Skip to main content

Insecticidal Activity of Nanoparticles and Mechanism of Action

  • Chapter
  • First Online:
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles

Abstract

The growth of population in the world and the requirement for food have urged the need to optimize the agriculture practices with minimal loss on fields. This can be achieved by the application of insecticides and pesticides. However, long-term application of these compounds has encountered serious environmental concerns of insecticide and pesticide resistance in plants and environmental deterioration. This has led to the ban of numerous deadly pesticides. However, this problem could be overcome with the development of various biological pest control agents. In recent years, nanotechnology has picked up prevalence at a fast pace in various field and disciplines with special mention in environmental and agricultural systems. In this regard, application of various nanoparticles has attracted many researchers worldwide to investigate and test their toxic potential against various insects and pests. Owing to the advantages, that is, affordability, availability, and easy synthesis, numerous inorganic and organic nanoparticles/composites, namely, titanium, gold, silver, silica, titanium dioxide, zinc oxide, iron and carbon, etc., have been successfully targeted against extensive range of noxious arthropods and agricultural pests and vectors. Therefore, the present chapter deals on different nanobased formulations employed against insects and pests, along with their mechanism of action. Based on many research reports, nanoparticles have been recognized as excellent candidates to combat insects and pests with their proven toxicity against mosquitoes and ticks. In addition, they are capable of exhibiting their toxicity at different stages of insects and pests. However, implementation of nanotechnology in agriculture, particularly in pest control, needs to be carefully evaluated to benefit the agricultural sector and the public health concerns of nanotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103

    Article  CAS  PubMed  Google Scholar 

  • Alavanja MC (2009) Introduction: pesticides use and exposure, extensive worldwide. Rev Environ Health 24(4):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):53186

    Article  CAS  Google Scholar 

  • Arun Prasad M, Madhavan J, Murugan K (2018) Recent advances in hydrogen evolution reaction electrocatalysts on carbon/carbon-based supports. J Power Sources 398:9–26

    Article  CAS  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pestic Sci 91(1):1–15

    Article  Google Scholar 

  • Banumathi B, Vaseeharan B, Ramachandran I, Marimuthu Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116:1637–1651

    Article  PubMed  Google Scholar 

  • Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E (2019) Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomed Nanotechnol Biol Med 18:221–233

    Article  CAS  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083

    Article  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34

    Article  PubMed  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25(13):12329–12341

    Article  CAS  Google Scholar 

  • Benelli G, Lukehart CM (2017) Special issue: applications of green synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28(1):1–2

    Article  CAS  Google Scholar 

  • Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manag 61:80–89

    Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22

    Article  CAS  Google Scholar 

  • Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, Sengodan K, Pachiappan P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (hub.). Pest Biochem Physiol 149:26–36

    Article  CAS  Google Scholar 

  • Choudhary S, Yamini NR, Yadav SK, Amit Sharma MK (2018) A review: pesticide residue: cause of many animal health problems. J Entomol Zool Study 6(3):330–333

    Google Scholar 

  • Culliney TW (2014) Crop losses to arthropods. In: Pimentel D, Peshin R (eds) Integrated pest management, vol 3. Springer, Dordrechi, The Netherland, pp 201–225

    Chapter  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pestic Sci 84(1):99–105

    Article  Google Scholar 

  • Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxicnanocides. Powder Technol 221:252–256

    Article  CAS  Google Scholar 

  • Delaplane KS (2000) Pesticide usage in the United States: history, benefits, risks, and trends. Cooperative extension service bulletin 1121. University of Georgia, Athens

    Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

    Google Scholar 

  • Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mater 305:30–40

    Article  CAS  PubMed  Google Scholar 

  • Elango G, Selvaraj MR, Kasinathan ID, Kuppusamy E, Naif AA, Mariadhas VA (2016) Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J Photochem Photobiol 162:162–167

    Article  CAS  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155(2):155–160

    Article  CAS  Google Scholar 

  • Eyssa HM, Sawires SG, Senna MM (2018) Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored-product insect pests. J Vinyl Addit Technol 25(S1):E120–E129

    Article  CAS  Google Scholar 

  • Ezhumalai P, Nandhagopal M, Ravichandran R, Narayanasamy M (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:e00297

    Article  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567

    Article  CAS  PubMed  Google Scholar 

  • Ganesh E, Selvaraj MR, Naif AA, Mariadhas VA, Kasinathan ID, Kuppusamy E (2016) Coir mediated instant synthesis of Ni-Pd nanoparticles and its significance over larvicidal, pesticidal and ovicidal activities. J Mol Liq 223:1249–1255

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Gupta H (2018) Role of Nanocomposites in agriculture. Nano Hybrid Composit 20:81–89

    Article  Google Scholar 

  • Hajra A, Dutta S, Mondal NK (2016) Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J Parasit Dis 40(4):1519–1527

    Article  PubMed  Google Scholar 

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol 178:249–258

    Article  CAS  Google Scholar 

  • Jayaraman T, Murthy AP, Elakkiya V, Chandrasekaran S, Nithyadharseni P, Khan Z, Senthil RA, Shanker R, Raghavender M, Kuppusami P, Jagannathan M, Ashokkumar M (2018) Recent development on carbon based heterostructures for their applications in energy and environment. J Indus Eng Chem 64:16–59

