Skip to main content

Cellulose Nanostructures Extracted from Pineapple Fibres

  • Chapter
  • First Online:
Pineapple Leaf Fibers

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The fibres from pineapple plant leaves and pineapple crown leaves are unprocessed wastes with high cellulose content (74–83 wt%) that are environmentally and economically interesting as source to extract cellulose nanostructures (CNs). CNs are materials with unique and remarkable properties that can be used in several high value-added applications. This chapter covers the main topics related to the isolation of CN from pineapple fibres. The main types of CN (cellulose nanocrystals, cellulose nanofibres, amorphous nanocellulose, hairy nanocrystalline cellulose and cellulose nanoyarn) are presented. The advantages of using pineapple fibre wastes to produce CN are addressed. The hierarchical structure and chemical composition of the lignocellulosic fibres are described, as well as the existing pretreatment and treatment methods (chemical, enzymatic and mechanical) for extracting CN from pineapple fibres. This chapter also covers the characterization, modification and potential applications of CN isolated from pineapple fibres, such as in the production of biomedical devices and biodegradable bio-nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034

    Article  CAS  Google Scholar 

  2. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  3. Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  4. Amalia B, Imawan C, Listyarini A (2018) Effect of nanofibril cellulose isolated from pineapple leaf on the mechanical properties of chitosan film. AIP Conf Proc 2023:020034/1–020034/6. https://doi.org/10.1063/1.5064031

  5. Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496. https://doi.org/10.1021/la0102455

    Article  CAS  Google Scholar 

  6. Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27:391–396. https://doi.org/10.1016/j.matdes.2004.11.009

    Article  CAS  Google Scholar 

  7. Arrieta MP, Fortunati E, Burgos N et al (2016) Nanocellulose-based polymeric blends for food packaging applications. In: Puglia D, Fortunati E, Kenny JM (eds) Multifunctional polymeric nanocomposites based on cellulosic reinforcements. William Andrew Applied Science Publishers, p 394. https://doi.org/10.1016/b978-0-323-44248-0.00007-9

  8. Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16. https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  9. Asri LATW, Rahmatika A, Fahreza MZ et al (2018) Preparation and release behavior of carboxylated cellulose nanocrystals-alginate nanocomposite loaded with rutin. Mater Res Express 5:095303.1–095303.10. https://doi.org/10.1088/2053-1591/aad5d3

  10. Atalla RH, Hackney JM, Uhlin I et al (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15:109–112. https://doi.org/10.1016/0141-8130(93)90007-9

    Article  CAS  Google Scholar 

  11. Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. https://doi.org/10.1021/bm0493685

    Article  CAS  Google Scholar 

  12. Bach Q-V, Chen W-H (2017) Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol 246:88–100. https://doi.org/10.1016/j.biortech.2017.06.087

    Article  CAS  Google Scholar 

  13. Balakrishnan P, Sreekala MS, Kunaver M et al (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohyd Polym 169:176–188. https://doi.org/10.1016/j.carbpol.2017.04.017

    Article  CAS  Google Scholar 

  14. Balakrishnan P, Gopi S, Geethamma VG et al (2018a) Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative study on reinforcing efficiency on starch nanocomposites. Macromol Symp 380:1800102–1800109. https://doi.org/10.1002/masy.201800102

  15. Balakrishnan P, Gopi S, Sreekala MS et al (2018b) UV resistant transparent bionanocomposite films based on potato starch/cellulose for sustainable packaging. Starch 70:1700139.1–1700139.13. https://doi.org/10.1002/star.201700139

  16. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. https://doi.org/10.1021/bm049300p

    Article  CAS  Google Scholar 

  17. Berglund L, Noël M, Aitomäki Y et al (2016) Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Ind Crops Prod 92:84–92. https://doi.org/10.1016/j.indcrop.2016.08.003

    Article  CAS  Google Scholar 

  18. Bhaumik P, Dhepe PL (2015) Conversion of biomass into sugars. In: Murzin D, Simakova O (eds) Biomass sugars for non-fuel applications. Royal Society of Chemistry, p 265. https://doi.org/10.1039/9781782622079-00001

