Skip to main content
  • 649 Accesses

Abstract

Nanotechnology is a vast growing research niche and has found its application in diverse fields. The vast applications include the environment, chemical, biological, electronics, medicine, and sports. The miniature size and high surface area of nanoparticles (NPs) do cause increased toxicological effects on various organisms. To know the effects of NPs exposure, the current chapter presents the various routes of exposures and its toxicity on different model systems. Different NPs can pass through the host system via the skin, olfactory route, respiratory tract, and oral route. The entry of these NPs in the following routes may be either during their production, use, intentional, or unintentional. The entry of NPs in the following routes may lead to negative biological effects. The key points for discussion in this chapter include the routes of exposure of different NPs and their toxicology impact at that particular point of entry and the target organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticles applications and human health. Clin Chim Acta 411:1841–1848

    Article  CAS  PubMed  Google Scholar 

  • Anttila S (1986) Dissolution of stainless steel welding fumes in the rat lung: an x ray microanalytical study. Br J Ind Med 43(9):592–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonini JM, Santamaria AB, Jenkins NT, Albini E, Lucchini R (2006) Fate of manganese associated with the inhalation of welding fumes: potential neurological effects. Neurotoxicology 27(3):304–310

    Article  CAS  PubMed  Google Scholar 

  • Bengtson S, Kling K, Madsen AM, Noergaard AW, Jacobsen NR, Clausen PA, Alonso B, Pesquera A, Zurutuza A, Ramos R, Okuno H, Dijon J, Wallin H, Vogel U (2016) No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environ Mol Mutagen 57(6):469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bräu M, Ma-Hock L, Hesse C, Nicoleau L, Strauss V, Treumann S, Wiench K, Landsiedel R, Wohlleben W (2012) Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks. Arch Toxicol 86(7):1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Bugata LSP, Venkata PP, Gundu AR, Fazlur RM, Reddy UA, Kumar JM, Mekala VR, Bojja S, Mehboob M (2019) Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J Appl Toxicol 39(5):702–716

    Article  CAS  PubMed  Google Scholar 

  • Calderón-Garcidueñas L, Azzarelli B, Acuña H, Gambling TM, Monroy S, Tizapantzi MR, Carson JL, Villarreal-Calderon A, Rewcastle B (2002) Air pollution and brain damage. Toxicol Pathol 30(3):373–389

    Article  PubMed  Google Scholar 

  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20(13):2393–2395

    Article  CAS  PubMed  Google Scholar 

  • Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, Adami J, Apostoli P, De Palma G, Bovenzi M, Campanini M, Filon F (2015) Titanium dioxide nanoparticle penetration into the skin and effects on HaCaT cells. Int J Environ Res Public Health 12(8):9282–9297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dąbrowska-Bouta B, Sulkowski G, Frontczak-Baniewicz M, Skalska J, Sałek M, Orzelska-Górka J, Strużyńska L (2018) Ultrastructural and biochemical features of cerebral microvessels of adult rat subjected to a low dose of silver nanoparticles. Toxicology 408:31–38

    Article  CAS  PubMed  Google Scholar 

  • Dąbrowska-Bouta B, Sulkowski G, Strużyński W, Strużyńska L (2019) Prolonged exposure to silver nanoparticles results in oxidative stress in cerebral myelin. Neurotox Res 35(3):495–504

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, Badetti E, Marcomini A, Gosens I, Cassee FR (2018) Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicol 13(1):50–72

    Article  CAS  Google Scholar 

  • Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhal Toxicol 14(1):5–27

    Article  CAS  PubMed  Google Scholar 

  • Dorman DC, Struve MF, Marshall MW, Parkinson CU, James RA, Wong BA (2006) Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicol Sci 92(1):201–210

    Article  CAS  PubMed  Google Scholar 

  • Dumala N, Mangalampalli B, Chinde S, Kumari SI, Mahoob M, Rahman MF, Grover P (2017) Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis 32(4):417–427

    Article  CAS  PubMed  Google Scholar 

  • Dumala N, Mangalampalli B, Kalyan Kamal SS, Grover P (2019) Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: a histological and biochemical perspective. J Appl Toxicol 39(7):1012–1029

