Skip to main content

Urban Climates: Theories, Approaches, and Design Implications

  • Chapter
  • First Online:
High-Rise Urban Form and Microclimate

Part of the book series: The Urban Book Series ((UBS))

  • 876 Accesses

Abstract

Urban climate is characterized by a combination of physical, chemical, and biological processes occurring at different scales. From the perspective of urban living and urban design, the most relevant characteristics of urban climate include concepts such as urban heat island, urban wind, energy consumption, thermal comfort, and so on. In this chapter, the first part lays out the fundamental landscape for the conceptualization of urban climate as how to understand the climatic phenomena, characterize the physical processes, and evaluate the impact imposed by design practice. The second part focuses on a subset of urban climatology, the human biometeorology, which is most related to design practice and its implications on climate-sensitive and bioclimatic design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KS (2003) Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy Build 35:103–110

    Article  Google Scholar 

  • Ali-Toudert F, Mayer FH (2007) Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol Energy 81:742–754

    Article  Google Scholar 

  • Ali-Toudert F, Mayer H (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ 41:94–108

    Article  Google Scholar 

  • Allen L, Lindberg F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31(13):1990–2005

    Article  Google Scholar 

  • Arnfield AJ (2003) Review: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • ASHRAE (2001) ASHRAE Fundamentals Handbook 2001 (SI Edition). Atlanta, USA, GA

    Google Scholar 

  • Blocken B (2015) Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ 91:219–245

    Article  Google Scholar 

  • Bourbia F, Boucheriba F (2010) Impact of street design on urban microclimate for semi arid climate (Constantine). Renew Energy 35:343–347

    Article  Google Scholar 

  • Brown GZ, DeKay M (2001) Sun, wind & light: architectural design strategies, 2nd edn. Wiley, New York

    Google Scholar 

  • Chatzidimitriou A, Yannas S (2015) Microclimate development in open urban spaces: the influence of form and materials. Energy Build 108:156–174

    Article  Google Scholar 

  • Chen Y, Wong NH (2006) Thermal benefits of city parks. Energy Build 38:105–120

    Article  Google Scholar 

  • Cheng V, Ng E (2006) Thermal comfort in urban open spaces for Hong Kong. Archit Sci Rev 49(3):236–242

    Article  Google Scholar 

  • Cheng V, Ng E, Chan C, Givoni B (2012) Outdoor thermal comfort study in sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol 56(1):43–56. https://doi.org/10.1007/s00484-010-0396-z

    Article  Google Scholar 

  • Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period. Atmos Environ 9:871–905

    Article  Google Scholar 

  • Davenport AG, Grimmond CSB, Wieringa TROJ (2000) Estimating the roughness of cities and sheltered country. Paper presented at the 12th conference on applied climatology, Boston

    Google Scholar 

  • Eliasson I (2000) The use of climate knowledge in urban planning. Landscape Urban Plan 48:31–44

    Article  Google Scholar 

  • Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatol 27:1995–2004

    Article  Google Scholar 

  • Erell E, Pearlmutter D, Boneh D, Kutiel P (2014) Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Clim 10:367–386

    Article  Google Scholar 

  • Fanger PO (1972) Thermal comfort. Analysis and application in environment engineering. McGraw Hill Book Company, New York

    Google Scholar 

  • Fukuoka Y (1997) Biometeorological studies on urban climate. Int J Biometeorol 40:54–57

    Article  Google Scholar 

  • Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92(2B):709–731

    Google Scholar 

  • Gaitani N, Mihalakakou G, Santamouris M (2007) On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build Environ 42(1):317–324. https://doi.org/10.1016/j.buildenv.2005.08.018

    Article  Google Scholar 

  • Givoni B (1976) Man, climate and architecture. Applied Science Publishers, London

    Google Scholar 

  • Givoni B (1994) Passive and low energy cooling of buildings. Van Nostrand Reinhold, New York

    Google Scholar 

  • Givoni B, Noguchi M, Saaroni H, Pochter O, Yaacov Y, Feller N, Becker S (2003) Outdoor comfort research issues. Energy Build 35(1):77–86

    Article  Google Scholar 

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84(1–3):3–22

    Article  Google Scholar 

  • Grimmond CSB, Oke T (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1261–1292

    Google Scholar 

  • Grimmond CSB, Roth M, Oke TR, Au YC, Best M, Betts R, Voogt J (2010) Climate and more sustainable cities: climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environ Sci 1:247–274