  19. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. https://doi.org/10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  20. Bonn D, Eggers J, Indekeu J et al (2009) Wetting and spreading. Rev Mod Phys 81:739–805. https://doi.org/10.1103/RevModPhys.81.739

    Article  CAS  Google Scholar 

  21. Bootz A, Vogel V, Schubert D et al (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57:369–375. https://doi.org/10.1016/S0939-6411(03)00193-0

    Article  CAS  Google Scholar 

  22. Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties. In: Poletto M, Junior HLO (eds) Cellulose—fundamental aspects and current trends. IntechOpen, p 282. https://doi.org/10.5772/61899

  23. Brandt A, Ray MJ, To TQ et al (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chem 13:2489–2499. https://doi.org/10.1039/c1gc15374a

    Article  CAS  Google Scholar 

  24. Brar SK, Verma M (2011) Measurement of nanoparticle by light-scattering techniques. TrAC-Trend Anal Chem 30:4–17. https://doi.org/10.1016/j.trac.2010.08.008

    Article  CAS  Google Scholar 

  25. Browning BL (1967) Methods of wood chemistry, 1st edn. Interscience Publishers, New York

    Google Scholar 

  26. Calixto JB (2000) Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytoterapeutic agents). Braz J Med Biol Res 33:79–89. https://doi.org/10.1590/S0100-879X2000000200004

    Article  Google Scholar 

  27. Camacho M, Ureña YRC, Lopretti M et al (2017) Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. J Renew Mater 5:271–729. https://doi.org/10.7569/JRM.2017.634117

    Article  CAS  Google Scholar 

  28. Cao Y (2018) Applications of cellulose nanomaterials in pharmaceutical science and pharmacology. Express Polym Lett 12:768–780. https://doi.org/10.3144/expresspolymlett.2018.66

    Article  CAS  Google Scholar 

  29. Carrillo F, Colom X, Sunol JJ et al (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003

    Article  CAS  Google Scholar 

  30. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107. https://doi.org/10.1515/HF.2005.016

    Article  CAS  Google Scholar 

  31. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

    Article  CAS  Google Scholar 

  32. Chen W-H, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  CAS  Google Scholar 

  33. Cherian BM, Leão AL, Souza SF et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725. https://doi.org/10.1016/j.carbpol.2010.03.046

    Article  CAS  Google Scholar 

  34. Cherian BM, Leão AL, Souza SF et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009

    Article  CAS  Google Scholar 

  35. Cocinero EJ, Gamblin DP, Davis BG et al (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131:11117–11123. https://doi.org/10.1021/ja903322w

    Article  CAS  Google Scholar 

  36. Corrales-Ureña YR, Villalobos-Bermudez C, Pereira R et al (2018) Biogenic silica-based microparticles obtained as a sub-product of the nanocellulose extraction process from pineapple peels. Sci Rep-UK 8:10417–10426. https://doi.org/10.1038/s41598-018-28444-4

    Article  CAS  Google Scholar 

  37. Costa LMM, Olyveira GM, Cherian BM et al (2013) Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind Crop Prod 41:198–202. https://doi.org/10.1016/j.indcrop.2012.04.025

    Article  CAS  Google Scholar 

  38. Csoka L, Hoeger IC, Rojas OJ et al (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870. https://doi.org/10.1021/mz300234a

    Article  CAS  Google Scholar 

  39. Dai H, Huang Y, Huang H (2018a) Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanocrystals. Cellulose 25:4623–4637. https://doi.org/10.1007/s10570-018-1873-5

  40. Dai H, Ou S, Huang Y et al (2018b) Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25:1743–1756. https://doi.org/10.1007/s10570-018-1671-0

  41. De Figueiredo LP, Ferreira FF (2014) The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci 103:1394–1399. https://doi.org/10.1002/jps.23909

    Article  CAS  Google Scholar 

  42. Deepa B, Abrahan E, Cordeiro N et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090. https://doi.org/10.1007/s10570-015-0554-x

    Article  CAS  Google Scholar 

  43. De Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 6:695–704. https://doi.org/10.1038/nnano.2011.161

    Article  CAS  Google Scholar 

  44. Dong XM, Kimura T, Revol JF et al (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082. https://doi.org/10.1021/la950133b

