Skip to main content

Vitamin E-Based Nanomedicines for Anticancer Drug Delivery

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

Cancer is one of the leading causes of death throughout the world. It is defined as abnormal cell growth with the potential to invade or spread to other parts of the body [1]. Today, cancer is known as a dreadful disease with a death of 8.2 million people in cancer and 14.1 million diagnoses of new cancer cases worldwide in 2012. It is expected that the number of new cancer cases will reach 21.7 million in 2030. According to the food and nutrition report in 2003, in 30–40% cases, cancer is directly related to nutrition. Therefore, the use of chemopreventive agents such as vitamin E from nutritional source is an acceptable method to reduce the rate of cancer [2]. In most cases, conventional treatment methods, including chemo/surgical/radiation treatments, fail to target and treat the disease adequately. Recent progress in the field of tumor-directed nanotechnologies provides hope of treatment for cancer patients. Nanoparticle (NP)-based therapeutics can significantly improve the treatment outcomes of oncological diseases by increasing the tumor delivery of drugs and limiting off-target uptake [1, 3]. Nanomedicines are defined by the European Science Foundation as follow: “nanometer size scale complex systems, consisting of at least two components, one of which being the active ingredient.” Nanomedicines can increase drug function including efficacy, specificity, tolerability, and therapeutic index [4]. In other words, the loading of drugs into nanocarriers can make some advantages:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Taxol is a name for paclitaxel that is used clinically.

  2. 2.

    Taxol is a brand name of paclitaxel (PTX).

  3. 3.

    Drug-loading content

  4. 4.

    The concentration of drug needed to kill half amount of the cells

  5. 5.

    TC was used in this study as an abbreviation for α-tocopheryl succinate.

  6. 6.

    Poly(lactic-co-glycolic acid) nanoparticles

  7. 7.

    The poly(lactide)–vitamin E TPGS nanoparticles

  8. 8.

    Poly(lactic-co-glycolic acid)–montmorillonite nanoparticles

  9. 9.

    Taxotere is the trade name for docetaxel.

  10. 10.

    Folate decorated

Abbreviations

ABC:

ATPγ

AMF:

Alternative magnetic field

Ap:

Apigenin

AUC:

Area under the concentration−time curve

BBB:

Blood–brain barrier

BCT:

Breast conservation treatment

BMM:

Bone marrow derived macrophages

BTB:

Blood–tumor barrier

CA:

Chitosan

CA:

Cholic acid

CEHC:

Carboxyethylhydroxychromans

CLSM:

Confocal laser scanning microscopy

CMC:

Critical micelle concentration

CPT:

Camptothecin

Cremophor-EL:

Polyoxyethylated castor oil

CSO:

Chitosan oligosaccharide

DMAP:

4-dimethylamioprydine

DNPs:

Docetaxel loaded polymeric nanoparticles

DOPE:

Dioleoyl phosphatidyl ethanolamine

DOX:

Doxorobicin

DTX:

Docetaxel

DTX:

Marketed formulation of Docetaxel

EDC:

(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

EE:

Drug encapsulation efficiency

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention effect

ER:

Estrogen

FDA:

Food and Drug Administration

GAR:

Garcinol

GI:

Gastrointestinal

GMO:

Glyceryl monooleate

GSH:

Glutathione

HCPT:

10-Hydroxycamptothecin

IOs:

Nano-sized iron oxides

LC:

Drug-loading content

LUT:

Luteolin

MDR:

Multidrug resistance

MNPs:

Magnetic nanoparticles

MPS:

Mononuclear phagocyte system

MRP1:

Multidrug resistance protein 1

mTHPC:

Temoporfin

NIR:

Near-infrared

NLC:

Nanostructured lipid carriers

NO:

Nitric oxide

NONOates:

N-diazeniumdiolates

NP:

Nanoparticle

PAA:

Poly acrylic acid

PAMAM:

Poly (amidoamine)

PBS:

Phosphate-buffered saline

PCL:

Poly (ε-caprolactone)

PDT:

Photodynamic therapy

PEG:

Poly (ethylene glycol)

PF-TOS micelles:

TOS modified pluronic micelles

P-gp:

