Skip to main content

Oxidative Stress and Inflammation Can Fuel Cancer

  • Chapter
  • First Online:
Role of Oxidative Stress in Pathophysiology of Diseases

Abstract

Both oxidative stress and inflammation are interdependent cellular consequences of a biological defense system, which can fuel cancer and other pathophysiological provenience. In recent past, several emerging evidences showed that prevalence of oxidative stress and inflammation promotes multiple oncogenic events, including cell proliferation, angiogenesis, migration, metabolic reprogramming, and evasion of regulated cell death in cancer cells. Oxidative stress and chronic inflammation contribute to the progression of cancer in a unanimous pattern with significant cellular signaling response and outcomes. However, both oxidative stress and inflammation are also associated with the pathogenesis of several other diseases. The oxidative stress is an imbalance between oxidant and antioxidant defense system, which in turn damaging the macromolecules and dysregulation of complex casacde of cell signaling. Sustained oxidative stress can trigger chronic inflammation by activating the number of transcription factors such as NF-κB, AP-1, β-catenin/Wnt, p53, PPAR-γ, HIF-1α, and Nrf2. The activation of these transcription factors leads to  altered expression of various genes and proteins including growth factors, cell cycle regulatory molecules, oncogenes, tumor suppressor genes, pro-inflammatory cytokines, and chemokines etc. Reprogramming of the cellular signaling cascade for self-survival is one of the key characteristics of cancer cells. In this chapter, we delineate the current knowledge and mechanistic interplay between oxidative stress and inflammation, which can fuel cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:1–14. https://doi.org/10.1155/2012/936486

    Article  CAS  Google Scholar 

  2. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    PubMed  CAS  Google Scholar 

  3. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid Med Cell Longev 2016:8590578

    PubMed  PubMed Central  Google Scholar 

  4. Panieri E, Santoro M (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Zini R, Berdeaux A, Morin D (2007) The differential effects of superoxide anion, hydrogen peroxide and hydroxyl radical on cardiac mitochondrial oxidative phosphorylation. Free Radic Res 41:1159–1166

    PubMed  CAS  Google Scholar 

  6. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    PubMed  Google Scholar 

  7. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    PubMed  CAS  Google Scholar 

  8. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Trachootham D, Lu W, Ogasawara MA, Valle NR-D, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    PubMed  CAS  Google Scholar 

  11. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9

    PubMed  PubMed Central  CAS  Google Scholar 

  12. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    PubMed  CAS  Google Scholar 

  13. Oberley T, Oberley L (1997) Antioxidant enzyme levels in cancer. Histol Histopathol 12:525–535

    PubMed  CAS  Google Scholar 

  14. Reiter RJ, Acuña-Castroviejo D, Tan DX, Burkhardt S (2001) Free radical-mediated molecular damage. Ann N Y Acad Sci 939:200–215

    PubMed  CAS  Google Scholar 

  15. Pollack M, Leeuwenburgh C (1999) Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. In: Handbook of oxidants and antioxidants in exercise. Elsevier Science BV, Amsterdam, pp 881–923

    Google Scholar 

  16. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345

    PubMed  Google Scholar 

  18. Breitenbach M, Eckl P (2015) Introduction to oxidative stress in biomedical and biological research. Biomol Ther 5:1169–1177

    CAS  Google Scholar 

  19. Burton GJ, Jauniaux EJ (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299

    PubMed  PubMed Central  Google Scholar 

  20. Li R, Jia Z, Trush MA (2016) Defining ROS in biology and medicine. React Oxyg Species 1:9

    Google Scholar 

  21. Fukai T, Ushio-Fukai MJA (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266:37–52

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan M, Sethi GJB (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9:735

    PubMed Central  CAS  Google Scholar 

  24. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Electron transport and oxidative phosphorylation. In: Molecular cell biology, 4th edn. WH Freeman, New York

    Google Scholar 

  25. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    PubMed  CAS  Google Scholar 

  26. Bibov MY, Kuzmin AV, Alexandrova AA, Chistyakov VA, Dobaeva NM, Kundupyan OL (2018) Role of the reactive oxygen species induced DNA damage in human spermatozoa dysfunction. AME Med J 3:1–12