    Article  CAS  Google Scholar 

  45. Dos Santos RM, Neto WP, Silverio HA et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crop Prod 50:707–714. https://doi.org/10.1016/j.indcrop.2013.08.049

    Article  CAS  Google Scholar 

  46. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  47. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8. https://doi.org/10.1016/j.cocis.2017.01.004

    Article  CAS  Google Scholar 

  48. Edwards JV, Prevost NT, French AD et al (2015) Kinetic and structural analysis of fluorescent peptides on cotton cellulose nanocrystals as elastase sensors. Carbohydr Polym 116:278–285. https://doi.org/10.1016/j.carbpol.2014.04.067

    Article  CAS  Google Scholar 

  49. Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Review—current international research into cellulosic fibers and composites. J Mater Sci 36:19–26. https://doi.org/10.1023/A:1017512029696

    Article  Google Scholar 

  50. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. https://doi.org/10.1021/bm700769p

    Article  CAS  Google Scholar 

  51. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform-materials analysis. InTech. https://doi.org/10.5772/3582

  52. FAO—Food and Agriculture Organization of the United Nations (2019) Crops. http://www.fao.org/faostat/en/#data/QC. Accessed 15 Jan 2019

  53. Fareez IM, Ibrahim NA, Yaacob WM et al (2018) Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25:4407–4421. https://doi.org/10.1007/s10570-018-1878-0

    Article  CAS  Google Scholar 

  54. Ferreira FV, Mariano M, Rabelo SC, Gouveia RF, Lona LMF (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view. Appl Surf Sci 436:1113–1122. https://doi.org/10.1016/j.apsusc.2017.12.137

    Article  CAS  Google Scholar 

  55. Ferrer A, Filpponen I, Rodríguez A et al (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255. https://doi.org/10.1016/j.biortech.2012.08.108

    Article  CAS  Google Scholar 

  56. Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2511–3006. https://doi.org/10.1039/c6cs00895j

    Article  CAS  Google Scholar 

  57. Freitas C, Müller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 168:221–229. https://doi.org/10.1016/S0378-5173(98)00092-1

    Article  CAS  Google Scholar 

  58. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  59. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391. https://doi.org/10.1080/15583720802022281

    Article  CAS  Google Scholar 

  60. Fu T-K, Li J-H, Wei X-Y et al (2016a) Preparation and characterization of pineapple leaf nanocellulose by high pressure homogenization. In: Proceedings of the 2nd annual international conference on advanced material engineering, Wuhan, China, 2016. https://doi.org/10.2991/ame-16.2016.119

  61. Fu T-K, Wang Y-H, Li J-H et al (2016b) Effect of high pressure homogenization (HPH) on the rheological properties of pineapple leaf cellulose/[BMIM]Cl solution. DEStech Trans Eng Technol Res. https://doi.org/10.12783/dtetr/mdm2016/4922

  62. Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. https://doi.org/10.1021/bm801065u

    Article  CAS  Google Scholar 

  63. Gao TM, Huang MF, Li PW et al (2012) Preparation and characterization nano-cellulose and its surface modification by silane coupling agent. Appl Mech Mater 217–219:260–263. https://doi.org/10.4028/www.scientific.net/AMM.217-219.260

    Article  CAS  Google Scholar 

  64. García A, Gandini A, Labidi J et al (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crop Prod 93:26–38. https://doi.org/10.1016/j.indcrop.2016.06.004

    Article  CAS  Google Scholar 

  65. García R, Pérez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301. https://doi.org/10.1016/S0167-5729(02)00077-8

    Article  Google Scholar 

  66. Gardner DJ, Oporto GS, Mills R et al (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. https://doi.org/10.1163/156856108x295509

    Article  CAS  Google Scholar 

  67. Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575. https://doi.org/10.1002/macp.200500008

    Article  CAS  Google Scholar 

  68. Gassan J, Bledzki AK (1999) Alkali treatment of jute fibers: relationship between structure and mechanical properties. J Appl Polym Sci 71:623–629. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4%3c623:AID-APP14%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  69. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54. https://doi.org/10.2147/NSA.S64386