    Article  Google Scholar 

  • Höppe P (1984) Die Energiebilanz des Menschen (English translation: The energy balance in human), vol 49. Wiss Mitt Meteorol Inst Univ Mtinchen

    Google Scholar 

  • Höppe P (1992) A new procedure to determine the mean radiant temperature outdoors (in German). Wetter und Leben, 44:147–151

    Google Scholar 

  • Höppe P (1997) Aspects of human biometeorology in past, present and future. Int J Biometeorol 40:19–23

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Höppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energy Build 34:661–665

    Article  Google Scholar 

  • Hawkes D, McDonald J, Steemers K (2002) The selective environment. Spon Press, London; New York

    Google Scholar 

  • Holst J, Mayer H (2011) Impacts of street design parameters on human-biometeorological variables. Meteorol Z 20(5):541–552

    Article  Google Scholar 

  • ISO (1994) Moderate thermal environments- determination of the PMV and PPD indices and the specification of conditions for thermal comfort. International Standard 7730, Geneva

    Google Scholar 

  • Jauregui E (1997) The last Ms for 40th anniversary issue. Aspects of urban human biometeorology. Int J Biometeorol 40:58–61

    Article  Google Scholar 

  • Jones DL (1998) Architecture and the environment: bioclimatic building design. Overlook Press, Woodstock, NY

    Google Scholar 

  • Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Cent Eur J Geosci 3(1):90–110

    Google Scholar 

  • Kanda M (2006) Progress in the scale modeling of urban climate: review. Theor Appl Climatol 84(1–3):23–33

    Article  Google Scholar 

  • Ketterer C, Matzarakis A (2014) Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landscape Urban Plann 122:78–88

    Article  Google Scholar 

  • Koch W (1962) Relationship between air temperature and mean radiant temperature in thermal comfort. Nature 196:587

    Article  Google Scholar 

  • Kwok AG, Grondzik WT (2007) The green studio handbook: environmental strategies for schematic design. Architectural Press, Oxford

    Google Scholar 

  • Lai D, Zhou C, Huang J, Jiang Y, Long Z, Chen Q (2014) Outdoor space quality: a field study in an urban residential community in central China. Energy Build 68(B):713–720

    Google Scholar 

  • Landsberg HE (1972) The assessment of human bioclimate, a limited review of physical parameters. Technical Note No. 123, WMO-No. 331. World Meteorological Organization, Geneva

    Google Scholar 

  • Landsberg HE (1981) The urban climate. New York Academic Press

    Google Scholar 

  • Lau KK-L, Lindberg F, Rayner D, Thorsson S (2015) The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities. Int J Biometeorol 59(7):799–814

    Article  Google Scholar 

  • Lau KK-L, Ren C, Ho J, Ng E (2016) Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy Build 114:80–86

    Article  Google Scholar 

  • Lee H, Holst J, Mayer H (2013) Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv Meteorol, Article ID 312572. https://doi.org/10.1155/2013/312572

  • Lee H, Mayer H, Chen L (2016) Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape Urban Plann 148:37–50

    Article  Google Scholar 

  • Lin T-P (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44:2017–2026

    Article  Google Scholar 

  • Lindberg F, Grimmond CSB (2011) The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theor Appl Climatol 105:311–323. https://doi.org/10.1007/s00704-010-0382-8

    Article  Google Scholar 

  • Lindberg F, Holmer B, Thorsson S (2008) SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52(7):697–713

    Google Scholar 

  • Lindberg F, Onomura S, Grimmond CSB (2016a) Influence of ground surface characteristics on the mean radiant temperature in urban areas. Int J Biometeorol. https://doi.org/10.1007/s00484-016-1135-x

    Article  Google Scholar 

  • Lindberg F, Thorsson S, Rayner D, Lau K (2016b) The impact of urban planning strategies on heat stress in a climate-change perspective. Sustain Cities Soc 25:1–12

    Article  Google Scholar 

  • Masmoudi S, Mazouz S (2004) Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy Build 36(7):710–719

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  Google Scholar 

  • Mayer H (1993) Urban bioclimatology. Experientia 49(11):957–963

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  • McGregor GR (2011) Human biometeorology. Prog Phys Geogr 36(1):93–109

    Article  Google Scholar 

  • McHarg IL (1992) Design with nature. Wiley, New York

    Google Scholar 

  • Ng E, Yuan C, Chen L, Ren C, Fung JCH (2011) Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape Urban Plann 101(1):59–74. https://doi.org/10.1016/j.landurbplan.2011.01.004

    Article  Google Scholar 

  • Nikolopoulou M (ed) (2004) Designing open spaces in the urban environment: a bioclimatic approach. Centre for Renewable Energy Sources, EESD, FP5, Athens

    Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Sol Energy 70:227–235

    Article  Google Scholar 

  • Oke TR (1981) Canyon geometry and the nocturnal heat island: comparison of scale model and field observations. J Climatol 1:237–254

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London

    Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11(1–3):103–113

    Article  Google Scholar 

  • Oke TR (2006a) Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization, Instruments and Observing Methods, IOM Report No. 81, WMO/TD-No. 1250

    Google Scholar 

  • Oke TR (2006b) Towards better scientific communication in urban climate. Theor Appl Climatol 84:179–190

    Article  Google Scholar 

  • Olgyay V (1963) Design with climate: bioclimatic approach to architectural regionalism. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Pickup J, de Dear R (1999, 8–12, November) An outdoor thermal comfort index (OUT_SET*)—Part 1 The model and its assumptions. Paper presented at the 15th International Congress of Biometeorology & International Conference of Urban Climatology, Sydney, Australia

    Google Scholar 

  • Radhi H, Fikry F, Sharples S (2013) Impacts of urbanisation on the thermal behaviour of new built up environments: a scoping study of the urban heat island in Bahrain. Landscape Urban Plann 113:47–61

    Article  Google Scholar 

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Voogt JA (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261

    Article  Google Scholar 

  • Sargent FI (1965) A survey of human biometeorology. Int J Biometeorol 9(1):1–3

    Article  Google Scholar 

  • Sargent FI, Tromp S (1966) The first decade of the International Society of Biometeorology (1956–66). Int J Biometeorol 10:207–214

    Article  Google Scholar 

  • Souch C, Grimmond S (2006) Applied climatology: urban climate. Prog Phys Geogr 30(2):270–279

    Article  Google Scholar 

  • Spagnolo J, De Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38(5):721–738

    Article  Google Scholar 

  • Stathopoulos T (2006) Pedestrian level winds and outdoor human comfort. J Wind Eng Ind Aerodyn 94(11):769–780

    Article  Google Scholar 

  • Swaid H, Bar-El M, Hoffman ME (1993) A bioclimatic design methodology for urban outdoor spaces. Theor Appl Climatol 48(1):49–61

    Article  Google Scholar 

  • Szokolay SV (2004) Introduction to architectural science: the basis of sustainable design. Architectural Press, Oxford

    Google Scholar 

  • Takahashi K, Yoshida H, Tanaka Y, Aotake N, Wang F (2004) Measurement of thermal environment in Kyoto city and its prediction by CFD simulation. Energy Build 36:771–779

    Article  Google Scholar 

  • Task Committee on Outdoor Human Comfort of the Aerodynamics, Committee of the American Society of Civil Engineers (2004) Outdoor human comfort and its assessment: state of the art. American Society of Civil Engineers, Reston, VA

    Google Scholar 

  • Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Goteborg. Int J Biometeorol 48:149–156

    Article  Google Scholar 

  • Thorsson S, Rocklöv J, Konarska J, Lindberg F, Holmer B, Dousset B, Rayne D (2014) Mean radiant temperature—a predictor of heat related mortality. Urban Clim 10(2):332–345

    Article  Google Scholar 

  • Tseliou A, Tsiros IX, Lykoudis S, Nikolopoulou M (2009) An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Build Environ 45(5):1346–1352

    Article  Google Scholar 

  • Vanos JK, Warland JS, Gillespie TJ, Kenny NA (2010) Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54(4):319–334. https://doi.org/10.1007/s00484-010-0301-9

    Article  Google Scholar 

  • VDI 3787 (1996) Richtlinie VDI 3787: Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt- und Regionalplanung. Teil 1: Klima. (English translation: VDI 3787: Methods for the human biometeorological assessment of climate and air hygiene for urban and regional planning Part 1: Climate). Technical report: Association of German Engineers

    Google Scholar 

  • Yang F, Chen L (2016) Developing a thermal atlas for climate-responsive urban design based on empirical modeling and urban morphological analysis. Energy Build 111:120–130

    Article  Google Scholar 

  • Yang S-R, Lin T-P (2016) An integrated outdoor spaces design procedure to relieve heat stress in hot and humid regions. Build Environ 99:149–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, F., Chen, L. (2020). Urban Climates: Theories, Approaches, and Design Implications. In: High-Rise Urban Form and Microclimate. The Urban Book Series. Springer, Singapore. https://doi.org/10.1007/978-981-15-1714-3_2

Download citation

Publish with us

Policies and ethics