Skip to main content

Background: Carbon Nanotubes for Targeted Drug Delivery

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Current researches and developments in the field of nanotechnology have been concentrated in the explorations and exploitations of different novel nanotechnological products or systems for numerous biomedical applications (Nayak et al., Calcium fluoride-based dental nanocomposites, in Applications of Nanocomposite Materials in Dentistry, Elsevier, pp 27–45, 2019; Nayak and Bera, Polysaccharide carriers for drug delivery, Elsevier, pp 615–638, 2019; Rani et al., Applications of nanocomposite materials in dentistry, Elsevier, pp 65–91, 2019; Ray et al., Bioelectronics and medical devices, Elsevier, pp 355–392, 2019).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • P.M. Ajayan, Nanotubes from carbon. Chem. Rev. 99, 1787–1800 (1999)

    Article  CAS  Google Scholar 

  • K. Awasthi, A. Srivastava, O. Srivastava, Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1616–1636 (2005)

    Article  CAS  Google Scholar 

  • R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  CAS  Google Scholar 

  • S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli, Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63, 141–163 (2011)

    Article  CAS  Google Scholar 

  • E. Bekyarova, Y. Ni, E.B. Malarkey, V. Montana, J.L. McWilliams, R.C. Haddon, V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol. 1, 3–17 (2005)

    Article  CAS  Google Scholar 

  • A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem Commun 5, 571–577 (2005a)

    Article  CAS  Google Scholar 

  • A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005b)

    Article  CAS  Google Scholar 

  • A. Brandelli, Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev. Med. Chem. 12, 731–741 (2012)

    Article  CAS  Google Scholar 

  • D. Cai, J.M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449 (2005)

    Article  CAS  Google Scholar 

  • X. Chen, A. Kis, A. Zettl, C.R. Bertozzi, A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. 104, 8218–8222 (2007)

    Article  CAS  Google Scholar 

  • B. Das, S.O. Sen, R. Maji, A.K. Nayak, K.K. Sen, Transferosomal gel for transdermal delivery of risperidone: formulation optimization and ex vivo permeation. J. Drug. Deliv. Sci. Technol. 38, 59–71 (2017)

    Article  CAS  Google Scholar 

  • M. Dresselhaus, G. Dresselhaus, J.-C. Charlier, E. Hernandez, Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362, 2065–2098 (2004)

    Article  CAS  Google Scholar 

  • M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Elsevier, Amsterdam, 1996)

    Google Scholar 

  • P.J. Harris, Carbon nanotubes and Related Structures: New Materials for the Twenty-First Century (AAPT, 2004)

    Google Scholar 

  • M.S. Hasnain, A.K. Nayak, Alginates: Versatile Polymers in Biomedical Applications and Therapeutics (CRC Press, Palm Bay, 2019)

    Google Scholar 

  • M.S. Hasnain, A.K. Nayak, Nanocomposites for improved orthopedic and bone tissue engineering applications, in Applications of Nanocomposite Materials in Orthopedics (Elsevier, 2019b), pp. 145–177

    Google Scholar 

  • M.S. Hasnain, A.K. Nayak, Recent progress in responsive polymer-based drug delivery systems, in Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications (Elsevier, 2019c), pp. 569–595

    Google Scholar 

  • M.S. Hasnain, A.K. Nayak, M. Singh, M. Tabish, M.T. Ansari, T.J. Ara, Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release. Int. J. Biol. Macromol. 83, 71–77 (2016)

    Article  CAS  Google Scholar 

  • M.S. Hasnain, S.A. Ahmad, N. Chaudhary, M.N. Hoda, A.K. Nayak, Biodegradable polymer matrix nanocomposites for bone tissue engineering, in Applications of Nanocomposite Materials in Orthopedics, (Elsevier, 2019a), pp. 1–37

    Google Scholar 

  • M.S. Hasnain, S.A. Ahmad, M.N. Hoda, S. Rishishwar, P. Rishishwar, A.K. Nayak, Stimuli-responsive carbon nanotubes for targeted drug delivery, in, Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Vol. 2: Advanced Nanocarriers for Therapeutics, (Elsevier, 2019b), pp. 321–344

    Google Scholar 

  • M.S. Hasnain, S.A. Ahmad, N. Chaudhary, M.A. Minhaj, A.K. Nayak, Degradation and failure of dental composite materials, in Applications of Nanocomposite Materials in Dentistry, (Elsevier, 2019c), pp. 108–121