    Article  CAS  Google Scholar 

  70. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949–983. https://doi.org/10.1103/RevModPhys.75.949

    Article  CAS  Google Scholar 

  71. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725. https://doi.org/10.1016/j.progpolymsci.2007.04.002

    Article  CAS  Google Scholar 

  72. Grønli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208. https://doi.org/10.1021/ie0201157

    Article  CAS  Google Scholar 

  73. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. https://doi.org/10.1039/c3cs60204d

    Article  CAS  Google Scholar 

  74. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    Article  CAS  Google Scholar 

  75. Haigler CH, Betancur L, Stiff MR et al (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104. https://doi.org/10.3389/fpls.2012.00104

    Article  CAS  Google Scholar 

  76. Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56. https://doi.org/10.1023/A:1018463117874

    Article  CAS  Google Scholar 

  77. Hariwongsanupab N, Thanawan S, Amornsakchai T et al (2017) Improving the mechanical properties of short pineapple leaf fiber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polym Test 57:94–100. https://doi.org/10.1016/j.polymertesting.2016.11.019

    Article  CAS  Google Scholar 

  78. Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506. https://doi.org/10.1063/1.1698162

    Article  CAS  Google Scholar 

  79. Hoque MB, Hossain MS, Nahid AM et al (2018) Fabrication and characterization of pineapple fiber-reinforced polypropylene based composites. Nano Hybrids Compos 21:31–42. https://doi.org/10.4028/www.scientific.net/NHC.21.31

    Article  Google Scholar 

  80. Hu Y, Abidi N (2016) Distinct chiral nematic self-assembling behavior caused by different size-unified cellulose nanocrystals via a multistage separation. Langmuir 32:9863–9872. https://doi.org/10.1021/acs.langmuir.6b02861

    Article  CAS  Google Scholar 

  81. Hubbe MA, Rojas OJ, Lucia LA et al (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  82. Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nano Res Appl 1:41–45. https://doi.org/10.11648/j.nano.20130101.18

    Article  CAS  Google Scholar 

  83. Ioelovich M (2014) Peculiarities of cellulose nanoparticles. TAPPI J 13:45–51

    Article  CAS  Google Scholar 

  84. Ioelovich M (2015) Recent findings and the energetic potential of plant biomass as a renewable source of biofuels—a review. Bioresources 10:1879–1914

    Google Scholar 

  85. Ioelovich M, Leykin A, Figovsky O (2010) Study of cellulose paracrystallinity. Bioresources 5:1393–1407

    CAS  Google Scholar 

  86. Jaafar J, Siregar JP, Piah MBM et al (2018) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ 26:4271–4281. https://doi.org/10.1007/s10924-018-1296-2

    Article  CAS  Google Scholar 

  87. Jahanbaani AR, Behzad T, Borhani S et al (2016) Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym 17:1438–1448. https://doi.org/10.1007/s12221-016-6424-9

    Article  CAS  Google Scholar 

  88. Jacque N, Vanderghem C, Danthine S et al (2012) Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresour Technol 121:221–227. https://doi.org/10.1016/j.biortech.2012.06.073

    Article  CAS  Google Scholar 

  89. Jakubek ZJ, Chen M, Couillard M et al (2018) Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanopart Res 20(98):1–16. https://doi.org/10.1007/s11051-018-4194-6

    Article  CAS  Google Scholar 

  90. Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  91. Kalia S, Boufi S, Celli A et al (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. https://doi.org/10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  92. Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 35 pp. Article ID 837875. https://doi.org/10.1155/2011/837875

  93. Kallel F, Bettaieb F, Khiari R et al (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

    Article  CAS  Google Scholar 

  94. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575. https://doi.org/10.3144/expresspolymlett.2007.78

    Article  CAS  Google Scholar 

  95. Kargarzadeh H, Ahmad I, Thomas S et al (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahamad I, Thomas S et al (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley-VCH Verlag GmbH & Co, p 849. https://doi.org/10.1002/9783527689972.ch1

  96. Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979. https://doi.org/10.1016/j.carbpol.2011.08.078