    Article  CAS  PubMed  Google Scholar 

  • Gosens I, Post JA, de la Fonteyne LJ, Jansen EH, Geus JW, Cassee FR, de Jong WH (2010) Impact of agglomeration state of nano-and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 7(1):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greish K, Alqahtani AA, Alotaibi AF, Abdulla AM, Bukelly AT, Alsobyani FM, Alharbi GH, Alkiyumi IS, Aldawish MM, Alshahrani TF, Pittala V, Taurin S, Kamal M (2019) The effect of silver nanoparticles on learning, memory and social interaction in BALB/C mice. Int J Environ Res Public Health 16(1):148

    Article  CAS  PubMed Central  Google Scholar 

  • Hadrup N, Sharma AK, Loeschner K (2018) Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol 98:257–267

    Article  CAS  PubMed  Google Scholar 

  • Hayes A, Bakand S (2010) Inhalation toxicology. In: Molecular, clinical and environmental toxicology. Birkhäuser, Basel, pp 461–488

    Chapter  Google Scholar 

  • Henson TE, Navratilova J, Tennant AH, Bradham KD, Rogers KR, Hughes MF (2019) In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicol 13(6):795–811

    Article  CAS  Google Scholar 

  • Hopkins LE, Patchin ES, Chiu PL, Brandenberger C, Smiley-Jewell S, Pinkerton KE (2014) Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology 8(8):885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes AM, Song Z, Moghimi HR, Roberts MS (2016) Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations. ACS Nano 10(2):1810–1819

    Article  CAS  PubMed  Google Scholar 

  • Hurbánková M, Volkovová K, Wimmerová S, Henčeková D, Moricová Š (2018) Respiratory toxicity of TiO2 nanoparticles after intravenous instillation: an experimental study. Cent Eur J Public Health 26(3):177–182

    Article  PubMed  Google Scholar 

  • ICRP (International Commission on Radiological Protection) (1994) Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Ann. ICRP 24:1–3

    Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon JH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20(6):575–583

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Jeong MS, Kim DY, Her S, Wie MB (2015) Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 90:204–214

    Article  CAS  PubMed  Google Scholar 

  • Koohi MK, Hejazy M, Asadi F, Asadian P (2011) Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits. J Phys 304(1):012028

    Google Scholar 

  • Kumari M, Kumari SI, Grover P (2014a) Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis 29(6):467–479

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Kumari SI, Kumari M, Kumari SI, Kamal SSK, Grover P (2014b) Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure. Mutat Res Genet Toxicol Environ Mutagen 775:7–19

    Article  CAS  PubMed  Google Scholar 

  • Kuwagata M, Kumagai F, Saito Y, Higashisaka K, Yoshioka Y, Tsutsumi Y (2017) Permeability of skin to silver nanoparticles after epidermal skin barrier disruption in rats. Fund Toxicol Sci 4(3):109–119

    Article  CAS  Google Scholar 

  • Landsiedel R, Fabian E, Ma-Hock L, Wohlleben W, Wiench K, Oesch F, van Ravenzwaay B (2012) Toxico-/biokinetics of nanomaterials. Arch Toxicol 86(7):1021–1060

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Gehret PM, Hoff RE, Kelly LP, Suh WH (2019) The investigation into the toxic potential of iron oxide nanoparticles utilizing rat pheochromocytoma and human neural stem cells. Nano 9(3):453

    CAS  Google Scholar 

  • Mohammed YH, Holmes A, Haridass IN, Sanchez WY, Studier H, Grice JE, Benson HAE, Roberts MS (2019) Support for the safe use of zinc oxide nanoparticle sunscreens: lack of skin penetration or cellular toxicity after repeated application in volunteers. J Invest Dermatol 139(2):308–315

    Article  CAS  PubMed  Google Scholar 

  • Mohanan PV, Syama S, Sabareeswaran A, Sreekanth PJ, Varma HK (2014) Molecular toxicity of dextran coated ferrite nanoparticles after dermal exposure to Wistar rats. J Toxicol Health 104:406–422

    Google Scholar 

  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64(9):609–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow PE (1988) Possible mechanisms to explain dust overloading of the lungs. Toxicol Sci 10(3):369–384

    Article  CAS  Google Scholar 

  • Nasirzadeh N, Azari MR, Rasoulzadeh Y, Mohammadian Y (2019) An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol Ind Health 35(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445