P-Glycoprotein

PLA:

Poly (lactide)

PLA–TPGS:

Poly (l-lactide)-vitamin E TPGS

PLGA:

Poly (lactide co-glycolide)

PR:

Progesterone

PTX:

Paclitaxel

QDs:

Quantum dots

RES:

Reticuloendothelial system

ROS :

Reactive oxygen species

RSNOs:

S-nitrosothiols

RT:

Radiation treatment

SA:

Succinic anhydride

SC:

Solvent casting

SESD:

Spontaneous emulsification solvent-diffusion method

Taxotere®:

Clinical DTX formulation

TC:

Terephthaloyl chloride

TCOsomes:

α-Tocopherol-oligochitosan-based oligomersomes

THP:

Pirarubicin

TNBC:

Triple negative breast cancer

TOC:

Tocopherols

TPGS:

α-Tocopherol polyethylene glycol 1000 succinate

TPNs:

TPGS-functionalized PLGA nanoparticles

TQR:

Tariquidar

TT:

Tocotrienols

VE:

Vitamin E

VES:

Vitamin E succinate

VES-g-CSO:

TPGS and VES-grafted CSO

α-Fmoc:

α-Fluorenylmethoxycarbonyl

α-TOS:

α-Tocopheryl succinate

References

  1. Zununi Vahed S, Fathi N, Samiei M, Maleki Dizaj S, Sharifi S (2019) Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J Drug Target 27(3):292–299

    Article  CAS  PubMed  Google Scholar 

  2. Muddineti OS, Ghosh B, Biswas S (2017) Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery. Expert Opin Drug Deliv 14(6):715–726

    Article  CAS  PubMed  Google Scholar 

  3. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  4. Plapied L, Duhem N, des Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16(3):228–237

    Article  CAS  Google Scholar 

  5. Duhem N, Danhier F, Préat V (2014) Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release 182:33–44

    Article  CAS  PubMed  Google Scholar 

  6. Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24(3):179–191

    Article  CAS  PubMed  Google Scholar 

  7. Ulatowski LM, Manor D (2015) Vitamin E and neurodegeneration. Neurobiol Dis 84:78–83

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Fayyad A, Kamal MM, Carroll JL, Dragoi A-M, Cody R, Cardelli J et al (2018) Development and in-vitro characterization of nanoemulsions loaded with paclitaxel/γ-tocotrienol lipid conjugates. Int J Pharm 536(1):146–157

    Article  CAS  PubMed  Google Scholar 

  9. Aykin-Burns N, Pathak R, Boerma M, Kim T, Hauer-Jensen M (2019) Utilization of vitamin E analogs to protect normal tissues while enhancing antitumor effects. Semin Radiat Oncol 29(1):55–61

    Article  PubMed  PubMed Central  Google Scholar 

  10. Constantinou C, Charalambous C, Kanakis D (2019) Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. Eur J Nutr. https://doi.org/10.1007/s00394-019-01962-1

  11. Berrino F, Muti P (1989) Mediterranean diet and cancer. Eur J Clin Nutr 43:49–55

    PubMed  Google Scholar 

  12. Eichholzer M, Stähelin HB, Gey KF, Lüdin E, Bernasconi F (1996) Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year follow-up of the prospective basel study. Int J Cancer 66(2):145–150

    Article  CAS  PubMed  Google Scholar 

  13. Constantinides PP, Han J, Davis SS (2006) Advances in the use of tocols as drug delivery vehicles. Pharm Res 23(2):243–255

    Article  CAS  PubMed  Google Scholar 

  14. Zasońska BA, Pustovyy VI, Babinskiy AV, Palyvoda OM, Chekhun VF, Todor I et al (2019) Combined antitumor effect of surface-modified superparamagnetic maghemite nanoparticles and a vitamin E derivative on experimental Walker-256 mammary gland carcinosarcoma. J Magn Magn Mater 471:381–387

    Article  CAS  Google Scholar 

  15. Constantinou C, Papas A, Constantinou AI (2008) Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. Int J Cancer 123(4):739–752