    Article  CAS  Google Scholar 

  97. Khalil HPSA, Davoudpour Y, Islam M et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  CAS  Google Scholar 

  98. Khazraji AC, Sylvain R (2013) Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. J Nanomater 2013:48. https://doi.org/10.1155/2013/745979

    Article  CAS  Google Scholar 

  99. Kim CW, Kim DS, Kang SY et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107. https://doi.org/10.1016/j.polymer.2006.05.033

    Article  CAS  Google Scholar 

  100. Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial celulose. Cellulose 9:361–367. https://doi.org/10.1023/A:1021140726936

    Article  CAS  Google Scholar 

  101. Kirby BJ, Hasselbrink EF Jr (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202. https://doi.org/10.1002/elps.200305754

    Article  CAS  Google Scholar 

  102. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  103. Kumar R, Ha SK, Verma K et al (2018) Recent progress in some selected bio-nanomaterials and their engineering applications: an overview. J Sci Adv Mater Devices 3:263–288. https://doi.org/10.1016/j.jsamd.2018.05.003

    Article  Google Scholar 

  104. Kurokawa M, King P, Wu X, Joyce E, Mason T, Yamamoto K (2016) Effect of sonication frequency on the disruption of algae. Ultrason Sonochem 31:157–162. https://doi.org/10.1016/j.ultsonch.2015.12.011

    Article  CAS  Google Scholar 

  105. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165. https://doi.org/10.1021/bm050479t

    Article  CAS  Google Scholar 

  106. Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249. https://doi.org/10.1016/S0001-8686(98)00087-6

    Article  CAS  Google Scholar 

  107. Lee HV, Hamid SB, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 20 pp. Article ID 631013. https://doi.org/10.1155/2014/631013

  108. Leão AL, Souza SF, Cherian BM et al (2010) Agro-based biocomposites for industrial applications. Mol Cryst Liq Cryst 522:18/[318]–27/[327]. https://doi.org/10.1080/15421401003719852

  109. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. https://doi.org/10.1016/j.ultsonch.2011.11.007

    Article  CAS  Google Scholar 

  110. Li Y, Li G, Zou Y et al (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309. https://doi.org/10.1007/s10570-013-0146-6

    Article  CAS  Google Scholar 

  111. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  112. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294. https://doi.org/10.1039/c2nr30260h

    Article  CAS  Google Scholar 

  113. Lin X, Wu Z, Zhang C, Liu S, Nie S (2018) Enzymatic pulping of lignocellulosic biomass. Ind Crops Prod 120:16–24. https://doi.org/10.1016/j.indcrop.2018.04.033

    Article  CAS  Google Scholar 

  114. Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Polym Phys 40:2119–2129. https://doi.org/10.1002/polb.10261

    Article  CAS  Google Scholar 

  115. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. https://doi.org/10.1016/j.carbpol.2010.04.073

    Article  CAS  Google Scholar 

  116. Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93. https://doi.org/10.1016/j.pecs.2013.11.001

    Article  Google Scholar 

  117. Madsen B, Gamstedt EK (2013) Wood versus plant fibers: similarities and differences in composite applications. Adv Mater Sci Eng 14 pp. Article ID 564346. https://doi.org/10.1155/2013/564346

  118. Mahardika M, Abral H, Kasim A et al (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6:28–40. https://doi.org/10.3390/fib6020028

    Article  CAS  Google Scholar 

  119. Mahato DN, Mathur BK, Bhattacherjee S (2013) DSC and IR methods for determination of accessibility of cellulosic coir fibre and thermal degradation under mercerization. Indian J Fibre Text Res 38:96–100. http://nopr.niscair.res.in/handle/123456789/16380. Accessed 22 Jan 2019

  120. Milanez DH, Amaral RM, Faria LIL et al (2013) Assessing nanocellulose developments using science and technology indicators. Mater Res-Ibero-Am J 16:635–641. https://doi.org/10.1590/S1516-14392013005000033

    Article  Google Scholar 

  121. Milanez DH, Amaral RM, Faria LIL et al (2014) Technological indicators of nanocellulose advances obtained from data and text mining applied to patent documents. Mater Res-Ibero-Am J 17:1513–1522. https://doi.org/10.1590/1516-1439.266314

