Skip to main content

Physiological Responses and Resilience of Plants to Climate Change

  • Chapter
  • First Online:
New Frontiers in Stress Management for Durable Agriculture

Abstract

Climate change has presently appeared as an unequivocal but unstoppable event, and it poses severe threat for survival of biosphere on this earth. Climate change actually results in large changes in environmental conditions like rainfall pattern, average temperature, heat waves, global change of CO2 or ozone levels, fluctuations in sea levels in addition to surge in new weed flora and insect pests or pathogens. It is believed that climate change is the main cause of various abiotic and biotic stresses that have been badly affecting the agricultural production. Further, climate change predictions indicate that a gradual increase in average atmospheric temperature or frequent incidence of environmental extremes would have a negative impact on physiological and biochemical functioning. Thus, climate has raised global apprehension in respect of lowering crop productivity and food security. As such understanding the tolerance mechanisms of plants has come up with great attention and concern among the researchers working on the development of crop resilience towards climate-smart agriculture and thereby food security under climate change scenario. Indeed, plants can alleviate stress injuries or damages through the aid of various strategies like avoidance or by adopting several inherent mechanisms towards resilience. With this background, this chapter aims to summarize the climate change-induced limiting factors for plant growth and plant responses to such changes. Also, various adaptations or tolerance mechanisms of plants to environmental extremes have been discussed. This contextual information is critical for agricultural sustainability and food security since an improved knowledge would aid in improving plants’ resilience to climate change through the application of modern breeding methodologies and biotechnological or genetic engineering tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdElgawad H, Farfan-Vignolo ER, de Vos D, Asard H (2015) Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci 231:1–10. https://doi.org/10.1016/j.plantsci.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  • AbdElgawad H, Zinta G, Beemster GTS, Janssens IA, Asard H (2016) Future climate CO2 levels mitigate stress impact on plants: increased defense or decreased challenge? Front Plant Sci 7:556. https://doi.org/10.3389/fpls.2016.00556

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Bhardwaj R, Tuteja N (2012) In: Ahmad P, Prasad MNV (eds) Plant signaling under abiotic stress environment. In environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 297–324

    Chapter  Google Scholar 

  • Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518

    Article  CAS  PubMed  Google Scholar 

  • Alnsour M, Ludwig-Muller J (2015) Potential effects of climate change on plant primary and secondary metabolism and its influence on plant ecological interactions. Endocytobiosis Cell Res 26:90–99

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arunanondchai P, Fei C, Fisher A, McCarl BA, Wang W, Yang Y (2018) How does climate change affect agriculture. In: The Routledge handbook of agricultural economics. Routledge, Abingdon-on-Thames

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asseng S, Ewert F, Martre P et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–88.7

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol 159:733–742

    Article  CAS  PubMed  Google Scholar 

  • Chang HC, Tang YC, Hayer-Hartl M, Hartl FU (2007) SnapShot: molecular chaperones, part I. Cell 128:212.e1

    Article  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–454

    Article  PubMed  Google Scholar 

  • Conde A, Chaves MM, GerĂłs H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52(9):1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Deligios PA, Chergia AP, Sanna G, Solinas S, Todde G, Narvarte L, Ledda L (2019) Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke. Sci Total Environ 649:461–472

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, InzĂ© D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:313–323

    Article  CAS  Google Scholar 

  • Duku C, Zwart SJ, Hein L (2018) Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS One 13:e0192642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta P (2018) Seed priming: new vistas and contemporary perspectives. In: Rakshit A, Singh H (eds) Advances in seed priming. Springer, Singapore

    Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • FAO (2018) UNICEF, WFP, WHO the state of food security and nutrition in the world 2017: Building resilience for peace and food security. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333. https://doi.org/10.1111/j.1439-037X.2008.00323.x

    Article  CAS  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D et al (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  PubMed  Google Scholar 

  • Forrest JRK (2015) Plant-pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13

    Article  Google Scholar 

  • Fujita M, Hasanuzzaman M, Nahar K (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunderson CA, O’Hara KH, Campion CM, Walker AV, Edwards NT (2010) Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob Chang Biol 16:2272–2286

    Article  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    Article  CAS  Google Scholar 

  • Hall AE (2011) The mitigation of heat stress. http://www.plantstress.com. Accessed 3 June

  • Hasanuzzaman M, Nahar K, Fujita M (2013a) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ă–ztĂĽrk M (2013b) Enhancing plant productivity under salt stress—relevance of poly-Omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: omics, signaling and responses. Springer, Berlin, pp 113–156

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013c) Extreme temperatures, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. InTech, Rijeka, Croatia, pp 169–205

    Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:172–145

    Article  CAS  Google Scholar 

  • Hu Q, Yang N, Pan F, Pan X, Wang X, Yang P (2017) Adjusting sowing dates improved potato adaptation to climate change in semiarid region, China. Sustainability 9:615. https://doi.org/10.3390/su9040615

    Article  CAS  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC (2013a) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • IPCC (2013b) Climate change the physical science basis. Intergovernmental panel on climate change development. Int J Biochem Cell Biol 44:1613–1621

    Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Kimball S, Gremer JR, Angert AL, Huxman TE, Venable DL (2012) Fitness and physiology in a variable environment. Oecologia 169:319–329

    Article  PubMed  Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermo-tolerance. J Appl Physiol 92(5):2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Kulz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124

    Article  CAS  Google Scholar 

  • Kumar S, Muthusamy SK, Mishra CN, Gupta V, Venkatesh K (2018) Importance of genomic selection in crop improvement and future prospects. In: Advanced molecular plant breeding: meeting the challenge of food security. CRC, Boca Raton, FL, p 275

    Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23:513–522

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernard SM, Markelz RJC, Ort DR, Placella SA et al (2009) Gene expression profiling: opening the black box of plant ecosystem responses to global change. Glob Chang Biol 15:1201–1213

    Article  Google Scholar 

  • Liancourt P, Boldgiv B, Song DS, Spence LA, Helliker BR, Petraitis PS, Casper BB (2015) Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe. Glob Chang Biol 21:3489–3498

    Article  PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781

    Article  CAS  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan R, Gill KS (2018) Evolution of Rubisco activase gene in plants. Plant Mol Biol 96:69–87

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response andseed development. Plant Cell Rep 32(7):959–970

    Article  CAS  PubMed  Google Scholar 

  • NOAA (2019) National Centres for Environmental Information, State of the Climate: Global Climate Report for Annual 2018, published online January 2019. https://www.ncdc.noaa.gov/sotc/global/201813. Accessed 29 Apr 2019

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need. Cell Stress Chaperones 6:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R et al (2014) In: Pachauri RK, Meyer LA (eds) Intergovernmental Panel on Climate Change; 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Pieterse CM et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurevcellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Marijuan MP, Munne-Bosch S (2013) Ecophysiology of invasive plants: osmotic adjustment and anti-oxidants. Trends Plant Sci 18:660–666

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signalling. Front Plant Sci 5:154. https://doi.org/10.3389/fpls.2014.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Hsp101 plays a crucial role in thermo tolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86(4):709–716. https://doi.org/10.1006/anbo.2000.1254

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate salicylate antagonism. Annu Rev Phytopathol 49:317–343. https://doi.org/10.1146/annurev-phyto-073009-114447

    Article  CAS  PubMed  Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Article  CAS  PubMed  Google Scholar 

  • RodrĂ­guez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    Google Scholar 

  • Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase and global climate change. J Exp Bot 59:1581–1595

    Article  CAS  PubMed  Google Scholar 

  • Saini H, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot 48:623–633

    Article  Google Scholar 

  • Samota MK, Sasi M, Awana M, Yadav OP, Amitha MSV, Tyagi A et al (2017) Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Front Plant Sci 8:934. https://doi.org/10.3389/fpls.2017.0093

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarieva GE, Kenzhebaeva SS, Lichtenthaler HK (2010) Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions. Russ J Plant Physiol 57:28–36

    Article  CAS  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10(5):432–446

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2010) Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. Boca Raton, FL, CRC, Taylor and Francis, pp 89–138

    Google Scholar 

  • Shaw RG, Etterson JR (2012) Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol 195(4):752–765

    Article  PubMed  Google Scholar 

  • Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9:161–169

    Article  Google Scholar 

  • Silva RLO, Ferreira Neto JRC, Pandolfi V, Chabregas SM, Burnquist WL, Benko-Iseppon AM et al (2011) Transcriptomics of sugarcane osmoprotectants under drought, plants and environment. In: Vasanthaiah KNH, Kambiranda D (eds) Plants and environment. InTech, Rijeka, Croatia

    Google Scholar 

  • Singh RP, Prasad PVV, Reddy KR (2013) Impacts of changing climate and climate variability on seed production and seed industry. Adv Agron 118:49–110

    Article  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS, Shrivastava AK, Srivastava AK (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Biol 33:657–661

    CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Teixeira EI, de Ruiter J, Ausseil AG, Daigneault A, Johnstone P, Holmes A, Tait A, Ewert F (2018) Adapting crop rotations to climate change in regional impact modelling assessments. Sci Total Environ 616:785–795

    Article  CAS  PubMed  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkemaladze GS, Makhashvili K (2016) Climate changes and photosynthesis. Ann Agric Sci 14:119–126

    Google Scholar 

  • Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E et al (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone mediated refolding. Proc Natl Acad Sci 98:3098–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2009) Integrated calcium signaling in plants. In: Baluska F, Mancuso S (eds) Signaling in plants I. Springer, Heidelberg, pp 29–49

    Chapter  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) Omics analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Vaughan MM, Block A, Christensen SA, Allen LH, Schmelz EA (2018) The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochem Rev 17:37–49

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:247–242

    Google Scholar 

  • Ward JK, Kelly J (2004) Scaling up evolutionary responses to elevated CO2: lessons from Arabidopsis. Ecol Lett 7:427–440

    Article  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics 7:1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel T, Renno JF, Payne W (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet Pennisetumglaucum (L.) R. Br. grown in Sahelian conditions. J Exp Bot 48:1001–1009

    Article  CAS  Google Scholar 

  • Woodrow P, Ciarmiello LF, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. In Tech, Rijeka

    Google Scholar 

  • Zhang J, Schurr U, Davies W (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38(7):1174–1181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, P., Chakraborti, S., Chaudhuri, K.M., Mondal, S. (2020). Physiological Responses and Resilience of Plants to Climate Change. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_1

Download citation

Publish with us

Policies and ethics