    Article  CAS  PubMed  Google Scholar 

  • Oyabu T, Myojo T, Lee BW, Okada T, Izumi H, Yoshiura Y, Tomonaga T, Li YS, Kawai K, Shimada M, Kubo M, Yamamoto K, Kawaguchi K, Sasaki T, Morimoto Y (2017) Biopersistence of NiO and TiO2 nanoparticles following Intratracheal instillation and inhalation. Int J Mol Sci 18(12):2757

    Article  CAS  PubMed Central  Google Scholar 

  • Pal A, Alam S, Chauhan LK, Saxena PN, Kumar M, Ansari GN, Singh D, Ansari KM (2016) UVB exposure enhanced the dermal penetration of zinc oxide nanoparticles and induced inflammatory responses through oxidative stress mediated by MAPKs and NF-κB signaling in SKH-1 hairless mouse skin. Toxicol Res 5(4):1066–1077

    Article  CAS  Google Scholar 

  • Pauluhn J (2009) Comparative pulmonary response to inhaled nanostructures: considerations on test design and endpoints. Inhal Toxicol 21(sup1):40–54

    Article  CAS  PubMed  Google Scholar 

  • Raju G, Katiyar N, Vadukumpully S, Shankarappa SA (2018) Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. J Dermatol Sci 89(2):146–154

    Article  CAS  PubMed  Google Scholar 

  • Sahu SC, Hayes AW (2017) Toxicity of nanomaterials found in human environment: a literature review. Toxicol Res Appl 1:1–13

    Google Scholar 

  • Savolainen K (2013) Nanosafety in Europe 2015-2025: towards safe and sustainable nanomaterials and nanotechnology innovations. Finnish Institute of Occupational Health

    Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2011) Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7(1):98–99

    Article  CAS  PubMed  Google Scholar 

  • Srikanth K, Pereira E, Duarte AC, Rao JV (2016) Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma 253(3):873–884

    Article  CAS  PubMed  Google Scholar 

  • Srikanth K, Trindade T, Duarte AC, Pereira E (2017) Cytotoxicity and oxidative stress responses of silica-coated iron oxide nanoparticles in CHSE-214 cells. Environ Sci Pollut Res 24(2):2055–2064

    Article  CAS  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy NP (2011) Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 205(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Human Exp Toxicol 31(11):1113–1131

    Article  CAS  Google Scholar 

  • Sruthi S, Mohanan PV (2015) Investigation on cellular interactions of astrocytes with zinc oxide nanoparticles using rat C6 cell lines. Colloids Surf B Biointerfaces 133:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sunderman FW (2001) Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann Clin Lab Sci 31(1):3–24

    CAS  PubMed  Google Scholar 

  • Sudhakaran S, Athira SS, Mohanan PV (2019) Zinc oxide nanoparticle induced neurotoxic potential upon interaction with primary astrocytes. Neurotoxicol 73:213–227

    Article  CAS  Google Scholar 

  • Sykes EA, Dai Q, Tsoi KM, Hwang DM, Chan WC (2014) Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nat Commun 5:3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachogianni T, Fiotakis K, Loridas S, Perdicaris S, Valavanidis A (2013) Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer. Lung Cancer 4:71

    PubMed  Google Scholar 

  • Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185

    Article  CAS  PubMed  Google Scholar 

  • Węsierska M, Dziendzikowska K, Gromadzka-Ostrowska J, Dudek J, Polkowska-Motrenko H, Audinot JN, Kruszewski M (2018) Silver ions are responsible for memory impairment induced by oral administration of silver nanoparticles. Toxicol Lett 290:133–144

    Article  CAS  PubMed  Google Scholar 

  • Yousef MI, Mutar TF, Kamel MAEN (2019) Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep 6:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Aquino GV, Dabi A, Bruce ED (2019) Assessing the translocation of silver nanoparticles using an in vitro co-culture model of human airway barrier. Toxicol In Vitro 56:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Luo Z, Zheng C, Li J, Zeng J, Yang H, Chen J, Jin Y, Aschner M, Wu S, Zhang Q, Li H (2019) Comparison of the neurotoxicity associated with cobalt nanoparticles and cobal chloride in Wistar rats. Toxicol Appl Pharmacol 369:90–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is thankful to FCT for research funding to Srikanth K (SFRH/BPD/79490/2011) and to the University of Aveiro Research Institute (CESAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koigoora Srikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srikanth, K. (2020). Routes of Exposures and Toxicity of Nanoparticles. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_13

Download citation

Publish with us

Policies and ethics