    Article  Google Scholar 

  122. Milanez DH, Noyons E, Faria LIL (2016) A delineating procedure to retrieve relevant publication data in research areas: the case of nanocellulose. Scientometrics 107:627–643. https://doi.org/10.1007/s11192-016-1922-5

    Article  Google Scholar 

  123. Mishra RK, Ha SK, Verma K et al (2018a) Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J Sci Adv Mater Devices 3:263–288. https://doi.org/10.1016/j.jsamd.2018.05.003

  124. Mishra RK, Sabu A, Tiwari SK (2018b) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978. https://doi.org/10.1016/j.jscs.2018.02.005

  125. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  126. Moreno G, Ramirez K, Esquivel M et al (2018) Isolation and characterization of nanocellulose obtained from industrial crop waste resources by using mild acid hydrolysis. J Renew Mater 6:362–369. https://doi.org/10.7569/jrm.2017.634167

    Article  CAS  Google Scholar 

  127. Mukherjee A, Hackley VA (2018) Separation and characterization of cellulose nanocrystals by multi-detector asymmetric flow field-flow fractionation. Analyst 143:731–740. https://doi.org/10.1039/c7an01739a

    Article  CAS  Google Scholar 

  128. Nachtkamp K, Krüger C, Engelhardt J et al (2018) Nanoparticles made of amorphous cellulose. US patent 8722092B2, 10 Oct 2007

    Google Scholar 

  129. Nam S, French AD, Condon BD et al (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

    Article  CAS  Google Scholar 

  130. Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324. https://doi.org/10.1002/app.1964.070080322

  131. Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341. https://doi.org/10.1002/app.1964.070080323

  132. Nguyen HD, Mai TTT, Nguyen NB et al (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016. https://doi.org/10.1088/2043-6262/4/1/015016

    Article  CAS  Google Scholar 

  133. Nikmatin S, Rudwiyanti JR, Prasetyo KW et al (2015) Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fiber material for food packaging. In: Proceedings of the international seminar on photonics, optics, and its applications, Sanur, Indonesia, 2014. https://doi.org/10.1117/12.2081112

  134. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  CAS  Google Scholar 

  135. Ounas A, Aboulkas A, El Harfi K et al (2011) Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresour Technol 102:11234–11238. https://doi.org/10.1016/j.biortech.2011.09.010

    Article  CAS  Google Scholar 

  136. Pakzad A, Simonsen J, Heiden PA et al (2012) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27:528–536. https://doi.org/10.1557/jmr.2011.288

    Article  CAS  Google Scholar 

  137. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  138. Pavia DL, Lampman GM, Kriz GS et al (2009) Introduction to spectroscopy, 4th edn. Cengage Learning, Belmont, pp 15–26

    Google Scholar 

  139. Peng Y, Gardner DJ, Han Y et al (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392. https://doi.org/10.1007/s10570-013-0019-z

    Article  CAS  Google Scholar 

  140. Pérez J, Munõz-Dorado J, de la Rubia T et al (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63. https://doi.org/10.1007/s10123-002-0062-3

    Article  CAS  Google Scholar 

  141. Phanthong P, Reubroycharoen P, Hao X et al (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  142. Poletto M, Zattera AJ, Santana RM (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:E337–E344. https://doi.org/10.1002/app.36991

    Article  CAS  Google Scholar 

  143. Prado KS, Gonzales D, Spinacé MAS (2019) Recycling of viscose yarn waste through one-step extraction of nanocellulose. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.06.124

    Article  Google Scholar 

  144. Prado KS, Spinacé MA (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416. https://doi.org/10.1016/j.ijbiomac.2018.10.187

    Article  CAS  Google Scholar 

  145. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33. https://doi.org/10.1080/02773810701282330

    Article  CAS  Google Scholar 

  146. Quan SL, Kang SG, Chin IJ (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223–230. https://doi.org/10.1007/s10570-009-9386-x

    Article  CAS  Google Scholar 

  147. Querejeta-Fernández A, Kopera B, Prado KS et al (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9:10377–10385. https://doi.org/10.1021/acsnano.5b04552

    Article  CAS  Google Scholar 

  148. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27. https://doi.org/10.1016/j.tibtech.2004.11.002

