plants-drinking water supplies and sensors. In: Biofouling. Wiley-Blackwell, Chichester, pp 288–305

    Google Scholar 

  • Herrmann G, Yang L, Wu H, Song Z, Wang H, Høiby N, Ulrich M, Molin S, Riethmüller J, Döring G (2010) Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 202:1585–1592

    CAS  PubMed  Google Scholar 

  • Hibma AM, Jassim SA, Griffiths MW (1997) Infection and removal of L-forms of listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207

    CAS  PubMed  Google Scholar 

  • Hirakura Y, Kobayashi S, Matsuzaki K (2002) Specific interactions of the antimicrobial peptides cyclic-sheet tachyplesin I with lipopolysaccharides. Biochim Biophys Acta 1562:32–36

    CAS  PubMed  Google Scholar 

  • Hou HM, Zhu YL, Wang JY, Jiang F, Qu WY, Zhang GL, Hao HS (2017) Characteristics of N-acylhomoserine lactones produced by Hafnia alvei H4 isolated from spoiled instant sea cucumber. Sensors 17(4):772

    PubMed Central  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases- novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    CAS  PubMed  Google Scholar 

  • Hukić M, Seljmo D, Ramovic A, Ibrišimović MA, Dogan S, Hukic J, Feric Bojic E (2017) The effect of lysozyme on reducing biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: an in vitro examination. Microb Drug Resist 24(4):353–358

    PubMed  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Google Scholar 

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52(3):381–390

    PubMed  Google Scholar 

  • Izano EA, Wang H, Ragunath C, Ramasubbu N, Kaplan JB (2007) Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin B and SDS. J Dent Res 86:618–622

    CAS  PubMed  Google Scholar 

  • Jafri H, Husain FM, Ahmad I (2014) Antibacterial and antibiofilm activity of some essential oils and compounds against clinical strains of Staphylococcus aureus. J Biomed Ther Sci 1:65–71

    Google Scholar 

  • Jahid IK, Ha SD (2014) Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms. Foodborne Pathog Dis 11:346–353

    CAS  PubMed  Google Scholar 

  • Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PØ, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Høiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11

    PubMed  Google Scholar 

  • Johansson L, Thulin P, Sendi P, Hertzén E, Linder A, Åkesson P, Low DE, Agerberth B, Norrby-Teglund A (2008) Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 76(8):3399–3404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge P, Lourenco A, Pereira MO (2012) New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling 28:1033–1061

    CAS  PubMed  Google Scholar 

  • Kabwanga IT, Yetişemiyen A, Nankya S (2018) Dairy industrial hygiene: a review on biofilm challenges and control. Int J Res Granthaalayah 6(2):268–273. https://doi.org/10.5281/zenodo.1194694

    Article  Google Scholar 

  • Kadouri D, Venzon NC, O’ Toole GA (2007) Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 73(2):605–614

    CAS  PubMed  Google Scholar 

  • Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167:1778–1794

    CAS  PubMed  Google Scholar 

  • Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA (2012) Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot 65:73–77

    CAS  Google Scholar 

  • Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78:4057–4061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kay MK, Erwin TC, McLean RJ, Aron GM (2011) Bacteriophage ecology in Escherichia coli and Pseudomonas aeruginosa mixed-biofilm communities. Appl Environ Microbiol 77(3):821–829

    CAS  PubMed  Google Scholar 

  • Kerekes EB, Vidács A, Török Jenei J, Gömöri C, Takó M, Chandrasekaran M, Kadaikunnan S, Alharbi NS, Krisch J, Vágvölgyi C (2015) Essential oils against bacterial biofilm formation and quorum sensing of food-borne pathogens and spoilage microorganisms. In: The Battle against microbial pathogens: basic science, technological advances and educational programs. Microbiology book series, vol 5 (5). Formatex Research Center, Badajoz, pp 429–437

    Google Scholar 

  • Kim M, Park J-M, Um H-J, Lee K-H, Kim H, Min J, Kim Y-H (2011) The antifouling potentiality of galactosamine characterized from Vibrio vulnificus exopolysaccharide. Biofouling 27:851–857

    CAS  PubMed  Google Scholar 

  • Kim HS, Lee SH, Byun Y, Park HD (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 5:8656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Park C, Lee EJ, Bang WS, Kim YJ, Kim JS (2017) Biofilm formation of campylobacter strains isolated from raw chickens and its reduction with DNase I treatment. Food Control 71:94–100

    CAS  Google Scholar 

  • Kiran S, Sharma P, Harjai K, Capalash N (2011) Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3:1–12