    Article  CAS  Google Scholar 

  • Jia X, Sheng WB, Li W, Tong YB, Liu ZY, Zhou F (2014) Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl Mater Interfaces 6:19552

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Safe Environ Prot 109:82–96

    Article  CAS  Google Scholar 

  • Kantrao S, Ravindra MA, Akbar SMD, Jayanthi PDK, Venkataraman A (2017) Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): interaction with midgut protease. J Asia Pac Entomol 20(2):583–589

    Article  Google Scholar 

  • Kaushik P, Shakil NA, Kumar J, Singh MK, Yadav SK (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48:677–685

    Article  CAS  PubMed  Google Scholar 

  • Khooshe-Bast Z, Sahebzadeh N, Ghaffari-Moghaddam M, Mirshekar A (2016) Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric Slov 107(2):299–309

    Article  CAS  Google Scholar 

  • Ki HY, Kim JH, Kwon SC, Jeong SH (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42:8020–8024

    Article  CAS  Google Scholar 

  • Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40(8):913–922

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Plant soil microbes. Springer, Cham, pp 253–269

    Chapter  Google Scholar 

  • Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol Biol 174:306–314

    Article  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Jayaseelan S, Kirthi AV, Santhoshkumar T, Velayutham K, Bagavan A, Kamaraj C, Elango G, Iyappan M, Siva C (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med 6(9):682–688

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582

    Article  CAS  Google Scholar 

  • Martins CHZ, de Sousa M, Fonseca LC, Stéfani D, Martinez T, Alves OL (2019) Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere 215:766–774

    Article  CAS  PubMed  Google Scholar 

  • Milivojević T, Glavan G, Božič J, Sepčić K, Mesarič T, Drobne D (2015) Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120:547–554

    Article  CAS  PubMed  Google Scholar 

  • Mommaerts V, Jodko K, Thomassen LC, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicol 6(5):554–561

    Google Scholar 

  • Mostafa WA, Elgazzar E, Beall GW, Rashed SS, Rashad EM (2018) Insecticidal effect of zinc oxide and aluminum oxide nanoparticles synthesized by co-precipitation technique on Culex quinquefasciatus larvae (Diptera: Culicidae). Int J Appl Res 4(4):290–297

    Google Scholar 

  • Murugan K, Anitha J, Suresh U, Rajaganesh R, Panneerselvam C, Tseng LC, Kalimuthu K, Alsalhi MS, Devanesan S, Nicoletti M, Sarkar SK (2017) Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia 797(1):335–350

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J et al (2016) Fabrication of nano-mosquitocides using chitosan from crab shells: impact on nontarget organisms in the aquatic environment. Ecotoxicol Environ Saf 132. https://doi.org/10.1016/j.ecoenv.2016.06.021

  • Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A (2018) Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res 25(11):10504–10514

    Article  CAS  Google Scholar 

  • Murugan K, Jaganathan A, Rajaganesh R, Suresh U, Madhavan J, Senthil-Nathan S, Rajasekar A, Higuchi A, Kumar SS, Alarfaj AA, Nicoletti M (2018a) Poly (styrene sulfonate)/poly (allylamine hydrochloride) encapsulation of TiO2 nanoparticles boosts their toxic and repellent activity against zika virus mosquito vectors. J Clust Sci 29(1):27–39

    Article  CAS  Google Scholar 

  • Murugan K, Madhavan J, Samidoss CM, Panneerselvam C, Malathi A, Rajasekar A, Pandiyan A, Kumar S, Alarfaj AA, Higuchi A, Gand B (2018b) Bismuth oxyiodide nanoflakes showed toxicity against the malaria vector anopheles stephensi and in vivo antiplasmodial activity. J Clust Sci 29(2):337–344

    Article  CAS  Google Scholar 

  • Nair PMG, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37

    Article  CAS  PubMed  Google Scholar 

  • Namasivayam KRS, Bharani ARS, Karunamoorthy K (2018) Insecticidal fungal metabolites fabricated chitosan nanocomposite (IM-CNC) preparation for the enhanced larvicidal activity - an effective strategy for green pesticide against economic important insect pests. Int J Biol Macromol 120:921–944

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pankaj VS, Shakil NA, Kumar J, Singh MK, Singh K (2012) Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Health B 47:520–528

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 5:540–545

    Article  CAS  Google Scholar 

  • Philbrook NA, Winn LM, Afrooz AN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257(3):429–436

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Chapter  Google Scholar 

  • Puoci F, Lemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3:299–314

    Article  Google Scholar 

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Microchim preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57

    Article  CAS  Google Scholar 

  • Ragaei M, Sabry AKH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA (2012) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res Vet Sci 93(1):303–309

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectros. Acta Trop 118(3):196–203

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Velayutham K, Ramyadevi J, Jeyasubramanian K, Marikani A, Elango G, Kamaraj C, Santhoshkumar T, Marimuthu S, Zahir AA (2013) Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites. Vet Parasitol 191(3–4):332–339