    Article  CAS  PubMed  Google Scholar 

  16. Kang Y-H, Lee E, Youk H-J, Kim SH, Lee HJ, Park Y-G et al (2005) Potentiation by alpha-tocopheryl succinate of the etoposide response in multidrug resistance protein 1-expressing glioblastoma cells. Cancer Lett 217(2):181–190

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y-Y, Zhang D-D, Kong Y-Y, Shao L-L, Zhang F-Y, Gao Y et al (2016) CS/PAA@ TPGS/PLGA nanoparticles with intracellular pH-sensitive sequential release for delivering drug to the nucleus of MDR cells. Colloids Surf B Biointerfaces 145:716–727

    Article  CAS  PubMed  Google Scholar 

  18. Yuan Z, Yuan Y, Han L, Qiu Y, Huang X, Gao F et al (2018) Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer. Int J Nanomedicine 13:7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li P-Y, Lai P-S, Hung W-C, Syu W-J (2010) Poly (L-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant MCF-7 breast cancer cells. Biomacromolecules 11(10):2576–2582

    Article  CAS  PubMed  Google Scholar 

  20. Shi K, Jiang Y, Zhang M, Wang Y, Cui F (2010) Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics. Drug Deliv 17(1):1–10

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes RS, Silva JO, Seabra HA, Oliveira MS, Carregal VM, Vilela JM et al (2018) α-Tocopherol succinate loaded nano-structured lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomed Pharmacother 103:1348–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pawar A, Patel R, Arulmozhi S, Bothiraja C (2016) D-α-Tocopheryl polyethylene glycol 1000 succinate conjugated folic acid nanomicelles: towards enhanced bioavailability, stability, safety, prolonged drug release and synergized anticancer effect of plumbagin. RSC Adv 6(81):78106–78121

    Article  CAS  Google Scholar 

  23. Gorain B, Choudhury H, Pandey M, Kesharwani P (2018) Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater Sci Eng C 91:868–880

    Article  CAS  Google Scholar 

  24. Tao Y, Han J, Wang X, Dou H (2013) Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity. Colloids Surf B Biointerfaces 102:604–610

    Article  CAS  PubMed  Google Scholar 

  25. Muddineti OS, Rompicharla SVK, Kumari P, Bhatt H, Ghosh B, Biswas S (2019) Vitamin-E/lipid based PEGylated polymeric micellar doxorubicin to sensitize doxorubicin-resistant cells towards treatment. React Funct Polym 134:49–57

    Article  CAS  Google Scholar 

  26. Noh SM, Han SE, Shim G, Lee KE, Kim C-W, Han SS et al (2011) Tocopheryl oligochitosan-based self assembling oligomersomes for siRNA delivery. Biomaterials 32(3):849–857

    Article  CAS  PubMed  Google Scholar 

  27. Muthu MS, Avinash Kulkarni S, Liu Y, Feng S-S (2012) Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine 7(3):353–364

    Article  CAS  PubMed  Google Scholar 

  28. Liu B-Y, Wu C, He X-Y, Zhuo R-X, Cheng S-X (2016) Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment. Sci Bull 61(7):552–560

    Article  CAS  Google Scholar 

  29. Lu J, Huang Y, Zhao W, Chen Y, Li J, Gao X et al (2013) Design and characterization of PEG-derivatized vitamin E as a nanomicellar formulation for delivery of paclitaxel. Mol Pharm 10(8):2880–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao J, Feng S-S (2014) Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs. Biomaterials 35(10):3340–3347

    Article  CAS  PubMed  Google Scholar 

  31. Mu L, Feng S (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86(1):33–48

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Feng S-S (2006) Nanoparticles of poly (lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials 27(2):262–270

    Article  PubMed  CAS  Google Scholar 

  33. Feng S-S, Zhao L, Zhang Z, Bhakta G, Win KY, Dong Y et al (2007) Chemotherapeutic engineering: vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo. Chem Eng Sci 62(23):6641–6648

    Article  CAS  Google Scholar 

  34. Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, Ganguly S et al (2017) Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci Rep 7(1):530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zeng X, Tao W, Mei L, Huang L, Tan C, Feng S-S (2013) Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25):6058–6067

    Article  CAS  PubMed  Google Scholar 

  36. Wang G, Yu B, Wu Y, Huang B, Yuan Y, Liu CS (2013) Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm 446(1–2):24–33