    Google Scholar 

  • Kumar JK (2008) Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 80(4):555–561

    CAS  PubMed  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    CAS  PubMed  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ, Nychas G-JE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    CAS  PubMed  Google Scholar 

  • Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86(3):813–823

    CAS  PubMed  Google Scholar 

  • Langeveld WT, Veldhuizen EJA, Burt SA (2014) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 40:76–94

    CAS  PubMed  Google Scholar 

  • Lemberkovics E, Kéry A, Simándi B, Kakasy A, Balázs A, Héthelyi E, Szoke E (2004) Influence of extraction methods on the composition of essential oils. Acta Pharm Hung 74(3):166–170

    CAS  PubMed  Google Scholar 

  • Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers. J Appl Microbiol 105(3):791–799

    CAS  PubMed  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173

    CAS  PubMed  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Guo L, Lux R, Eckert R, Yarbrough D, He J, Anderson M, Shi WY (2010) Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection. Int J Oral Sci 2:66–73

    PubMed  PubMed Central  Google Scholar 

  • Libardo MD, Bahar AA, Ma B, Fu R, McCormick LE, Zhao J, McCallum SA, Nussinov R, Ren D, Angeles-Boza AM, Cotten ML (2017) Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J 284(21):3662–3683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longbottom CJ, Carson CF, Hammer KA, Mee BJ, Riley TV (2004) Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J Antimicrob Chemother 54:386–392

    CAS  PubMed  Google Scholar 

  • Low CS, White DC (1989) Regulation of external polymer production in benthic microbial communities. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities, pp 228–238

    Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104:11197–11202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luca V, Stringaro A, Colone M, Pini A, Mangoni ML (2013) Esculentin (1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 70(15):2773–2786

    CAS  PubMed  Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5(3):e1000354

    PubMed  PubMed Central  Google Scholar 

  • Ma L, Liu X, Liang H, Che Y, Chen C, Dai H, Yu K, Liu M, Ma L, Yang CH, Song F (2012) Effects of 14-alpha-lipoyl andrographolide on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56(12):6088–6094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TFC, Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    CAS  PubMed  Google Scholar 

  • Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366–6371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ϕMR11. J Infect Dis 187(4):613–624

    CAS  PubMed  Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11(5):211–219

    PubMed  Google Scholar 

  • Melo MN, Ferre R, Castanho MA (2009) Antimicrobial peptides: linking partition, activity and high membrane bound concentrations. Nat Rev Microbiol 7:245–250

    CAS  PubMed  Google Scholar 

  • Meshram P, Dave R, Joshi H, Dharani G, Kirubagaran R, Venugopalan VP (2016) Biofouling control on ultrafiltration membrane through immobilization of polysaccharide-degrading enzyme: optimization of parameters. Desalin Water Treat 57(55):26861–26870

    CAS  Google Scholar 

  • Mohamed SH, Mohamed MS, Khalil MS, Azmy M, Mabrouk MI (2018) Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. J Appl Microbiol 125(1):84–95

    Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    Google Scholar 

  • Nagant C, Pitts B, Stewart PS, Feng Y, Savage PB, Dehaye JP (2013) Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa. Microbiol Open 2(2):318–325

    CAS  Google Scholar 

  • Nagraj AK, Gokhale D (2018) Bacterial biofilm degradation using extracellular enzymes produced by Penicillium janthinellum EU2D-21 under submerged fermentation. Adv Microbiol 8(09):687

    Google Scholar 

  • Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–1474

    PubMed  PubMed Central  Google Scholar 

  • Nguyen UT, Burrows LL (2014) DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol 187:26–32

    CAS  PubMed  Google Scholar 

  • Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    CAS  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    PubMed  Google Scholar 

  • Okuda KI, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57(11):5572–5579

    Google Scholar 

  • Ołdak E, Trafny EA (2005) Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrob Agents Chemother 49:3281–3288

    Google Scholar 

  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86

    PubMed  PubMed Central  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pantucek R, Rosypalová A, Doškař J, Kailerová J, Růžičková V, Borecká P, Snopková Š, Horváth R, GoÈtz F, Rosypal S (1998) The polyvalent staphylococcal phage φ812: its host-range mutants and related phages. Virology 246(2):241–252

    CAS  PubMed  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol 14(9):576–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perricone M, Arace E, Corbo MR, Sinigaglia M, Bevilacqua A (2015) Bioactivity of essential oils: a review on their interaction with food components. Front Microbiol 6:76