    Google Scholar 

  27. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    PubMed  PubMed Central  Google Scholar 

  28. Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:266

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    PubMed  CAS  Google Scholar 

  30. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Acharya A, Das I, Chandhok D, Saha T (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 3:23–34

    PubMed  PubMed Central  Google Scholar 

  32. Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 1:79–98

    Google Scholar 

  33. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330

    PubMed  CAS  Google Scholar 

  36. Goodwin ML, Pennington Z, Westbroek EM, Cottrill E, Ahmed AK, Sciubba DM (2019) Lactate and cancer: a “lactatic” perspective on spinal tumor metabolism (part 1). Ann Transl Med 7:220–220

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Pathak C, Vinayak M (2005) Modulation of lactate dehydrogenase isozymes by modified base queuine. Mol Biol Rep 32:191–196

    PubMed  CAS  Google Scholar 

  38. Mohammad GH, Damink SO, Malago M, Dhar DK, Pereira SP (2016) Pyruvate kinase M2 and lactate dehydrogenase A are overexpressed in pancreatic cancer and correlate with poor outcome. PLoS One 11:e0151635

    PubMed  PubMed Central  Google Scholar 

  39. Hsu M-C, Hung W-C (2018) Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer 17:35

    PubMed  PubMed Central  Google Scholar 

  40. Gui DY, Lewis CA, Vander Heiden MG (2013) Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci Signal 6:pe7

    PubMed  Google Scholar 

  41. Anastasiou D, Yu Y, Israelsen WJ, Jiang J-K, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J-K, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DSJS (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19:416–428

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012:762825

    PubMed  PubMed Central  Google Scholar 

  45. Burdon RH, Gill V, Rice-Evans C (1990) Oxidative stress and tumour cell proliferation. Free Radic Res Commun 11:65–76

    PubMed  CAS  Google Scholar 

  46. Kumari S, Badana AK, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1177271918755391

    PubMed  PubMed Central  Google Scholar 

  47. Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    PubMed  CAS  Google Scholar 

  48. Yang Y, Fang E, Luo J, Wu H, Jiang Y, Liu Y, Tong S, Wang Z, Zhou R, Tong Q (2019) The antioxidant alpha-lipoic acid inhibits proliferation and invasion of human gastric cancer cells via suppression of STAT3-mediated MUC4 gene expression. Oxid Med Cell Longev 2019:3643715

    PubMed  PubMed Central  Google Scholar 

  49. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ, Schafer FQ, Flanagan SW, Weydert CJ, Spitz DR, Buettner GR (2005) Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1 α and vascular endothelial growth factor. Oncogene 24:8154–8166

    PubMed  CAS  Google Scholar 

  51. Patterson JC, Joughin BA, van de Kooij B, Lim DC, Lauffenburger DA, Yaffe MB (2019) ROS and oxidative stress are elevated in mitosis during asynchronous cell cycle progression and are exacerbated by mitotic arrest. Cell Syst 8:163–167.e162

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH (2006) Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 8:1447–1459

    PubMed  CAS  Google Scholar 

  53. Téphane Honoré S, Kovacic H, Éronique Pichard V, Briand C, Rognoni J-B (2003) α2β1-Integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): implication of NADPH oxidase-dependent production of ROS. Exp Cell Res 285:59–71

    PubMed  Google Scholar 

  54. Verbon EH, Post JA, Boonstra J (2012) The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 511:1–6

    PubMed  CAS  Google Scholar 

  55. Kelkel M, Schumacher M, Dicato M, Diederich M (2011) Antioxidant and anti-proliferative properties of lycopene. Free Radic Res 45:925–940

    PubMed  CAS  Google Scholar 

  56. Laphanuwat P, Likasitwatanakul P, Sittithumcharee G, Thaphaengphan A, Chomanee N, Suppramote O, Ketaroonrut N, Charngkaew K, Lam EW-F, Okada S (2018) Cyclin D1 depletion interferes with oxidative balance and promotes cancer cell senescence. J Cell Sci 131:1–13