    Article  CAS  PubMed  Google Scholar 

  37. Zhu H, Chen H, Zeng X, Wang Z, Zhang X, Wu Y et al (2014) Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 35(7):2391–2400

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Huang Y, Zhao W, Lu J, Zhang P, Zhang X et al (2014) Fmoc-conjugated PEG-vitamin E 2 micelles for tumor-targeted delivery of paclitaxel: enhanced drug-carrier interaction and loading capacity. AAPS J 16(6):1282–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Liu Q, Li W, Zhang T, Li H, Li R et al (2016a) Design and validation of PEG-derivatized vitamin E copolymer for drug delivery into breast cancer. Bioconjug Chem 27(8):1889–1899

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Li R, Liu Q, Li W, Zhang T, Zou M et al (2016b) One-step self-assembling nanomicelles for pirarubicin delivery to overcome multidrug resistance in breast cancer. Mol Pharm 13(11):3934–3944

    Article  CAS  PubMed  Google Scholar 

  41. Lee K-Y, Chiang Y-T, Hsu N-Y, Yang C-Y, Lo C-L, Ku C-A (2015) Vitamin E containing polymer micelles for reducing normal cell cytotoxicity and enhancing chemotherapy efficacy. Acta Biomater 24:286–296

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Dong M, Kong F, Zhou J (2015) Enhanced therapeutic efficacy and cytotoxicity of doxorubicin-loaded vitamin E–Pluronic micelles against liver cancer. RSC Adv 5(55):43965–43971

    Article  CAS  Google Scholar 

  43. Cao N, Feng S-S (2008) Doxorubicin conjugated to D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 29(28):3856–3865

    Article  CAS  PubMed  Google Scholar 

  44. Duhem N, Danhier F, Pourcelle V, Schumers J-M, Bertrand O, LeDuff CS et al (2013) Self-assembling doxorubicin–tocopherol succinate prodrug as a new drug delivery system: synthesis, characterization, and in vitro and in vivo anticancer activity. Bioconjug Chem 25(1):72–81

    Article  PubMed  CAS  Google Scholar 

  45. Lu J, Liu C, Wang P, Ghazwani M, Xu J, Huang Y et al (2015) The self-assembling camptothecin-tocopherol prodrug: an effective approach for formulating camptothecin. Biomaterials 62:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang D-S, Liu J, Peng T-X, Peng H, Guo F, Zhong H-J (2018) Vitamin E-based redox-sensitive salinomycin prodrug-nanosystem with paclitaxel loaded for cancer targeted and combined chemotherapy. Colloids Surf B Biointerfaces 172:506–516

    Article  CAS  PubMed  Google Scholar 

  47. Mi Y, Zhao J, Feng S-S (2012) Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 438(1–2):98–106

    Article  CAS  PubMed  Google Scholar 

  48. Mi Y, Zhao J, Feng S-S (2013) Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release 169(3):185–192

    Article  CAS  PubMed  Google Scholar 

  49. Bao Y, Guo Y, Zhuang X, Li D, Cheng B, Tan S et al (2014) D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol Pharm 11(9):3196–3209

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y, Feng S, Liu W, Yuan Z, Yin P, Gao F (2017) Vitamin E succinate-grafted-chitosan oligosaccharide/RGD-conjugated TPGS mixed micelles loaded with paclitaxel for U87MG tumor therapy. Mol Pharm 14(4):1190–1203

    Article  CAS  PubMed  Google Scholar 

  51. Gill KK, Kaddoumi A, Nazzal S (2012) Mixed micelles of PEG2000-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: enhanced chemosensitization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines. Eur J Pharm Sci 46(1–2):64–71

    Article  CAS  PubMed  Google Scholar 

  52. Danhier F, Kouhé TTB, Duhem N, Ucakar B, Staub A, Draoui N et al (2014) Vitamin E-based micelles enhance the anticancer activity of doxorubicin. Int J Pharm 476(1–2):9–15

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Cui S, Bao Y, Xing J, Hao W (2014) Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery. Mater Sci Eng C 43:614–621

    Article  CAS  Google Scholar 

  54. Wu H, Zhong Q, Zhong R, Huang H, Xia Z, Ke Z et al (2016) Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomedicine 11:6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng Y, Fu F, Zhang M, Shen M, Zhu M, Shi X (2014) Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Med Chem Commun 5(7):879–885

    Article  CAS  Google Scholar 

  56. Butt AM, Amin MCIM, Katas H (2015) Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs. Int J Nanomedicine 10:1321

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sonali AP, Singh RP, Rajesh CV, Singh S, Vijayakumar MR et al (2016) Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv 23(5):1788–1798

    Article  CAS  PubMed  Google Scholar 

  58. Kutty RV, Feng S-S (2013) Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 34(38):10160–10171

    Article  CAS  PubMed  Google Scholar 

  59. Kutty RV, Chia SL, Setyawati MI, Muthu MS, Feng S-S, Leong DT (2015) In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials 63:58–69

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Cheng X, Chen Y, He W, Ni L, Xiong P et al (2016c) Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: an in vivo/in vitro evaluation. Int J Pharm 512(1):262–272

    Article  CAS  PubMed  Google Scholar 

  61. Raju A, Muthu MS, Feng S-S (2013) Trastuzumab-conjugated vitamin E TPGS liposomes for sustained and targeted delivery of docetaxel. Expert Opin Drug Deliv 10(6):747–760

    Article  CAS  PubMed  Google Scholar 

  62. Agrawal U, Sharma R, Gupta M, Vyas SP (2014) Is nanotechnology a boon for oral drug delivery? Drug Discov Today 19(10):1530–1546

    Article  CAS  PubMed  Google Scholar 

  63. Feng S-S, Mei L, Anitha P, Gan CW, Zhou W (2009) Poly (lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials 30(19):3297–3306

    Article  CAS  PubMed  Google Scholar 

  64. Zhao L, Feng SS (2010) Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci 99(8):3552–3560

    Article  CAS  PubMed  Google Scholar 

  65. Munyendo WL, Zhang Z, Abbad S, Waddad AY, Lv H, Baraza LD et al (2013) Micelles of TPGS modified apigenin phospholipid complex for oral administration: preparation, in vitro and in vivo evaluation. J Biomed Nanotechnol 9(12):2034–2047

    Article  CAS  PubMed  Google Scholar 

  66. Hou J, Sun E, Zhang Z-H, Wang J, Yang L, Cui L et al (2017) Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles. Drug Deliv 24(1):261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan J, Feng S-S (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30(6):1176–1183

    Article  CAS  PubMed  Google Scholar 

  68. Zhao L, Yang B, Wang Y, Yao Z, Wang X, Feng S-S et al (2012) Thermochemotherapy mediated by novel solar-planet structured magnetic nanocomposites for glioma treatment. J Nanosci Nanotechnol 12(2):1024–1031

    Article  CAS  PubMed  Google Scholar 

  69. Chandrasekharan P, Maity D, Yong CX, Chuang K-H, Ding J, Feng S-S (2011) Vitamin E (D-alpha-tocopheryl-co-poly (ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32(24):5663–5672

    Article  CAS  PubMed  Google Scholar 

  70. Song Q, Tan S, Zhuang X, Guo Y, Zhao Y, Wu T et al (2014) Nitric oxide releasing D-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm 11(11):4118–4129

    Article  CAS  PubMed  Google Scholar 

  71. Pais-Silva C, de Melo-Diogo D, Correia IJ (2017) IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur J Pharm Biopharm 113:108–117

    Article  CAS  PubMed  Google Scholar 

  72. Wu J, Feng S, Liu W, Gao F, Chen Y (2017) Targeting integrin-rich tumors with temoporfin-loaded vitamin-E-succinate-grafted chitosan oligosaccharide/d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles to enhance photodynamic therapy efficiency. Int J Pharm 528(1–2):287–298

    Article  CAS  PubMed  Google Scholar 

  73. Akhbari K, Karami S, Phuruangrat A, Saedi Z (2018) Irreversible replacement of sodium with thallium in sodium coordination polymer nanostructures by solid-state mechanochemical cation exchange process. J Iran Chem Soc 15(6):1327–1335

    Article  CAS  Google Scholar 

  74. Hasheminezhad M, Akhbari K, Phuruangrat A (2019) Solid-solid and solid-liquid conversion of sodium and silver nano coordination polymers. Polyhedron. https://doi.org/10.1016/j.poly.2019.03.032

  75. Moeinian M, Akhbari K, Kawata S, Ishikawa R (2016a) Solid state conversion of a double helix thallium (I) coordination polymer to a corrugated tape silver (I) polymer. RSC Adv 6(85):82447–82449

    Article  CAS  Google Scholar 

  76. Moeinian M, Akhbari K, Boonmak J, Youngme S (2016b) Similar to what occurs in biological systems; irreversible replacement of potassium with thallium in coordination polymer nanostructures. Polyhedron 118:6–11

    Article  CAS  Google Scholar 

  77. Moghadam Z, Akhbari K, Phuruangrat A (2018a) Irreversible conversion of nanoporous lead (II) metal–organic framework to a nonporous coordination polymer upon thermal treatment. Polyhedron 156:48–53

    Article  CAS  Google Scholar 

  78. Moradi Z, Akhbari K, Costantino F, Phuruangrat A (2017) Solid-state conversion of a three-dimensional sodium (I) coordination polymer with micro trigon morphology to two-dimensional silver (I) coordination polymer nanostructures. Polyhedron 121:33–40

    Article  CAS  Google Scholar 

  79. Shirazi FS, Akhbari K (2015a) Solid-state thermal conversion of a nanoporous metal–organic framework to a nonporous coordination polymer. RSC Adv 5(63):50778–50782

    Article  CAS  Google Scholar 

  80. Shirazi FS, Akhbari K, Kawata S, Ishikawa R (2016) Effects of different factors on the formation of nanorods and nanosheets of silver (I) coordination polymer. J Mol Struct 1123:206–212

    Article  CAS  Google Scholar 

  81. Kang Y-S, Lu Y, Chen K, Zhao Y, Wang P, Sun W-Y (2019) Metal–organic frameworks with catalytic centers: from synthesis to catalytic application. Coord Chem Rev 378:262–280

    Article  CAS  Google Scholar 

  82. Liu M, Wu J, Hou H (2019) Metal–organic framework (MOF)-based materials as heterogeneous catalysts for C− H bond activation. Chem A Eur J 25(12):2935–2948

    CAS  Google Scholar 

  83. Noori Y, Akhbari K (2017) Post-synthetic ion-exchange process in nanoporous metal–organic frameworks; an effective way for modulating their structures and properties. RSC Adv 7(4):1782–1808

    Article  CAS  Google Scholar 

  84. Du M, He H, Zhu Q-Q, Zhao J-N, Sun H, Chen J et al (2019) Rational construction of an exceptionally stable MOF catalyst with metal-adeninate vertices toward CO2 cycloaddition under mild and co-catalyst free conditions. Chem Eur J. https://doi.org/10.1002/chem.201901471

  85. Metzger ED, Comito RJ, Wu Z, Zhang G, Dubey RJ-C, Xu W et al (2019) Highly selective heterogeneous ethylene dimerization with a scalable and chemically robust MOF catalyst. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b05703

  86. Tchalala M, Bhatt P, Chappanda K, Tavares S, Adil K, Belmabkhout Y et al (2019) Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat Commun 10(1):1328

    Google Scholar 

  87. Ke X, Song X, Qin N, Cai Y, Ke F (2019) Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery. J Porous Mater 26(3):813–818

    Article  CAS  Google Scholar 

  88. Lazaro IA, Forgan RS (2019) Application of zirconium MOFs in drug delivery and biomedicine. Coord Chem Rev 380:230–259

    Article  CAS  Google Scholar 

  89. Alavijeh RK, Beheshti S, Akhbari K, Morsali A (2018) Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron 156:257–278

    Article  CAS  Google Scholar 

  90. Sava Gallis DF, Butler KS, Agola JO, Pearce C, McBride A (2019) Antibacterial countermeasures via MOF− supported sustained therapeutic release. ACS Appl Mater Interfaces 11(8):7782–7791