    PubMed  PubMed Central  Google Scholar 

  • Pires D, Sillankorva S, Faustino A, Azeredo J (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 162(8):798–806

    CAS  PubMed  Google Scholar 

  • Pletzer D, Wolfmeier H, Bains M, Hancock RE (2017) Synthetic peptides to target stringent response-controlled virulence in a Pseudomonas aeruginosa murine cutaneous infection model. Front Microbiol 8:1867

    PubMed  PubMed Central  Google Scholar 

  • Potrykus K, Cashel M (2008) (p) ppGpp: still magical? Annu Rev Microbiol 62:35–51

    CAS  PubMed  Google Scholar 

  • Quilès F, Saadi S, Francius G, Bacharouche J, Humbert F (2016) In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. Biochim Biophys Acta Biomembr 1858(1):75–84

    Google Scholar 

  • Ramasamy P, Zhang X (2005) Effects of shear stress on the secretion of extracellular polymeric substances in biofilms. Water Sci Technol 52:217–223

    CAS  Google Scholar 

  • Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17. https://doi.org/10.1155/2015/759348

    Article  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    CAS  PubMed  Google Scholar 

  • Regina VR, Søhoel H, Lokanathan AR, Bischoff C, Kingshott P, Revsbech NP, Meyer RL (2012) Entrapment of subtilisin in ceramic sol–gel coating for antifouling applications. ACS Appl Mater Interfaces 4(11):5915–5921

    CAS  PubMed  Google Scholar 

  • Reyes-Jurado F, Franco-Vega A, Ramirez-Corona N, Palou E, López-Malo A (2015) Essential oils: antimicrobial activities, extraction methods, and their modeling. Food Eng Rev 7(3):275–297

    CAS  Google Scholar 

  • Rosato A, Vitali C, De Laurentis N, Armenise D, Milillo MA (2007) Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 14:727–732

    CAS  PubMed  Google Scholar 

  • Rossi LM, Rangasamy P, Zhang J, Qiu X-Q, Wu GY (2008) Research advances in the development of peptide antibiotics. J Pharm Sci 97:1060–1070

    CAS  PubMed  Google Scholar 

  • Roy V, Meyer MT, Smith JA, Gamby S, Sintim HO, Ghodssi R, Bentley WE (2013) AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol 97:2627–2638

    CAS  PubMed  Google Scholar 

  • Sass P, Bierbaum G (2006) Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352

    PubMed  PubMed Central  Google Scholar 

  • Sauer K, Cullen MC, Rickard AH, Davies DG, Gilbert P (2004) Characterization of nutrient –induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seghal Kiran G, Nishanth Lipton A, Kennedy J, Dobson AD, Selvin J (2014) A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered 5(5):305–318

    PubMed  PubMed Central  Google Scholar 

  • Sharma M, Ryu JH, Beuchat LR (2005) Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol 99:449–459

    CAS  PubMed  Google Scholar 

  • Shen HB, Chou KC (2007) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Commun 364:53–59

    CAS  PubMed  Google Scholar 

  • Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9:859–871

    CAS  PubMed  Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J (2004) Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20(3):133–138

    PubMed  Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ, Azeredo J (2008) Real-time quantification of Pseudomonas fluorescens cell removal from glass surfaces due to bacteriophage ϕS1 application. J Appl Microbiol 105(1):196–202

    CAS  PubMed  Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2010) Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 26(5):567–575

    Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT-Food Sci Technol 43(4):573–583

    Google Scholar 

  • Singh V, Verma N, Banerjee B, Vibha K, Haque S, Tripathi CK (2015) Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology 84:59–64

    CAS  Google Scholar 

  • Siringan P, Connerton PL, Payne RJ, Connerton IF (2011) Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl Environ Microbiol 77(10):3320–3326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86(5):1439–1449

    CAS  PubMed  Google Scholar 

  • Soni KA, Nannapaneni R (2010) Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot 73:1519–1524

    PubMed  Google Scholar 

  • Stewart PS (2015) Prospects for anti-biofilm pharmaceuticals. Pharmaceuticals 8(3):504–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    CAS  PubMed  Google Scholar 

  • Szczaurska-Nowak K, Dąbrowska K, Celka M, Kurzępa A, Nevozhay D, Wietrzyk J, Świtala-Jeleń KI, Syper D, Poźniak G, Opolski A, Gorski A (2009) Antitumor effect of combined treatment of mice with cytostatic agents and bacteriophage T4. Anticancer Res 29(6):2361–2370