    Google Scholar 

  • M.S. Hasnain, M.N. Javed, M.S. Alam, P. Rishishwar, S. Rishishwar, S. Ali, A.K. Nayak, S. Beg. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng. C. 99, 1105–1114 (2019d)

    Article  CAS  Google Scholar 

  • H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int. 2013 (2013)

    Google Scholar 

  • W. Hoenlein, F. Kreupl, G. Duesberg, A. Graham, M. Liebau, R. Seidel, E. Unger, Carbon nanotubes for microelectronics: status and future prospects. Mater. Sci. Eng. C 23, 663–669 (2003)

    Article  CAS  Google Scholar 

  • R. Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio, Homo citans and carbon allotropes: for an ethics of citation. Angew. Chem. Int. Ed. 55, 10962–10976 (2016)

    Article  CAS  Google Scholar 

  • S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  • S. Jana, A. Gangopadhaya, B.B. Bhowmik, A.K. Nayak, A. Mukherjee, Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. Int. J. Biol. Macromol. 72, 28–30 (2015)

    Article  CAS  Google Scholar 

  • S. Jana, N. Maji, A.K. Nayak, K.K. Sen, S.K. Basu, Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohyd. Polym. 98, 870–876 (2013)

    Article  CAS  Google Scholar 

  • S. Jana, S. Manna, A.K. Nayak, K.K. Sen, S.K. Basu, Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf. B 114, 36–44 (2014)

    Article  CAS  Google Scholar 

  • J.H. Jung, G.B. Hwang, J.E. Lee, G.N. Bae, Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27, 10256–10264 (2011)

    Article  CAS  Google Scholar 

  • N.W.S. Kam, Z. Liu, H. Dai, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–12493 (2005)

    Article  CAS  Google Scholar 

  • R. Klingeler, R.B. Sim, Carbon Nanotubes for Biomedical Applications (Springer, Berlin, 2011)

    Book  Google Scholar 

  • C. Klumpp, K. Kostarelos M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 404–412 (2006)

    Article  CAS  Google Scholar 

  • H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162 (1985)

    Article  CAS  Google Scholar 

  • C.L. Lay, J. Liu, Y. Liu, Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 8, 561–566 (2011)

    Article  CAS  Google Scholar 

  • Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)

    Article  CAS  Google Scholar 

  • F. Lu, L. Gu, M.J. Meziani, X. Wang, P.G. Luo, L.M. Veca, L. Cao, Y.P. Sun, Advances in bioapplications of carbon nanotubes. Adv. Mater. 21, 139–152 (2009)

    Article  CAS  Google Scholar 

  • X. Luo, C. Matranga, S. Tan, N. Alba, X.T. Cui, Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32, 6316–6323 (2011)

    Article  CAS  Google Scholar 

  • J. Malakar, S.O. Sen, A.K. Nayak, K.K. Sen, Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharma. J. 20, 355–363 (2012)

    Article  Google Scholar 

  • S. Mazumder, A.K. Nayak, T.J. Ara, M.S. Hasnain, Hydroxyapatite composites for dentistry, in Applications of Nanocomposite Materials in Dentistry (Elsevier, 2019), pp. 123–143

    Google Scholar 

  • S.S Nanda, D.K. Yi, M.S. Hasnain, A.K. Nayak, Hydroxyapatite-alginate composites in drug delivery. in Alginate: Versatile Polymer in Biomedical Applications and Therapeutics, (Apple Academic Press, 2019), pp. 483–503

    Google Scholar 

  • A.K. Nayak, Controlled release drug delivery systems. Sci. J. UBU 2, 1–8 (2011)

    Google Scholar 

  • A.K. Nayak, H. Bera, In situ polysaccharide-based gels for topical drug delivery applications, in Polysaccharide Carriers for Drug Delivery (Elsevier, 2019), pp. 615–638

    Google Scholar 

  • A.K. Nayak, B. Das, Introduction to polymeric gels, in Polymeric Gels (Elsevier, 2018), pp. 3–27

    Google Scholar 

  • A.K. Nayak, A.K. Dhara, Nanotechnology in drug delivery applications: a review. Arch. Appl. Sci. Res. 2, 284–293 (2010)

    Google Scholar 

  • A.K. Nayak, S.A. Ahmad, S. Beg, T.J. Ara, M.S. Hasnain, Drug delivery: Present, past and future of medicine, in Applications of Nanocomposite Materials in Drug Delivery, (Elsevier, 2018), pp. 255–282

    Google Scholar 

  • A.K. Nayak, S. Mazumder, T.J. Ara, M.T. Ansari, M.S. Hasnain, Calcium fluoride-based dental nanocomposites, in Applications of Nanocomposite Materials in Dentistry, (Elsevier, 2019), pp. 27–45

    Google Scholar 

  • M. Ouyang, J.-L. Huang, C.M. Lieber, One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 88, 066804 (2002)

    Article  CAS  Google Scholar 

  • D. Pal, A.K. Nayak, Nanotechnology for targeted delivery in cancer therapeutics. Int. J. Pharm. Sci. Rev. Res. 1, 1–7 (2010)

    CAS  Google Scholar 

  • H. Pan, Y. Feng, J. Lin, Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B 72, 085415 (2005)

    Article  CAS  Google Scholar 

  • D. Pantarotto, J.-P. Briand, M. Prato, A. Bianco, Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004a)

    Article  CAS  Google Scholar 

  • D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004b)

    Article  CAS  Google Scholar 

  • M. Paradise, T. Goswami, Carbon nanotubes–production and industrial applications. Mater. Des. 28, 1477–1489 (2007)

    Article  CAS  Google Scholar 

  • V. Raffa, G. Ciofani, S. Nitodas, T. Karachalios, D. D’Alessandro, M. Masini, A. Cuschieri, Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46, 1600–1610 (2008)

    Article  CAS  Google Scholar 

  • S. Ray, P. Sinha, B. Laha, S. Maiti, U.K. Bhattacharyya, A,K, Nayak, Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol. 48, 21–29 (2018)

    Article  CAS  Google Scholar 

  • P. Rani, D. Pal, M.N. Hoda, T.J. Ara, S. Beg, M.S. Hasnain, A.K. Nayak, Dental pulp capping nanocomposites, in Applications of Nanocomposite Materials in Dentistry (Elsevier, 2019), pp. 65–91

    Google Scholar 

  • P. Ray, M.S. Hasnain, A. Koley, A.K. Nayak, Bone-implantable devices for drug delivery applications, in Bioelectronics and Medical Devices (Elsevier, 2019), pp. 355–392

    Google Scholar 

  • M. Sheikhpour, A. Golbabaie, A. Kasaeian, Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C 76, 1289–1304 (2017)

    Article  CAS  Google Scholar 

  • N.W. Shi Kam, T.C. Jessop, P.A. Wender, H. Dai, Nanotube molecular transporters: internalization of carbon nanotube—protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Article  CAS  Google Scholar 

  • N. Sinha, J.-W. Yeow, Carbon nanotubes for biomedical applications. IEEE Trans. Nanobiosci. 4, 180–195 (2005)

    Article  Google Scholar 

  • E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  CAS  Google Scholar 

  • H. Troiani, M. Miki-Yoshida, G. Camacho-Bragado, M. Marques, A. Rubio, J. Ascencio, M. Jose-Yacaman, Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett. 3, 751–755 (2003)

    Article  CAS  Google Scholar 

  • S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroğlu, K. Vig, V.A. Dennis, S.R. Singh, Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. 7, 5361 (2012)

    CAS  Google Scholar 

  • S.K. Vashist, D. Zheng, G. Pastorin, K. Al-Rubeaan, J.H. Luong, F.-S. Sheu, Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49, 4077–4097 (2011)

    Article  CAS  Google Scholar 

  • T. Waghule, V.K. Rapalli, G. Singhvi, P. Manchanda, N. Hans, S.K. Dubey, M.S. Hasnain, A.K. Nayak, Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol. 52, 303–315 (2019)

    Article  CAS  Google Scholar 

  • X. Wan, J. Dong, D. Xing, Optical properties of carbon nanotubes. Phys. Rev. B 58, 6756 (1998)

    Article  CAS  Google Scholar 

  • B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964–2015 (2013)

    Article  CAS  Google Scholar 

  • K. Zare, F. Najafi, H. Sadegh, Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J. Nanostruct. Chem. 3, 71 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Saquib Hasnain .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasnain, M.S., Nayak, A.K. (2019). Background: Carbon Nanotubes for Targeted Drug Delivery. In: Carbon Nanotubes for Targeted Drug Delivery. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-0910-0_1

Download citation

Publish with us

Policies and ethics