    Article  CAS  PubMed  Google Scholar 

  91. Usefi S, Akhbari K, White J (2019) Sonochemical synthesis, structural characterizations and antibacterial activities of biocompatible copper (II) coordination polymer nanostructures. J Solid State Chem 276:61–67

    Article  CAS  Google Scholar 

  92. Akhbari K, Morsali A (2013) Modulating methane storage in anionic nano-porous MOF materials via post-synthetic cation exchange process. Dalton Trans 42(14):4786–4789

    Article  CAS  PubMed  Google Scholar 

  93. Akhbari K, Morsali A (2015) Needle-like hematite nano-structure prepared by directed thermolysis of MIL-53 nano-structure with enhanced methane storage capacity. Mater Lett 141:315–318

    Article  CAS  Google Scholar 

  94. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2019) Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review. J Energy Chem 30:132–144

    Article  Google Scholar 

  95. Xue D-X, Wang Q, Bai J (2019) Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coord Chem Rev 378:2–16

    Article  CAS  Google Scholar 

  96. Mirzadeh E, Akhbari K (2016) Synthesis of nanomaterials with desirable morphologies from metal–organic frameworks for various applications. CrstEngComm 18(39):7410–7424

    Article  CAS  Google Scholar 

  97. Moeinian M, Akhbari K (2015) How the guest molecules in nanoporous Zn (II) metal-organic framework can prevent agglomeration of ZnO nanoparticles. J Solid State Chem 225:459–463

    Article  CAS  Google Scholar 

  98. Moeinian M, Akhbari K (2016) Solid-state synthesis of zinc oxide nano-structures with similar morphologies to their precursors and metal–organic frameworks topology. J Iran Chem Soc 13(3):547–552

    Article  CAS  Google Scholar 

  99. Shirazi FS, Akhbari K (2015b) Preparation of zinc oxide nanoparticles from nanoporous metal–organic framework with one-dimensional channels occupied with guest water molecules. Inorg Chim Acta 436:1–6

    Article  CAS  Google Scholar 

  100. Filippousi M, Turner S, Leus K, Siafaka PI, Tseligka ED, Vandichel M et al (2016) Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int J Pharm 509(1):208–218

    Article  CAS  PubMed  Google Scholar 

  101. Akhbari K, Morsali A (2008) Spectroscopic, thermal, fluorescence and structural studies of new TlI pyridine dicarboxylate complexes,[Tl2 (py-2, 5-dc)] and [Tl2 (py-3, 5-dc)]. J Mol Struct 878(1–3):65–70

    Article  CAS  Google Scholar 

  102. Noori Y, Akhbari K, Phuruangrat A, Costantino F (2017) Self-assembly through secondary interactions in formation of two-dimensional lead (II) supramolecular polymer with nanosheets morphology. J Mol Struct 1130:311–318

    Article  CAS  Google Scholar 

  103. Mirzadeh E, Akhbari K, White J (2018) Mechanochemical conversion of nano potassium hydrogen terephthalate to thallium analogue nanoblocks with strong hydrogen bonding and straight chain metallophillic interactions. Appl Organomet Chem 32(5):e4313

    Article  CAS  Google Scholar 

  104. Moghadam Z, Akhbari K, White J, Phuruangrat A (2018b) A new potassium-based coordination polymer with hydrogen bonding and zigzag metallophillic interactions. Appl Organomet Chem 32(12):e4613

    Article  CAS  Google Scholar 

  105. Yusefi S, Akhbari K, White J, Phuruangrat A (2019) Sonochemical synthesis of a two-dimensional supramolecular polymer with nanoporous morphology, linear thallophilic and covalent hydrogen-bonding interactions. Appl Organomet Chem 33(3):e4747

    Article  CAS  Google Scholar 

  106. Sarker M, Shin S, Jhung SH (2019) Functionalized mesoporous metal-organic framework PCN-100: an efficient carrier for vitamin E storage and delivery. J Ind Eng Chem 74:158–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Akhbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karimi Alavijeh, R., Akhbari, K. (2020). Vitamin E-Based Nanomedicines for Anticancer Drug Delivery. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_2

Download citation

Publish with us

Policies and ethics