    Article  CAS  Google Scholar 

  149. Revol JF, Godbout L, Dong XM et al (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134. https://doi.org/10.1080/02678299408036525

    Article  CAS  Google Scholar 

  150. Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In: Poletto M, Junior HLO (eds) Cellulose—fundamental aspects and current trends. IntechOpen, p 282. https://doi.org/10.5772/61899

  151. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. https://doi.org/10.1021/bm034519+

    Article  CAS  Google Scholar 

  152. Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138. https://doi.org/10.1021/am500359f

    Article  CAS  Google Scholar 

  153. Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  154. Salas C, Nypelö T, Rodriguez-Abreu C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. https://doi.org/10.1016/j.cocis.2014.10.003

    Article  CAS  Google Scholar 

  155. Segal LG, Creely JJ, Martin AE Jr et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  156. Sena Neto AR, Araujo MAM, Souza FVD et al (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crop Prod 43:529–537. https://doi.org/10.1016/j.indcrop.2012.08.001

    Article  CAS  Google Scholar 

  157. Sena Neto AR, Araujo MAM, Barboza RMP et al (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crop Prod 64:68–78. https://doi.org/10.1016/j.indcrop.2014.10.042

    Article  CAS  Google Scholar 

  158. Shak KP, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9:2479–2498. https://doi.org/10.3762/bjnano.9.232

    Article  CAS  Google Scholar 

  159. Shih Y-F, Chou M-Y, Chang W-C et al (2017) Completely biodegradable composites reinforced by the cellulose nanofibers of pineapple leaves modified by eco-friendly methods. J Polym Res 24:209–221. https://doi.org/10.1007/s10965-017-1367-4

    Article  CAS  Google Scholar 

  160. Shih Y-F, Chou M-Y, Lian H-Y et al (2018a) Highly transparent and impact-resistant PMMA nanocomposites reinforced by cellulose nanofibers of pineapple leaves modified by eco-friendly methods. Express Polym Lett 12:844–854. https://doi.org/10.3144/expresspolymlett.2018.72

  161. Shih Y-F, Tsou Z-G, Wang C-H et al (2018b) Eco-friendly modification for the cellulose nanofibers derived from pineapple leaves for high-performance nanocomposite. IOP Conf Ser Earth Environ Sci 171:1–7. https://doi.org/10.1088/1755-1315/171/1/012041

  162. Sing J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. https://doi.org/10.1016/j.carbpol.2014.10.012

    Article  CAS  Google Scholar 

  163. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765. https://doi.org/10.3390/polym2040728

    Article  CAS  Google Scholar 

  164. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  165. Smith CW (1995) Crop production: evolution, history, and technology. Wiley, United States, p 320

    Google Scholar 

  166. Stylianopoulos T, Kokonou M, Michael S et al (2012) Tensile mechanical properties and hydraulic permeabilities of electrospun cellulose acetate fiber meshes. J Biomed Mater Res B 100:2222–2230. https://doi.org/10.1002/jbm.b.32791

    Article  CAS  Google Scholar 

  167. Surip SN, Aziz FMA, Bonnia NN et al (2017) Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF). AIP Conf Proc 1885:020269/1–020269/5. https://doi.org/10.1063/1.5002463

  168. Surip SN, Aziz FMA, Bonnia NN et al (2018) Effect of pineapple leaf fibers (PALF) concentration on nanofibers formation by electrospinning. IOP Conf Ser Mater Sci Eng 290:1–7. https://doi.org/10.1088/1757-899x/290/1/012003

    Article  CAS  Google Scholar 

  169. Sutkar VS, Gogate PR, Csoka L (2010) Theoretical prediction of cavitational activity distribution in sonochemical reactors. Chem Eng J 158:290–295. https://doi.org/10.1016/j.cej.2010.01.049

    Article  CAS  Google Scholar 

  170. TAPPI WI 3021. Standard terms and their definition for cellulose nanomaterial. https://www.tappi.org/content/hide/draft3.pdf. Accessed 25/11/2019

  171. Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563. https://doi.org/10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  172. Trache D, Hussin MH, Haafiz MKM et al (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786. https://doi.org/10.1039/c6nr09494e