    Article  CAS  PubMed  Google Scholar 

  • Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored product insect control. J Stored Prod Res 44(2):126–135

    Article  CAS  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus Maculatus F. (Col.: Bruchidae). J Entomol Res 4:297–305

    Google Scholar 

  • Sabbour MM (2012) Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J Novel App Sci 1:103–108

    Google Scholar 

  • Sabbour MM, El-Aziz SA (2015) Efficacy of nano-diatomaceous earth against red flour beetle, Tribolium castaneum and confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae) under laboratory and storage conditions. Bull Env Pharmacol Life Sci 4(7):54–59

    CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Bagavan A, Marimuthu S, Jayaseelan C, Kirthi AV, Kamaraj C, Rajakumar G, Zahir AA, Elango G, Velayutham K, Iyappan M, Siva C, Karthik L, Bhaskara Rao KV (2012) Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp Parasitol 132:156–165

    Article  CAS  PubMed  Google Scholar 

  • Santo-Orihuela PL, Foglia ML, TargovnikAM MVM, Desimone MF (2016) Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 cells. Curr Pharm Biotechnol 17:465–470

    Article  CAS  PubMed  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–32

    Google Scholar 

  • Shahzad K, Manzoor F (2019) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 13:1–11

    Article  CAS  Google Scholar 

  • Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888

    Article  CAS  PubMed  Google Scholar 

  • Song MR, Cui SM, Gao F, Liu YR, Fan CL, Lei TQ, Liu DC (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37(3):258–260

    Article  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    CAS  PubMed  Google Scholar 

  • Stadler T, Lopez-Garcia GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70(1):17–25

    Google Scholar 

  • Street KW Jr, Miyoshi KW, Vander Wal RL (2007) Application of carbon based nano-materials to aeronautics and space lubrication. In: Superlubricity, pp 311–340. Elsevier. https://doi.org/10.1016/B978-044452772-1/50050-0

    Google Scholar 

  • Suganya P, Vaseeharan B, Vijayakumar S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B 173:404–411

    Article  CAS  PubMed  Google Scholar 

  • Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang J-S, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Greensynthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the nontarget mud crab Scylla serrata. Aquat Toxicol 188:100–108

    Article  CAS  PubMed  Google Scholar 

  • Sultana N, Raul PK, Goswami D, Das B, Gogoi HK, Raju PS (2018) Nanoweapon: control of mosquito breeding using carbon-dot-silver nanohybridas a biolarvicide. Environ Chem Lett 16(3):1017–1023

    Article  CAS  Google Scholar 

  • Sundararajan B, Kumari BR (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196

    Article  CAS  PubMed  Google Scholar 

  • Theerthagiri J, Madhavan J, Murugan K, Samidoss CM, Kumar S, Higuchi A, Benelli G (2017) Flower-like copper sulfide nanocrystals are highly effective against chloroquine-resistant Plasmodium falciparum and the malaria vector Anopheles stephensi. J Clust Sci 28(1):581–594

    Article  CAS  Google Scholar 

  • Tian JH, Hu JS, Li FC, Ni M, Li YY, Wang BB, Xu KZ, Shen WD, Li B (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open 5(6):764–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin VP (2006) Nanocarriers for drug delivery: needs and requirements. In: Torchilin VP (ed) Nanoparticles as drug carriers. Imperial College Press, London, pp 1–8

    Chapter  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    Article  CAS  PubMed  Google Scholar 

  • Web sources (2019) Web portal of ‘Directorate of Plant Protection Quarantine & Storage, Faridabad’ as on 19.03.2019. http://ppqs.gov.in/divisions/cib-rc/registered-products

  • Worrall E, Hamid A, Mody K, Mitter N, Pappu H (2018) Nanotechnology for plant disease management. Agronomy 8(12):285

    Article  CAS  Google Scholar 

  • Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B (2018) Titanium nanoparticles influence the Akt/tor signal pathway in the silkworm, Bombyx mori, silk gland. Arch Insect Biochem Physiol 99(1):21470

    Article  CAS  Google Scholar 

  • Yang D, Cui B, Wang C, Zhao X, Zeng Z, Wang Y, Sun C, Liu G, Cui H (2017) Preparation and characterization of Emamectin benzoate solid Nanodispersion. J Nanomater 2017:6560780

    Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yasur J, Usha Rani P (2013) Environmental effects of nano silver: impact on castor seed germination, seedling growth and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Article  CAS  Google Scholar 

  • Yasur J, Usha Rani P (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Yao J, Liang J, Zeng Z, Cui B, Zhao X, Sun C, Wang Y, Liu G, Cui H (2017) Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv 7:11271–11280

    Article  CAS  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102

    Google Scholar 

  • Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z (2017) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66(26):6504–6512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Thiruvalluvar University for providing laboratory space and facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saranya, S., Selvi, A., Babujanarthanam, R., Rajasekar, A., Madhavan, J. (2020). Insecticidal Activity of Nanoparticles and Mechanism of Action. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_12

Download citation

Publish with us

Policies and ethics