    CAS  PubMed  Google Scholar 

  • Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311

    Google Scholar 

  • Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8(1):97–109

    CAS  PubMed  Google Scholar 

  • Thallinger B, Brandauer M, Burger P, Sygmund C, Ludwig R, Ivanova K, Kun J, Scaini D, Burnet M, Tzanov T, Nyanhongo GS (2016) Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. J Biomed Mater Res B Appl Biomater 104(7):1448–1456

    CAS  PubMed  Google Scholar 

  • Tiwari SK, Noll KS, Cavera VL, Chikindas ML (2015) Improved antimicrobial activities of synthetic-hybrid bacteriocins designed from enterocin E50-52 and pediocin PA-1. Appl Environ Microbiol 81:1661–1667

    PubMed  PubMed Central  Google Scholar 

  • Twort TW (1936) Further investigations on the nature of ultra-microscopic viruses and their cultivation. J Hyg 36:204–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uppuluri P, Lopez-Ribot JL (2016) Go forth and colonize: dispersal from clinically important microbial biofilms. PLoS Pathol 12(2):e1005397

    Google Scholar 

  • Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216

    CAS  PubMed  Google Scholar 

  • Van de Braak SAAJ, Leijten GCJJ (1999) Essential oils and oleoresins: a survey in the Netherlands and other major markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam, p 116

    Google Scholar 

  • Vandenheuvel D, Lavigne R, Brüssow H (2015) Bacteriophage therapy: advances in formulation strategies and human clinical trials. Ann Rev Virol 2:599–618

    CAS  Google Scholar 

  • Venge P (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29:1172–1186

    CAS  PubMed  Google Scholar 

  • Vilas Boas D, Almeida C, Sillankorva S, Nicolau A, Azeredo J, Azevedo NF (2016) Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling 32:179–190

    CAS  PubMed  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6(3):269–275

    CAS  PubMed  Google Scholar 

  • Wang HY, Lin L, Tan LS, Yu HY, Cheng JW, Pan YP (2017) Molecular pathways underlying inhibitory effect of antimicrobial peptide Nal-P-113 on bacteria biofilms formation of Porphyromonas gingivalis W83 by DNA microarray. BMC Microbiol 17(1):37

    PubMed  PubMed Central  Google Scholar 

  • Warnke PH, Sherry E, Russo PA, Acil Y, Wiltfang J, Sivananthan S, Sprengel M, Roldan JC, Schubert S, Bredee JP, Springer IN (2006) Antibacterial essential oils in malodorous cancer patients: clinical observations in 30 patients. Phytomedicine 13(7):463–467

    CAS  PubMed  Google Scholar 

  • Watters CM, Burton T, Kirui DK, Millenbaugh NJ (2016) Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma. Infect and Drug Resist 9:71

    CAS  Google Scholar 

  • Weber-Dabrowska B, Zimecki M, Mulczyk M (2000) Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch Immunol Ther Exp 48(1):31–37

    CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    CAS  PubMed  Google Scholar 

  • Wimley W, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhu X, Tan T, Li W, Shan A (2014) Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. PLoS One 9:e98935

    PubMed  PubMed Central  Google Scholar 

  • Yang JY, Della-Fera MA, Nelson-Dooley C, Baile CA (2006) Molecular mechanisms of apoptosis induced by Ajoene in 3T3-L1 adipocytes. Obesity 14:388–397

    CAS  PubMed  Google Scholar 

  • Yap PSX, Yiap BC, Ping HC, Lim SHE (2014) Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 8:6–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasir M, Willcox M, Dutta D (2018) Action of antimicrobial peptides against bacterial biofilms. Materials 11(12):2468

    PubMed Central  Google Scholar 

  • Yoon S, Choi Y, Lee SJ, Son J, Jun S, Kang S (2010) Bacteriophage or lytic protein derived from the bacteriophage which effective for treatment of Staphylococcus aureus biofilm. US 2010/0254950-A1

    Google Scholar 

  • Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79:119–126

    CAS  PubMed  Google Scholar 

  • Zeng X, Liu X, Bian J, Pei G, Dai H, Polyak SW, Song F, Ma L, Wang Y, Zhang L (2011) Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:3015–3017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Tan H, Cheng T, Shen H, Shao J, Guo Y, Shi S, Zhang X (2013) Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J Surg Res 183(1):204–213

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, G., Karnwal, A. (2020). Biological Strategies Against Biofilms. In: Singh, J., Vyas, A., Wang, S., Prasad, R. (eds) Microbial Biotechnology: Basic Research and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2817-0_9

Download citation

Publish with us

Policies and ethics