    Article  CAS  Google Scholar 

  173. Tran AV (2006) Chemical analysis and pulping study of pineapple crown leaves. Ind Crop Prod 24:66–74. https://doi.org/10.1016/j.indcrop.2006.03.003

    Article  CAS  Google Scholar 

  174. Trindade WG, Hoareau W, Megiatto JD, Razera AT, Castellan A, Frollini E (2005) Thermoset phenolic matrices reinforced with unmodified and surface grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules 6:2485–2496. https://doi.org/10.1021/bm058006+

    Article  CAS  Google Scholar 

  175. Van de Ven TG, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114. https://doi.org/10.1039/c6nr01570k

    Article  Google Scholar 

  176. Van der Biest O, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29:327–352. https://doi.org/10.1146/annurev.matsci.29.1.327

    Article  Google Scholar 

  177. Vega-Baudrit JR, Camacho M, Ureña YRC et al (2018) Synthesis and characterization of nanocellulose obtained from pineapple peel wastes. In: Abstracts of the 255th national meeting & exposition of the American Chemical Society—division of cellulose & renewable materials, New Orleans, 18–22 Mar 2018

    Google Scholar 

  178. Wada M, Chanzy H, Nishiyama Y et al (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555. https://doi.org/10.1021/ma0485585

    Article  CAS  Google Scholar 

  179. Wahyuningsih K, Iriani ES, Fahma F (2016) Utilization of cellulose from pineapple leaf fibers as nanofiller in polyvinyl alcohol-based film. Indones J Chem 16:181–189. https://doi.org/10.22146/ijc.1086

    Article  CAS  Google Scholar 

  180. Wan Nadirah WO, Jawaid M, Al Masri AA, Khalil HPSA, Suhaily SS, Mohamed AR (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20:404–411. https://doi.org/10.1007/s10924-011-0380-7

    Article  CAS  Google Scholar 

  181. Wang T, Yang H, Kubicki JD et al (2016) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromolecules 17:2210–2222. https://doi.org/10.1021/acs.biomac.6b00441

    Article  CAS  Google Scholar 

  182. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175. https://doi.org/10.1021/jp993593c

    Article  CAS  Google Scholar 

  183. Whitmore RE, Atalla RH (1985) Factors influencing the regeneration of cellulose I from phosphoric acid. Int J Biol Macromol 7:182–186. https://doi.org/10.1016/0141-8130(85)90022-4

    Article  CAS  Google Scholar 

  184. Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. https://doi.org/10.1021/am302624t

    Article  CAS  Google Scholar 

  185. Xue Y, Mou Z, Xiao H (2017) Nanocellulose as sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9:14758–14781. https://doi.org/10.1039/c7nr04994c

    Article  CAS  Google Scholar 

  186. Yang H, Yan R, Chen H et al (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel 20:388–393. https://doi.org/10.1021/ef0580117

    Article  CAS  Google Scholar 

  187. Yao F, Wu Q, Lei Y et al (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

    Article  CAS  Google Scholar 

  188. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11. https://doi.org/10.1016/j.cogsc.2017.03.003

    Article  Google Scholar 

  189. Zamil MS, Geitmann A (2017) The middle lamella—more than a glue. Phys Biol 14:015004. https://doi.org/10.1088/1478-3975/aa5ba5

  190. Zhang Q, Benoit M, Vigier KO et al (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969. https://doi.org/10.1039/c3gc36643j

    Article  CAS  Google Scholar 

  191. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003

    Article  CAS  Google Scholar 

  192. Zhou X, Wang H, Zhang J et al (2018) Lightweight biobased polyurethane nanocomposite foams reinforced with pineapple leaf nanofibers (PLNFs). J Renew Mater 6:68–74. https://doi.org/10.7569/JRM.2017.634150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia A. S. Spinacé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prado, K.S., Jacinto, A.A., Spinacé, M.A.S. (2020). Cellulose Nanostructures Extracted from Pineapple Fibres. In: Jawaid, M., Asim, M., Tahir, P., Nasir, M. (eds) Pineapple Leaf Fibers. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1416-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1416-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1415-9

  • Online ISBN: 978-981-15-1416-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics