Skip to main content

Understanding the Biological Activities of Nanoparticles Using Murine Models

  • Chapter
  • First Online:
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles

Abstract

The advent of nanotechnological interventions in the biomedical and pharmaceutical sectors has revolutionized the current therapeutic strategies by significantly complementing the conventional approaches. Deciphering the widespread biomedical potential of engineered nanomaterials, it is highly important to develop potential model systems. Among the different model systems used to study the biological evaluations of nanomaterials, in vivo model systems gained considerable attention. Among the various in vivo model systems, exploitation of murine models including experimental rats and mice is frequently being used owing to their phylogenetic relatedness to human system, their ability to decipher the biodistribution and bioavailability profile of administered drug candidates, and their ability to determine the different physiological and biochemical responses following the therapeutic administration. Though the limitations such as ethical considerations and other technical issues are frequently being questioned on the use of the animal models in scientific research, the use of murine models remains highly essential in finding the scientific purposes as promising alternative model systems are not available in the current scenario. In this context, murine models are being exploited to decipher the extensive biomedical applications such as antimicrobial, anti-infectives, anti-biofilm, anticancer, wound healing, radioprotective, and anti-diabetic potential of engineered nanomaterials. The nano-based platforms not only provided the widespread biomedical applications but also complemented the therapeutic efficacy of antibiotics and other drug candidates as evidenced from the in vivo studies. This chapter summarizes the advent of nanotechnological platforms in the field of biomedicines thereby improving the therapeutic efficacy of antibiotics and other drug candidates. The use of experimental murine models in understanding the biomedical potential of the engineered nanomaterials is also described in this chapter. This chapter will provide an in-depth understanding of utilizing appropriate model systems to decipher the biological properties of various nanomaterials and the drug-encapsulated nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah NM, Noaman E, Eltahawy NA, Badawi AM, Kandil E, Mansour NA, Mohamed HE (2016) Anticancer and radiosensitization efficacy of nanocomposite Withania somnifera extract in mice bearing tumor cells. Asian Pac J Cancer Prev 17(9):4367–4375

    PubMed  Google Scholar 

  • Aderibigbe BA (2017) Metal-based nanoparticles for the treatment of infectious diseases. Molecules 22:1370

    Article  CAS  PubMed Central  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M (2018) Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxidative Med Cell Longev 2018:7496936

    Article  CAS  Google Scholar 

  • Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6(5):815–835

    Article  CAS  PubMed  Google Scholar 

  • Al-Quraishy S, Dkhil MA, Moneim AEA (2015) Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine 10:6741–6756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aprotosoaie AC, Trifan A, Gille E, Petreus T, Bordeianu G, Miron A (2015) Can phytochemicals be a bridge to develop new radioprotective agents? Phytochem Rev 14:555–566

    Article  CAS  Google Scholar 

  • Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N, Sharma RK (2005) Radioprotection by plant products: present status and future prospects. Phytother Res 19(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi S (2013) Beginning and possibly the end of the antibiotic era. J Paediatr Child Health 49:E179–E182

    Article  PubMed  Google Scholar 

  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003

    Article  CAS  Google Scholar 

  • Baptista PV, McCusker MP, Carvalho A, Fereira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria- “a battle of the titans”. Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Barre-Sinoussi F, Montagutelli X (2015) Animal models are essential to biological research: issues and perspectives. Future Sci OA 1(4):FSO63

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Mukherjee D, Mishra R, Kundu PP (2016) Development of pH sensitive polyurethane–alginate nanoparticles for safe and efficient oral insulin delivery in animal models. RSC Adv 6:41835–41846

    Article  CAS  Google Scholar 

  • Biel MA, Sievert C, Usacheva M, Teichert M, Wedell E, Loebel N, Rose A, Zimmermann R (2011) Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg Med 43:586–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Borran AA, Aghanejad A, Farajollahi A, Barar J, Omidi Y (2018) Gold nanoparticles for radiosensitizing and imaging of cancer cells. Radiat Phys Chem 152:137–144

    Article  CAS  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Lee SS (2016) Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 14:65

    Article  CAS  Google Scholar 

  • Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS (2014) Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 78:88–104

    Article  CAS  PubMed  Google Scholar 

  • Chen DWC, Liao JY, Liu SJ, Chan EC (2012) Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int J Nanomedicine 7:763–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chereddy KK, Vandermeulen G, Preat V (2016) PLGA based drug delivery systems: promising carriers for wound healing activity. Wound Repair Regen 24:223–236

    Article  PubMed  Google Scholar 

  • Colino CI, Millan CG, Lanao JM (2018) Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int J Mol Sci 19:1627

    Article  CAS  PubMed Central  Google Scholar 

  • Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C (2017) Radiosensitization by gold nanoparticles: will they ever make it to the clinic? Radiother Oncol 124:344–356

    Article  CAS  PubMed  Google Scholar 

  • Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, Chen YL, Pei DS (2014) Zebrafish as a model system to study toxicology. Environ Toxicol Chem 33(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Das S, Neal CJ, Ortiz J, Seal S (2018) Engineered nanoceria cytoprotection in vivo: mitigation of reactive oxygen species and double-stranded DNA breakage due to radiation exposure. Nanoscale 10:21069–21075

    Article  CAS  PubMed  Google Scholar 

  • Dhas TS, Kumar VG, Karthick V, Vasanth K, Singaravelu G, Govindaraju K (2016) Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzym Microb Technol 95:100–106

    Article  CAS  Google Scholar 

  • Donahue ND, Acar H, Wilhelm S (2019) Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 143:68–96. https://doi.org/10.1016/j.addr.2019.04.008

  • Dos Santos Ramos MA, Da Silva PB, Sposito L, De Toledo LG, Bonifacio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM (2018) Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 13:1179–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escarega-Gonzalez CE, Garza-Cervantes JA, Vazquez-Rodriguez A, Montelongo-Peralta Z, Trevino-Gonzalez MT, Castro EDB, Saucedo-Salazar EM, Morales RMC, Soto DIR, Gonzalez FMT, Rosales JLC, Cruz RV, Morones-Ramirez JR (2018) In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int J Nanomedicine 13:2349–2363

    Article  Google Scholar 

  • Fako VE, Furgeson DY (2009) Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478–486

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Xia D, Zhu Q, Hu L, Gan Y (2016) Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov Today 21(5):856–863

    Article  CAS  PubMed  Google Scholar 

  • Fehr A, Eshwar AK, Neuhauss SCF, Ruetten M, Lehner A, Vaughan L (2015) Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis. Emerg Microbes Infect 4:e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friberg S, Nystrom AM (2016) Nanomedicine: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnol 14:17

    Article  CAS  Google Scholar 

  • Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378

    Article  PubMed  Google Scholar 

  • Gong CY, Wu Q, Wang Y, Zhang DD, Luo F, Zhao X, Wei YQ, Qian ZY (2013) A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34:6377–6387

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Moragas L, Maurer LL, Harms VM, Meyer JN, Laromaine A, Roig A (2017) Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans. Mater Horiz 4(5):719–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Singh A, Khan AU (2017) Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 12:454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis G, Lamont RJ, Graves DT (2015) The enduring importance of animal models in understanding periodontal disease. Virulence 6(3):229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Central Sci 3:163–175

    Article  CAS  Google Scholar 

  • Han G, Nguyen LN, Macherla C, Chi Y, Friedman JM, Nosanchuk JD, Martinez LR (2012) Nitric oxide–releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol 180(4):1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Her S, Jaffary DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101

    Article  CAS  PubMed  Google Scholar 

  • Hu CC, Wu GH, Lai SF, Shanmugam MM, Hwu Y, Wagner OI, Yen TJ (2018) Toxic effects of size-tunable gold nanoparticles on Caenorhabditis elegans development and gene regulation. Sci Rep 8:15245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential applications. Biotechnol Lett 38:545–560

    Article  CAS  PubMed  Google Scholar 

  • Hussain Z, Thu HE, Ng SF, Khan S, Katas H (2017) Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: a review of new trends and state-of-the-art. Colloids Surf B Biointerfaces 150:223–241

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:1062562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9(2):101–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karami M, Asri-Rezaei S, Dormanesh B, Nazarizadeh A (2018) Comparative study of radioprotective effects of selenium nanoparticles and sodium selenite in irradiation-induced nephropathy of mice model. Int J Radiat Biol 94(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K (2014) Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—an in vivo approach. Colloids Surf B Biointerfaces 122:505–511

    Article  CAS  PubMed  Google Scholar 

  • Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, Mousa SA, Mukhtar H (2014) Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35(2):415–423

    Article  CAS  PubMed  Google Scholar 

  • Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloid Surf B Biointerfaces 146:70–83

    Article  CAS  PubMed  Google Scholar 

  • Kim MH (2016) Nanoparticle-based therapies for wound biofilm infection: opportunities and challenges. IEEE Trans Nanobioscience 15(3):294–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Yamayoshi I, Mathew S, Lin H, Nayfach J, Simon SI (2013) Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 41(3):598–609

    Article  PubMed  Google Scholar 

  • Kohnken R, Porcu P, Mishra A (2017) Overview of the use of murine models in leukemia and lymphoma research. Front Oncol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman JM, Nosanchuk JD, Friedman AJ (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed Nanotechnol Biol Med 11:195–206

    Article  CAS  Google Scholar 

  • Krokosz A, Lichota A, Nowak KE, Grebowski J (2016) Carbon nanoparticles as possible radioprotectors in biological systems. Radiat Phys Chem 128:143–150

    Article  CAS  Google Scholar 

  • Kumar S, Meena R, Rajamani P (2016) Fabrication of BSA−green tea polyphenols−chitosan nanoparticles and their role in radioprotection: a molecular and biochemical approach. J Agric Food Chem 64(30):6024–6034

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7:243–256

    Article  CAS  Google Scholar 

  • Leaper D, Assadian O, Edmiston CE (2015) Approach to chronic wound infections. Br J Dermatol 173(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4:457–463

    Article  CAS  PubMed  Google Scholar 

  • Lorenz A, Pawar V, Haussler S, Weiss S (2016) Insights into host–pathogen interactions from state-of-theart animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 590:3941–3959

    Article  CAS  PubMed  Google Scholar 

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  PubMed  Google Scholar 

  • Markow TA (2015) The secret lives of Drosophila flies. elife 4:e06793

    Article  PubMed Central  Google Scholar 

  • Marta T, Luca S, Serena M, Luisa F, Fabio C (2016) What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? Promising scenarios for the near future. J Nanomater 2016:5436458

    Article  CAS  Google Scholar 

  • Meng H, Leong W, Leong KW, Chen C, Zhao Y (2018) Walking the line: the fate of nanomaterials at biological barriers. Biomaterials 174:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millenbaugh NJ, Baskin JB, DeSilva MN, Elliott WR, Glickman RD (2015) Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomedicine 10:1953–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira A, Simon-Soro A, Curtis MA (2017) Role of microbial communities in the pathogenesis of periodontal diseases and caries. J Clin Periodontol 44:S23–S38

    Article  PubMed  Google Scholar 

  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22(12):1825–1834

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AI, El-Assal MIA, Kassem MA, Ahmed OAA (2013) Nanoparticles improved drug radio protective activity. J Appl Pharmaceut Sci 3(07):072–080

    Google Scholar 

  • Moran CJ, Ramesh A, Brama PAJ, O’Byrne JM, O’Brien FJ, Levingstone TJ (2016) The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthopaed 3:1

    Article  Google Scholar 

  • Mostafavi E, Soltantabar P, Webster TJ (2019) Nanotechnology and picotechnology: a new arena for translational medicine. Biomater Translat Med:191–212

    Google Scholar 

  • Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharmaceut Sci 10(3):203–211

    Google Scholar 

  • Omar A, Wright JB, Schultz G, Burrell R, Nadworny P (2017) Microbial biofilms and chronic wounds. Microorganisms 5(1):9

    Article  CAS  PubMed Central  Google Scholar 

  • Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L, Nagy A, Decea N, Kiss ML, Filip GA (2017) The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf B Biointerfaces 150:192–200

    Article  CAS  PubMed  Google Scholar 

  • Painuli S, Kumar N (2016) Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India. J Ayurveda Integr Med 7:62–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed Nanotechnol Biol Med 10:1195–1208

    Article  CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  CAS  Google Scholar 

  • Pattnaik S, Barik S, Muralitharan G, Busi S (2018) Ferulic acid encapsulated chitosan tripolyphosphate nanoparticles attenuate quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. IET Nanobiotechnol 12(8):1056–1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Perlman RL (2016) Mouse models of human disease. Evol Med Public Health 2016(1):170–176

    PubMed  PubMed Central  Google Scholar 

  • Perumal V, Manickam T, Bang KS, Velmurugan P, Oh BT (2016) Antidiabetic potential of bioactive molecules coated chitosan nanoparticles in experimental rats. Int J Biol Macromol 92:63–69

    Article  CAS  PubMed  Google Scholar 

  • Prabhu S, Vinodhini S, Elanchezhiyan C, Rajeswari D (2018) Evaluation of antidiabetic activity of biologically synthesized silver nanoparticles using Pouteria sapota in streptozotocin-induced diabetic rats. J Diabetes 10(1):28–42

    Article  CAS  PubMed  Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Radermacher P, Haouzi P (2013) A mouse is not a rat is not a man: species-specific metabolic responses to sepsis - a nail in the coffin of murine models for critical care research? J Software Eng Res Dev 1:7

    Google Scholar 

  • Rageh MM, El-Gebaly RH (2018) Melanin nanoparticles: antioxidant activities and effects on γ-ray-induced DNA damage in the mouse. Mutat Res Genet Toxicol Environ Mutagen 828:15–22

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, Gaikwad S, Gupta I, Gade A, da Silva SS (2015) Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol 120:527–542

    Article  Google Scholar 

  • Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int 2016:1851242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39

    Article  CAS  PubMed  Google Scholar 

  • Rather IA, Kim BC, Bajpai VK, Park YH (2017) Self-medication and antibiotic resistance: crisis, current challenges, and prevention. Saudi J Biol Sci 24:808–812

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy LH, Couvreur P (2011) Nanotechnology for therapy and imaging of liver diseases. J Hepatol 55:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Said SS, El-Halfawy OM, El-Gowelli HM, Aloufy AK, Boraei NA, El-Khordagui LK (2012) Bioburden-responsive antimicrobial PLGA ultrafine fibers for wound healing. Eur J Pharm Biopharm 80:85–94

    Article  CAS  PubMed  Google Scholar 

  • Sakhtianchi R, Minchin RF, Lee KB, Alkilany AM, Serpooshan V, Mahmoudi M (2013) Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interf Sci 201-202:18–29

    Article  CAS  Google Scholar 

  • Sankar R, Dhivya R, Shivashangari KS, Ravikumar V (2014) Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar albino rats. J Mater Sci Mater Med 25(7):1701–1708

    Article  CAS  PubMed  Google Scholar 

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B Biointerfaces 108:80–84

    Article  CAS  PubMed  Google Scholar 

  • Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD (2018) Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cell Nanomed Biotechnol 46(1):211–222

    Article  CAS  Google Scholar 

  • Scalise ML, Arrua EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE (2016) Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model: In-vitro and In-vivo studies. Am J Trop Med Hyg 95(2):388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengottaiyan A, Aravinthan A, Sudhakar C, Selvam K, Srinivasan P, Govarthanan M, Manoharan K, Selvankumar T (2017) Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J Nanostruct Chem 6(1):41–48

    Article  CAS  Google Scholar 

  • Shanker K, Mohan GK, Hussain MA, Jayarambabu N, Pravallika PL (2017a) Green biosynthesis, characterization, in vitro antidiabetic activity, and investigational acute toxicity studies of some herbal-mediated silver nanoparticles on animal models. Pharmacogn Mag 13(49):188–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker K, Naradala J, Mohan GK, Kumar GS, Pravallika PL (2017b) A sub-acute oral toxicity analysis and comparative in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. RSC Adv 7:37158–37167

    Article  CAS  Google Scholar 

  • Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Iriti M (2014) Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann Med Health Sci Res 4(6):863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42:1–7

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Stortz JA, Raymond SL, Mira JC, Moldawer LL, Mohr AM, Efron PA (2017) Murine models of sepsis and trauma: can we bridge the gap? ILAR J 58(1):90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subhaswaraj P, Barik S, Macha C, Chiranjeevi PV, Siddhardha B (2018) Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. LWT- Food Sci Technol 97:752–759

    Article  CAS  Google Scholar 

  • Subhaswaraj P, Syed A, Siddhardha B (2019) Novel nanotherapeutics as next-generation anti-infective agents: current trends and future prospective. Curr Drug Discov Technol. https://doi.org/10.2174/1570163816666190715120708

  • Sudheesh Kumar PT, Lakshmanan VK, Raj M, Biswas R, Hiroshi T, Nair SV, Jayakuamar R (2013) Evaluation of wound healing potential of β-chitin hydrogel/Nano zinc oxide composite bandage. Pharm Res 30:523–537

    Article  CAS  Google Scholar 

  • Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47:273–279

    Article  CAS  Google Scholar 

  • Swearengen JR (2018) Choosing the right animal model for infectious disease research. Animal Model Exp Med 1:100–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolwinski NS (2017) Introduction: drosophila-a model system for developmental biology. J Dev Biol 5:9

    Article  PubMed Central  Google Scholar 

  • Tran PA, Simpson NO, Palmer JA, Bock N, Reynolds EC, Webster TJ, Deva A, Morrison WA, O’Connor AJ (2019) Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomedicine 14:4613–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandamme TF (2014) Use of rodents as models of human disease. J Pharm Bioallied Sci 6(1):2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesna J, Danica J, Kamil K, Viktorija DS, Silva D, Sanja T, Ivana B, Zoran S, Zoran M, Dubravko B, Aleksandar D (2016) Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: Histopathological analysis. J Appl Biomed 14(4):285–297

    Article  Google Scholar 

  • Vyshnava SS, Kanderi DK, Panjala SP, Pandian K, Bontha RR, Goukanapalle PKR, Banaganapalli B (2016) Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an In silico approach. Appl Biochem Biotechnol 180:426–437

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Moser C, Wang HZ, Hoiby N, Song ZJ (2014) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7

    Article  CAS  PubMed Central  Google Scholar 

  • Xie J, Wang C, Zhao F, Gu Z, Zhao Y (2018) Application of multifunctional nanomaterials in radioprotection of healthy tissues. Adv Healthc Mater 7(20):e1800421

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Wang N, Dong X, Wang C, Du Z, Mei L, Yong Y, Huang C (2019) Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS Appl Mater Interfaces 11:2579–2590

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Yong Y, Dong X, Du J, Guo Z, Gong L, Zhu S, Tian G, Yu S, Gu Z, Zhao Y (2017) Therapeutic nanoparticles based on curcumin and bamboo charcoal nanoparticles for chemo-photothermal synergistic treatment of cancer and radioprotection of normal cells. ACS Appl Mater Interfaces 9(16):14281–14291

    Article  CAS  PubMed  Google Scholar 

  • Xu PT, Maiment BW, Antonic V, Jackson IL, Das S, Zodda A, Zhang X, Seal S, Vujaskovic Z (2016) Cerium oxide nanoparticles: a potential medical countermeasure to mitigate radiation-induced lung injury in CBA/J mice. Radiat Res 185(5):516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Qin Z, Zeng W, Yang T, Cao Y, Mei C, Kuang Y (2017) Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev 6(3):279–289

    Article  CAS  Google Scholar 

  • Yu D, Li S, Wang S, Li X, Zhu M, Huang S, Sun L, Zhang Y, Liu Y, Wang S (2016) Development and characterization of VEGF165-chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar Drugs 14(10):182

    Article  CAS  PubMed Central  Google Scholar 

  • Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomed Nanotechnol Biol Med 13:2281–2301

    Article  CAS  Google Scholar 

  • Zuberi A, Lutz C (2016) Mouse models for drug discovery. Can new tools and technology improve translational power? ILAR J 57(2):178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pattnaik, S., Siddhardha, B. (2020). Understanding the Biological Activities of Nanoparticles Using Murine Models. In: Siddhardha, B., Dyavaiah, M., Kasinathan, K. (eds) Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-15-1702-0_11

Download citation

Publish with us

Policies and ethics