    Google Scholar 

  57. Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Google Scholar 

  58. Kozlov SV, Waardenberg AJ, Engholm-Keller K, Arthur JW, Graham ME, Lavin M (2016) Reactive oxygen species (ROS)-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large-scale phosphoproteomics screen. Mol Cell Proteomics 15:1032–1047

    PubMed  CAS  Google Scholar 

  59. Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26:199–212

    PubMed  Google Scholar 

  60. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Haupt S, Raghu D, Haupt Y (2016) Mutant p53 drives cancer by subverting multiple tumor suppression pathways. Front Oncol 6:12

    PubMed  PubMed Central  Google Scholar 

  62. Lisek K, Campaner E, Ciani Y, Walerych D, Del Sal G (2018) Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 9:20508

    PubMed  PubMed Central  Google Scholar 

  63. Du X, Fu X, Yao K, Lan Z, Xu H, Cui Q, Yang E (2017) Bcl-2 delays cell cycle through mitochondrial ATP and ROS. Cell Cycle 16:707–713

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, Li C, Yang F, Zeng R, Wei P (2017) Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res 27:329–351

    PubMed  CAS  Google Scholar 

  65. Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG (2013) Cancer invasion and metastasis: molecular and cellular perspective. In: Madame Curie bioscience database [Internet]. Landes Bioscience, Austin

    Google Scholar 

  66. Seyfried TN, Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18:43

    PubMed  PubMed Central  Google Scholar 

  67. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Baba AI, Câtoi C (2007) Tumor cell morphology. In: Comparative oncology. The Publishing House of the Romanian Academy, Bucharest

    Google Scholar 

  69. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S (2015) EMT and tumor metastasis. Clin Transl Med 4:6

    PubMed  PubMed Central  Google Scholar 

  70. Mittal V (2018) Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 13:395–412

    PubMed  CAS  Google Scholar 

  71. Wang H, Unternaehrer JJ (2019) Epithelial-mesenchymal transition and cancer stem cells: at the crossroads of differentiation and dedifferentiation. Dev Dyn 248:10–20

    PubMed  Google Scholar 

  72. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17:559

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, Han SI, Kang HS (2019) Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol Med Rep 20:2339–2346

    PubMed  Google Scholar 

  74. Liao Z, Chua D, Tan NS (2019) Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer 18:65

    PubMed  PubMed Central  Google Scholar 

  75. Miyazaki Y, Hara A, Kato K, Oyama T, Yamada Y, Mori H, Shibata T (2008) The effect of hypoxic microenvironment on matrix metalloproteinase expression in xenografts of human oral squamous cell carcinoma. Int J Oncol 32:145–151

    PubMed  CAS  Google Scholar 

  76. Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X (2013) Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer 13:108

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Nishida N, Kudo M (2013) Oxidative stress and epigenetic instability in human hepatocarcinogenesis. Dig Dis 31:447–453

    PubMed  Google Scholar 

  78. Nishida N, Yano H, Nishida T, Kamura T, Kojiro MJ (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2:213

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim Y-W, Byzova TVJB (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123:625–631

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Carmeliet PJ (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69:4–10

    PubMed  CAS  Google Scholar 

  81. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    PubMed  CAS  Google Scholar 

  82. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830

    PubMed  CAS  Google Scholar 

  83. Sun X, Wei J, Tang Y, Wang B, Zhang Y, Shi L, Guo J, Hu F, Li X (2017) Leptin-induced migration and angiogenesis in rheumatoid arthritis is mediated by reactive oxygen species. FEBS Open Bio 7:1899–1908

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Blaylock RL (2015) Cancer microenvironment, inflammation and cancer stem cells: a hypothesis for a paradigm change and new targets in cancer control. Surg Neurol Int 6:92

    PubMed  PubMed Central  Google Scholar 

  86. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185

    PubMed  PubMed Central  Google Scholar 

  87. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  88. Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP (2015) Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 11:e1004901

    PubMed  PubMed Central  Google Scholar 

  89. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436

    PubMed  CAS  Google Scholar 

  90. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Kim SS, Ruiz VE, Carroll JD, Moss SF (2011) Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 305:228–238

    PubMed  CAS  Google Scholar 

  92. Wroblewski LE, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Arbuthnot P, Kew M (2001) Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 82:77–100

    PubMed  PubMed Central  CAS  Google Scholar 

  94. El-Serag HB (2002) Hepatocellular carcinoma and hepatitis C in the United States. Hepatology 36:1206–1213

    Google Scholar 

  95. de Martel C, Franceschi S (2009) Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 70:183–194

    PubMed  Google Scholar 

  96. Mostafa MH, Sheweita S, O’Connor PJ (1999) Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev 12:97–111

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    PubMed  CAS  Google Scholar 

  98. Stark T, Livas L, Kyprianou N (2015) Inflammation in prostate cancer progression and therapeutic targeting. Transl Androl Urol 4:455

    PubMed  PubMed Central  Google Scholar 

  99. Shrihari T (2017) Dual role of inflammatory mediators in cancer. Ecancermedicalscience 11:721

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164

    PubMed  CAS  Google Scholar 

  104. Salzano S, Checconi P, Hanschmann E-M, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci 111:12157–12162

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616–619

    PubMed  CAS  Google Scholar 

  106. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    PubMed  CAS  Google Scholar 

  107. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136

    PubMed  CAS  Google Scholar 

  108. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    PubMed  CAS  Google Scholar 

  109. Ghezzi P (2011) Role of glutathione in immunity and inflammation in the lung. Int J Gen Med 4:105

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Morgan MJ, Liu Z-G (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    PubMed  CAS  Google Scholar 

  111. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Klampfer L (2011) Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets 11:451–464

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Liang M, Zhang P, Fu J (2007) Up-regulation of LOX-1 expression by TNF-α promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett 258:31–37

    PubMed  CAS  Google Scholar 

  114. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7:651

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig 117:1175

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Knüpfer H, Preiss R (2010) Serum interleukin-6 levels in colorectal cancer patients—a summary of published results. Int J Colorectal Dis 25:135–140

    PubMed  Google Scholar 

  117. Tanaka T, Bai Z, Srinoulprasert Y, Yang B, Hayasaka H, Miyasaka M (2005) Chemokines in tumor progression and metastasis. Cancer Sci 96:317–322

    PubMed  CAS  Google Scholar 

  118. Yu JH, Kim H (2014) Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev 19:97

    PubMed  PubMed Central  Google Scholar 

  119. Prawan A, Buranrat B, Kukongviriyapan U, Sripa B, Kukongviriyapan V (2009) Inflammatory cytokines suppress NAD (P) H: quinone oxidoreductase-1 and induce oxidative stress in cholangiocarcinoma cells. J Cancer Res Clin Oncol 135:515–522

    PubMed  CAS  Google Scholar 

  120. Fortunati N, Manti R, Birocco N, Pugliese M, Brignardello E, Ciuffreda L, Catalano MG, Aragno M, Boccuzzi GJ (2007) Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients. Oncol Rep 18:1521–1527

    PubMed  CAS  Google Scholar 

  121. Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J (2015) The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 35:1–16

    PubMed  PubMed Central  Google Scholar 

  122. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:561459

    PubMed  PubMed Central  Google Scholar 

  123. Ravichandran K, Tyagi A, Deep G, Agarwal C, Agarwal R (2011) Interleukin-1-induced iNOS expression in human lung carcinoma A549 cells: involvement of STAT and MAPK pathways

    Google Scholar 

  124. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta Mol Cell Res 1813:878–888

    CAS  Google Scholar 

  125. Brizzi MF, Formato L, Dentelli P, Rosso A, Pavan M, Garbarino G, Pegoraro M, Camussi G, Pegoraro L (2001) Interleukin-3 stimulates migration and proliferation of vascular smooth muscle cells. Circulation 103:549–554

    PubMed  CAS  Google Scholar 

  126. Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD, Giuliani N (2005) IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 106:1407–1414

    PubMed  CAS  Google Scholar 

  127. Gupta N, Barhanpurkar AP, Tomar GB, Srivastava RK, Kour S, Pote ST, Mishra GC, Wani MR (2010) IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. J Immunol 185:2261–2272

    PubMed  CAS  Google Scholar 

  128. Heikkilä K, Ebrahim S, Lawlor DA (2008) Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 44:937–945

    PubMed  Google Scholar 

  129. Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and canicer. Eur J Cancer 41:2502–2512

    PubMed  CAS  Google Scholar 

  130. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, Sung B, Ichikawa H (2006) Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer. Ann N Y Acad Sci 1091:151–169

    PubMed  CAS  Google Scholar 

  131. Rao V, Dyer C, Jameel J, Drew P, Greenman J (2006) Potential prognostic and therapeutic roles for cytokines in breast cancer. Oncol Rep 15:179–185

    PubMed  CAS  Google Scholar 

  132. Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30:1005–1014

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Kinoshita H, Hirata Y, Nakagawa H, Sakamoto K, Hayakawa Y, Takahashi R, Nakata W, Sakitani K, Serizawa T, Hikiba Y (2013) Interleukin-6 mediates epithelial–stromal interactions and promotes gastric tumorigenesis. PLoS One 8:e60914

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Gasche JA, Hoffmann J, Boland CR, Goel A (2011) Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int J Cancer 129:1053–1063

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Baffet G, Braciak T, Fletcher R, Gauldie J, Fey G, Northemann W (1991) Autocrine activity of interleukin 6 secreted by hepatocarcinoma cell lines. Mol Biol Med 8:141–156

    PubMed  CAS  Google Scholar 

  136. Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, Schütz M, Bartsch B, Holtmann M, Becker C (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 6:583

    PubMed  CAS  Google Scholar 

  137. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S (2004) TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501

    PubMed  CAS  Google Scholar 

  138. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-[beta] and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol 8:1390

    PubMed  CAS  Google Scholar 

  139. Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129:311–321

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Chen X-W, Zhou S-F (2015) Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug Des Devel Ther 9:2941

    PubMed  PubMed Central  Google Scholar 

  141. Maniati E, Soper R, Hagemann T (2010) Up for Mischief? IL-17/Th17 in the tumour microenviroment. Oncogene 29:5653

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Vidal AC, Skaar D, Maguire R, Dodor S, Musselwhite LW, Bartlett JA, Oneko O, Obure J, Mlay P, Murphy SK (2015) IL-10, IL-15, IL-17, and GMCSF levels in cervical cancer tissue of Tanzanian women infected with HPV16/18 vs. non-HPV16/18 genotypes. Infect Agent Cancer 10:10

    PubMed  PubMed Central  Google Scholar 

  143. Numasaki M, Fukushi J-I, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101:2620–2627

    PubMed  CAS  Google Scholar 

  144. Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    PubMed  CAS  Google Scholar 

  145. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W (2007) Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    PubMed  CAS  Google Scholar 

  146. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Investig 117:1137

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Meier B, Radeke H, Selle S, Younes M, Sies H, Resch K, Habermehl G (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α. Biochem J 263:539–545

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Li Q, Engelhardt JF (2006) Interleukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. J Biol Chem 281:1495–1505

    PubMed  CAS  Google Scholar 

  149. Hsu S, Hsu P (1994) Autocrine and paracrine functions of cytokines in malignant lymphomas. Biomed Pharmacother 48:433–444

    PubMed  CAS  Google Scholar 

  150. Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138:3666–3676

    PubMed  CAS  Google Scholar 

  151. Yuzhalin A, Kutikhin A (2014) Interleukins in cancer biology: their heterogeneous role. Academic, Cambridge

    Google Scholar 

  152. Szlosarek P, Charles KA, Balkwill FR (2006) Tumour necrosis factor-α as a tumour promoter. Eur J Cancer 42:745–750

    PubMed  CAS  Google Scholar 

  153. Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor α: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573

    PubMed  CAS  Google Scholar 

  154. Leek R, Landers R, Fox S, Ng F, Harris A, Lewis C (1998) Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer 77:2246

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107

    PubMed  CAS  Google Scholar 

  156. Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    PubMed  CAS  Google Scholar 

  157. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745

    PubMed  CAS  Google Scholar 

  158. Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflamm Allergy 1:327–341

    PubMed  CAS  Google Scholar 

  159. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45

    PubMed  CAS  Google Scholar 

  160. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29:1275–1288

    PubMed  Google Scholar 

  161. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z-G (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12:419–429

    PubMed  CAS  Google Scholar 

  162. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Zheng-gang L, Su B (2001) The essential role of MEKK3 in TNF-induced NF-[kappa] B activation. Nat Immunol 2:620

    PubMed  CAS  Google Scholar 

  163. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-[kappa] B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17

    PubMed  CAS  Google Scholar 

  164. Kamata H, Honda S-I, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    PubMed  CAS  Google Scholar 

  165. Reinhard C, Shamoon B, Shyamala V, Williams LT (1997) Tumor necrosis factor α-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J 16:1080–1092

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Song HY, Régnier CH, Kirschning CJ, Goeddel DV, Rothe M (1997) Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-κB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci 94:9792–9796

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36

    PubMed  Google Scholar 

  168. Shih R-H, Wang C-Y, Yang C-M (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77

    PubMed  PubMed Central  Google Scholar 

  169. Alkhamesi NA, Ziprin P, Pfistermuller K, Peck DH, Darzi AW (2005) ICAM-1 mediated peritoneal carcinomatosis, a target for therapeutic intervention. Clin Exp Metastasis 22:449–459

    PubMed  CAS  Google Scholar 

  170. Choo MK, Sakurai H, Koizumi K, Saiki I (2006) TAK1-mediated stress signaling pathways are essential for TNF-α-promoted pulmonary metastasis of murine colon cancer cells. Int J Cancer 118:2758–2764

    PubMed  CAS  Google Scholar 

  171. Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N (2002) Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res 62:6682–6687

    PubMed  CAS  Google Scholar 

  172. Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL (2005) The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells. Cancer Res 65:10355–10362

    PubMed  CAS  Google Scholar 

  173. Mochizuki Y, Nakanishi H, Kodera Y, Ito S, Yamamura Y, Kato T, Hibi K, Akiyama S, Nakao A, Tatematsu M (2004) TNF-α promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clin Exp Metastasis 21:39–47

    PubMed  CAS  Google Scholar 

  174. Van Grevenstein W, Hofland L, Van Rossen M, Van Koetsveld P, Jeekel J, Van Eijck C (2007) Inflammatory cytokines stimulate the adhesion of colon carcinoma cells to mesothelial monolayers. Dig Dis Sci 52:2775–2783

    PubMed  Google Scholar 

  175. Ziprin P, Ridgway PF, Pfistermüller KL, Peck DH, Darzi AW (2003) ICAM-1 mediated tumor-mesothelial cell adhesion is modulated by IL-6 and TNF-α: a potential mechanism by which surgical trauma increases peritoneal metastases. Cell Commun Adhes 10:141–154

    PubMed  CAS  Google Scholar 

  176. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361

    PubMed  CAS  Google Scholar 

  177. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037–1050

    PubMed  CAS  Google Scholar 

  178. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci 83:4167–4171

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Letterio JJ (2005) TGF-[beta] signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene 24:5701

    PubMed  CAS  Google Scholar 

  180. Bierie B, Moses HL (2006) TGF-β and cancer. Cytokine Growth Factor Rev 17:29–40

    PubMed  CAS  Google Scholar 

  181. Levy L, Hill CS (2006) Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58

    PubMed  CAS  Google Scholar 

  182. Valle L, Serena-Acedo T, Liyanarachchi S, Hampel H, Comeras I, Li Z, Zeng Q, Zhang H-T, Pennison MJ, Sadim M (2008) Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321:1361–1365

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Zeng Q, Phukan S, Xu Y, Sadim M, Rosman DS, Pennison M, Liao J, Yang G-Y, Huang C-C, Valle L (2009) Tgfbr1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res 69:678–686

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Bierie B, Moses HL (2006) Tumour microenvironment: TGF [beta]: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506

    PubMed  CAS  Google Scholar 

  185. Brandes M, Mai U, Ohura K, Wahl S (1991) Type I transforming growth factor-beta receptors on neutrophils mediate chemotaxis to transforming growth factor-beta. J Immunol 147:1600–1606

    PubMed  CAS  Google Scholar 

  186. Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB (1987) Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci 84:5788–5792

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Gruber BL, Marchese MJ, Kew RR (1994) Transforming growth factor-beta 1 mediates mast cell chemotaxis. J Immunol 152:5860–5867

    PubMed  CAS  Google Scholar 

  188. Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146

    PubMed  CAS  Google Scholar 

  189. Maghazachi A, Al-Aoukaty A (1992) Transforming growth factor-beta 1 is chemotactic for interleukin-2-activated natural killer cells. Nat Immun 12:57–65

    Google Scholar 

  190. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res 13:5262–5270

    PubMed  CAS  Google Scholar 

  191. Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-β) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59

    PubMed  CAS  Google Scholar 

  192. Liu R-M, Pravia KG (2010) Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med 48:1–15

    PubMed  Google Scholar 

  193. Tochhawng L, Deng S, Pervaiz S, Yap CT (2013) Redox regulation of cancer cell migration and invasion. Mitochondrion 13:246–253

    PubMed  CAS  Google Scholar 

  194. Krstić J, Trivanović D, Mojsilović S, Santibanez JF (2015) Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid Med Cell Longev 2015:654594

    PubMed  PubMed Central  Google Scholar 

  195. Zlotnik A (2006) Chemokines and cancer. Int J Cancer 119:2026–2029

    PubMed  CAS  Google Scholar 

  196. Stone MJ, Hayward JA, Huang C, Huma ZE, Sanchez J (2017) Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci 18:342

    PubMed Central  Google Scholar 

  197. Dubinett SM, Lee J, Sharma S, Mulé JJ (2010) Chemokines: can effector cells be re-directed to the site of tumor? Cancer J 16:325

    PubMed  PubMed Central  CAS  Google Scholar 

  198. Martins-Green M, Petreaca M, Wang L (2013) Chemokines and their receptors are key players in the orchestra that regulates wound healing. Adv Wound Care 2:327–347

    Google Scholar 

  199. Proost P, Wuyts A, Van Damme J (1996) The role of chemokines in inflammation. Int J Clin Lab Res 26:211–223

    PubMed  CAS  Google Scholar 

  200. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    PubMed  CAS  Google Scholar 

  201. Chetram MA, Hinton CV (2013) ROS-mediated regulation of CXCR4 in cancer. Front Biol 8:273–278

    CAS  Google Scholar 

  202. Salazar N, Castellan M, Shirodkar SS, Lokeshwar BL (2013) Chemokines and chemokine receptors as promoters of prostate cancer growth and progression. Crit Rev Eukaryot Gene Expr 23:77–91

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Investig 117:549

    PubMed  CAS  PubMed Central  Google Scholar 

  204. Clarke CN, Kuboki S, Tevar A, Lentsch AB, Edwards M (2009) Roles of NF-kappaB and STAT3 in CXC chemokine–mediated hepatocyte proliferation and cell death. J Am Coll Surg 209:S59. https://doi.org/10.1016/j.jamcollsurg.2009.06.141

    Article  Google Scholar 

  205. Richmond A (2002) NF-κB, chemokine gene transcription and tumour growth. Nat Rev Immunol 2:664

    PubMed  PubMed Central  CAS  Google Scholar 

  206. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M (2001) Signal transduction by the chemokine receptor CXCR3 activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276:9945–9954

    PubMed  CAS  Google Scholar 

  207. Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N (2012) CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein-and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem 287:36593–36608

    PubMed  PubMed Central  CAS  Google Scholar 

  208. Su H, Najul EJS, Toth TA, Ng CM, Lelievre SA, Fred M, Tang CK (2011) Chemokine receptor CXCR4-mediated transformation of mammary epithelial cells by enhancing multiple RTKs expression and deregulation of the p53/MDM2 axis. Cancer Lett 307:132–140

    PubMed  CAS  Google Scholar 

  209. Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  210. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    PubMed  CAS  Google Scholar 

  211. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540

    PubMed  CAS  Google Scholar 

  212. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P, Salmona M, Mantovani A (1983) Regulation of the macrophage content of neoplasms by chemoattractants. Science 220:210–212

    PubMed  CAS  Google Scholar 

  213. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71

    PubMed  CAS  Google Scholar 

  214. Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S, Pasqualini F, Grosso F, Sanfilippo R, Casali PG (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70:2235–2244

    PubMed  CAS  Google Scholar 

  215. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211

    PubMed  CAS  Google Scholar 

  216. Ghadjar P, Coupland SE, Na I-K, Noutsias M, Letsch A, Stroux A, Bauer S, Buhr HJ, Thiel E, Scheibenbogen C (2006) Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. J Clin Oncol 24:1910–1916

    PubMed  CAS  Google Scholar 

  217. Marchesi F, Piemonti L, Fedele G, Destro A, Roncalli M, Albarello L, Doglioni C, Anselmo A, Doni A, Bianchi P (2008) The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res 68:9060–9069

    PubMed  CAS  Google Scholar 

  218. Singh S, Nannuru K, Sadanandam A, Varney M, Singh R (2009) CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion. Br J Cancer 100:1638

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Wang B, Hendricks DT, Wamunyokoli F, Parker MI (2006) A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res 66:3071–3077

    PubMed  CAS  Google Scholar 

  220. Wang J, Seethala RR, Zhang Q, Gooding W, Van Waes C, Hasegawa H, Ferris RL (2008) Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer: implications for therapy. J Natl Cancer Inst 100:502–512

    PubMed  CAS  Google Scholar 

  221. Murakami T, Cardones AR, Finkelstein SE, Restifo NP, Klaunberg BA, Nestle FO, Castillo SS, Dennis PA, Hwang ST (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198:1337–1347

    PubMed  PubMed Central  CAS  Google Scholar 

  222. Kwong J, Kulbe H, Wong D, Chakravarty P, Balkwill F (2009) An antagonist of the chemokine receptor CXCR4 induces mitotic catastrophe in ovarian cancer cells. Mol Cancer Ther 8:1893–1905

    PubMed  CAS  Google Scholar 

  223. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392

    CAS  PubMed  Google Scholar 

  224. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    PubMed  CAS  Google Scholar 

  225. Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82:1375–1381

    PubMed  Google Scholar 

  226. Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation-and metastasis-sustaining neovasculature. Matrix Biol 44:94–112

    PubMed  Google Scholar 

  227. Almendro V, Ametller E, García-Recio S, Collazo O, Casas I, Augé JM, Maurel J, Gascón P (2009) The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to oxaliplatin. PLoS One 4:e4728

    PubMed  PubMed Central  Google Scholar 

  228. de Souza Junior DA, Santana AC, da Silva EZM, Oliver C, Jamur MC (2015) The role of mast cell specific chymases and tryptases in tumor angiogenesis. Biomed Res Int. 2015:142359

    PubMed  PubMed Central  Google Scholar 

  229. Mori K, Shibanuma M, Nose K (2004) Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64:7464–7472

    PubMed  CAS  Google Scholar 

  230. Westermarck J, KÄHÄRI V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  231. Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    PubMed  CAS  PubMed Central  Google Scholar 

  232. Lin C, Zhang J (2017) Inflammasomes in inflammation-induced cancer. Front Immunol 8:271

    PubMed  PubMed Central  Google Scholar 

  233. Abais JM, Xia M, Zhang Y, Boini KM, Li P-L (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129

    PubMed  PubMed Central  CAS  Google Scholar 

  234. Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    PubMed  PubMed Central  CAS  Google Scholar 

  235. Szabo G, Petrasek J (2015) Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12:387

    PubMed  CAS  Google Scholar 

  236. Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, Qiao L (2013) TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun 4:1–11

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandramani Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaidya, F.U., Chhipa, A.S., Sagar, N., Pathak, C. (2020). Oxidative Stress and Inflammation Can Fuel Cancer. In: Maurya, P., Dua, K. (eds) Role of Oxidative Stress in Pathophysiology of Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-1568-2_14

Download citation

Publish with us

Policies and ethics