Skip to main content

Application of Electron Microscopy to Understanding Colloid-Facilitated Transport of Radionuclides at the Mayak Production Association Facility, Near Lake Karachai, Russia

  • Chapter
  • First Online:
Behavior of Radionuclides in the Environment I

Abstract

Plutonium association and transport by ferrihydrite has been confirmed in the groundwater system of Lake Karachai at the Mayak Production Association, Russia (Novikov et al. 2006). Since this initial description, there has been substantial progress in understanding the mechanisms that control the concentrations and distribution of Pu at the Mayak site. This chapter is a concise review of work during the past 10 years that utilizes to advantage recent advances in nanoscale, analytical techniques. The structure of ferrihydrite (P63mc) was determined using a pair-distribution function analysis. Scanning transmission electron microscopy of Mayak colloids resolved the occurrence of mixed silica nano-colloids and ferrihydrite. Thermodynamic properties for aqueous Pu-species have been updated. Inner-sphere surface complexation was determined for adsorbed Pu using synchrotron-based X-ray absorption spectroscopy. The adsorbed Pu can transform into Pu-dioxide nanoparticles as revealed by high-resolution transmission electron microscopy. Plutonium polymerization can also proceed by aggregation of cubic Pu-dihydroxy building blocks of Pu(OH)2 2+•6H2O. Plutonium desorption occurs associated with re-adsorption at neutral pH. To establish comprehensive model of Pu transport at the Mayak site, the detailed mechanisms described above must be considered. Rigorous characterization of colloids is necessary and these results must be compared with results obtained from experimental studies. The state-of-the-art knowledge on the Pu association with Fe hydroxides is now well enough understood that safety assessments no longer need to rely on the classical K d approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Begg JD, Zavarin M, Kersting AB (2014) Plutonium desorption from mineral surfaces at environmental concentrations of hydrogen peroxide. Environ Sci Technol 48(11):6201–6210

    Article  CAS  Google Scholar 

  • Bompoti N, Chrysochoou M, Machesky M (2017) Surface structure of ferrihydrite: insights from modeling surface charge. Chem Geol 464:34–45

    Article  CAS  Google Scholar 

  • Buck EC, Bates JK (1999) Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Appl Geochem 14(5):635–653

    Article  CAS  Google Scholar 

  • Buddemeier RW, Hunt JR (1988) Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada test site. Appl Geochem 3(5):535–548

    Article  CAS  Google Scholar 

  • Chan CS, De Stasio G, Welch SA, Girasole M, Frazer BH, Nesterova MV, Fakra S, Banfield JF (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303(5664):1656–1658

    Article  CAS  Google Scholar 

  • Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73(13):3807–3818

    Article  CAS  Google Scholar 

  • Choppin GR, Jensen MP (2006) Actinides in solution: complexation and kinetics. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinides and transactinide elements. Springer, Dordrecht, pp 2524–2621

    Chapter  Google Scholar 

  • Choppin G, Liljenzin J-O, Rydberg J (2001) Radiochemistry and nuclear chemistry. Butterworth-Heinemann, Woburn

    Google Scholar 

  • Christensen GC, Romanov GN, Strand P, Salbu B, Malyshev SV, Bergan TD, Oughton D, Drozhko EG, Glagolenko YV, Amundsen I et al (1997) Radioactive contamination in the environment of the nuclear enterprise ‘Mayak’ PA. Results from the joint Russian-Norwegian field work in 1994. Sci Total Environ 202(1–3):237–248

    Article  CAS  Google Scholar 

  • Clark DL, Hobart DE, Neu MP (1995) Actinide carbonte complexes and their importance in actinide environmental chemistry. Chem Rev 95(1):25–48

    Article  CAS  Google Scholar 

  • Contardi JS, Turner DR, Ahn TM (2001) Modeling colloid transport for performance assessment. J Contam Hydrol 47(2–4):323–333

    Article  CAS  Google Scholar 

  • Dai M, Kelley JM, Buesseler KO (2002) Sources and migration of plutonium in groundwater at the Savannah River Site. Environ Sci Technol 36(17):3690–3699

    Article  CAS  Google Scholar 

  • Dai M, Buesseler KO, Pike SM (2005) Plutonium in groundwater at the 100K-area of the U.S. DOE Hanford Site. J Contam Hydrol 76(3–4):167–189

    Article  CAS  Google Scholar 

  • Degueldre C, Grauer R, Laube A, Oess A, Silby H (1996) Colloid properties in granitic groundwater systems. II: stability and transport study. Appl Geochem 11(5):697–710

    Article  CAS  Google Scholar 

  • Degueldre C, Triay I, Kim J-I, Vilks P, Laaksoharju M, Miekeley N (2000) Groundwater colloid properties: a global approach. Appl Geochem 15(7):1043–1051

    Article  CAS  Google Scholar 

  • Degueldre C, Bilewicz A, Hummel W, Loizeau J (2001) Sorption behaviour of Am on marl groundwater colloids. J Environ Radioact 55(3):241–253

    Article  CAS  Google Scholar 

  • Drozhko EG, Mokrov YG, Glagolenko YV, Samsonova LM (1996) Determination of hydrologic parameters of a fractured rock mass based on regional groundwater level data in the Lake Karachai area. Lawrence Berkeley National Laboratory Report 43247.

    Google Scholar 

  • Drozhko EG, Glagolenko YU, Mokrov YG, Postovalova GA, Samsonova LM, Glagolev AV, Ter-Saakian SA, Glinsky ML, Vasil’kova NA, Skokov AV et al (1997) Joint Russian-American hydrogeological-geochemical studies of the Karachai-Mishelyak system, South Urals, Russia. Environ Geol 29(3–4):216–227

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Elimelech M, O’Melia CR (1990) Kinetics of deposition of colloidal particles in porous media. Environ Sci Technol 24(10):1528–1536

    Article  CAS  Google Scholar 

  • Elimelech M, Nagai M, Ko C-H, Ryan JN (2000) Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ Sci Technol 34(11):2143–2148

    Article  CAS  Google Scholar 

  • Geckeis H, Rabung T, Schäfer T (2011) Actinide-nanoparticle interaction: generation, stability and mobility. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin/Heidelberg, pp 1–30

    Google Scholar 

  • Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral–water interface reactions of actinides. Chem Rev 113(2):1016–1062

    Article  CAS  Google Scholar 

  • Hiemstra T (2013) Surface and mineral structure of ferrihydrite. Geochim Cosmochim Acta 105:316–325

    Article  CAS  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (2009) A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochim Cosmochim Acta 73(15):4423–4436

    Article  CAS  Google Scholar 

  • Hixon AE, Powell BA (2014) Observed changes in the mechanism and rates of Pu(V) reduction on hematite as a function of total plutonium concentration. Environ Sci Technol 48(16):9255–9262

    Article  CAS  Google Scholar 

  • Honeyman BD (1999) Colloidal culprits in contamination. Nature 397(6714):23–24

    Article  CAS  Google Scholar 

  • Kalmykov SN, Kriventsov VV, Teterin YA, Novikov AP (2007) Plutonium and neptunium speciation bound to hydrous ferric oxide colloids. Comptes Rendus Chim 10(10–11):1060–1066

    Article  CAS  Google Scholar 

  • Kalmykov SN, Zakharova EV, Novikov AP, Myasoedov BF, Utsunomiya S (2011) Effect of redox conditions on actinide speciation and partitioning with colloidal matter. In: Actinide nanoparticle research. Springer, Berlin/Heidelberg, pp 361–375

    Chapter  Google Scholar 

  • Kanti Sen T, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interf Sci 119(2–3):71–96

    Article  CAS  Google Scholar 

  • Kaplan DI, Bertsch PM, Adriano DC, Orlandini KA (1994) Actinide association with groundwater colloids in a coastal plain aquifer. Radiochim Acta 66–67(s1):181–188

    Google Scholar 

  • Kaplan DI, Powell BA, Demirkanli DI, Fjeld RA, Molz FJ, Serkiz SM, Coates JT (2004) Influence of oxidation states on plutonium mobility during long-term transport through an unsaturated subsurface environment. Environ Sci Technol 38(19):5053–5058

    Article  CAS  Google Scholar 

  • Keeney-kennicutt WL, Morse JW (1985) The redox chemistry of Pu(V)O2 + interaction with common mineral surfaces in dilute solutions and seawater. Geochim Cosmochim Acta 49(12):2577–2588

    Article  CAS  Google Scholar 

  • Kersting AB (2013) Plutonium transport in the environment. Inorg Chem 52(7):3533–3546

    Article  CAS  Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397(6714):56–59

    Article  CAS  Google Scholar 

  • Kim JI (1991) Actinide colloid generation in groundwater. Radiochim Acta 52–53(1):71–82

    Google Scholar 

  • Kim J-I (1992) The chemical behavior of transuranium elements and barrier functions in natural aquifer systems. MRS Proc 294:3

    Article  Google Scholar 

  • Kim JI (1994) Actinide colloids in natural aquifer systems. MRS Bull 19(12):47–53

    Article  CAS  Google Scholar 

  • Kim MA, Panak PJ, Yun JI, Kim JI, Klenze R, Köhler K (2003) Interaction of actinides with aluminosilicate colloids in statu nascendi. Colloids Surfaces A Physicochem Eng Asp 216(1–3):97–108

    Article  CAS  Google Scholar 

  • Kirsch R, Fellhauer D, Altmaier M, Neck V, Rossberg A, Fanghänel T, Charlet L, Scheinost AC (2011) Oxidation state and local structure of plutonium reacted with magnetite, mackinawite, and chukanovite. Environ Sci Technol 45(17):7267–7274

    Article  CAS  Google Scholar 

  • Kretzschmar R, Schafer T (2005) Metal retention and transport on colloidal particles in the environment. Elements 1(4):205–210

    Article  CAS  Google Scholar 

  • Kretzschmar R, Barmettler K, Grolimund D, Yan Y, Borkovec M, Sticher H (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Res 33(5):1129–1137

    Article  CAS  Google Scholar 

  • Levchuk S, Yoschenko V, Kashparov V, Van Meir N, Ardois C, Bugai D (2009) Phenomenon of a fast migration of plutonium radioisotopes in ground water: colloiods or soluble form? In: Oughton DH, Kashparov V (eds) Radioactive particles in the environment, NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 157–167

    Chapter  Google Scholar 

  • Li D, Kaplan DI (2012) Sorption coefficients and molecular mechanisms of Pu, U, Np, Am and Tc to Fe (hydr)oxides: a review. J Hazard Mater 243:1–18

    Article  CAS  Google Scholar 

  • Lichtner PC, Wolfsberg AV (2004) Modeling thermal-hydrologic-chemical (THC) coupled processes with application to underground nuclear tests at the Nevada Test Site: a “Ground-Challenge” supercomputer problem. Los Alamos National Laboratory report: LA-UR-04-1826.

    Google Scholar 

  • Lu N, Reimus PW, Parker GR, Conca JL, Triay IR (2003) Sorption kinetics and impact of temperature, ionic strength and colloid concentration on the adsorption of plutonium-239 by inorganic colloids. Radiochim Acta 91(12):713

    Article  CAS  Google Scholar 

  • Maher K, Bargar JR, Brown GE (2013) Environmental speciation of actinides. Inorg Chem 52(7):3510–3532

    Article  CAS  Google Scholar 

  • Malkovsky V (2011) Theoretical analysis of colloid-facilitated transport of radionuclides by groundwater. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin/Heidelberg, pp 195–243

    Chapter  Google Scholar 

  • Malkovsky VI, Dikov YP, Kalmykov SN, Buleev MI (2009) Structure of colloid particles in groundwaters on the territory of the Mayak production association and its impact on the colloid transport of radionuclides in subsoil environments. Geochem Int 47(11):1100–1106

    Article  Google Scholar 

  • Malkovsky VI, Dikov YP, Asadulin EE, Krupskaya VV (2012) Influence of host rocks on composition of colloid particles in groundwater at the Karachai Lake site. Clay Miner 47(3):391–400

    Article  CAS  Google Scholar 

  • Marty RC, Bennett D, Thullen P (1997) Mechanism of plutonium transport in a shallow aquifer in Mortandad Canyon, Los Alamos National Laboratory, New Mexico. Environ Sci Technol 31(7):2020–2027

    Article  CAS  Google Scholar 

  • Matijević E (1973) Colloid stability and complex chemistry. J Colloid Interface Sci 43(2):217–245

    Article  Google Scholar 

  • McCarthy JF, McKay LD (2004) Colloid transport in the subsurface. Vadose Zone J 3(2):326

    Google Scholar 

  • McCarthy JF, Zachara JM (1989a) Subsurface transport of contaminants. Environ Sci Technol 23(5):496–502

    CAS  Google Scholar 

  • McCarthy JF, Zachara JM (1989b) Subsurface transport of contaminants. Mobile colloids in the subsurface environment may alter the transport of contaminants. Environ Sci Technol 23(5):496–502

    CAS  Google Scholar 

  • McDowell-Boyer LM (1992) Chemical mobilization of micron-sized particles in saturated porous media under steady flow conditions. Environ Sci Technol 26(3):586–593

    Article  CAS  Google Scholar 

  • Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316(5832):1726–1729

    Article  CAS  Google Scholar 

  • Morgenstern A, Choppin GR (2002) Kinetics of the oxidation of Pu(IV) by manganese dioxide. Radiochim Acta 90(2):69

    CAS  Google Scholar 

  • Myasoedov B, Drozhko E (1998) Up-to-date radioecological situation around the ‘Mayak’ nuclear facility. J Alloys Compd 271–273:216–220

    Article  Google Scholar 

  • Myasoedova BF, Drozhko EG (1998) Up-to-date radioecological situation around the ‘Mayak’ nuclear facility. J Alloys Compd 271–273:216–220

    Article  Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314(5799):638–641

    Article  CAS  Google Scholar 

  • Novikov AP, Kalmykov SN, Kuzovkina EV, Myasoedov BF, Fujiwara K, Fujiwara A (2009) Evolution of actinide partitioning with colloidal matter collected at PA “Mayak” site as studied by sequential extraction. J Radioanal Nucl Chem 280(3):629–634

    Article  CAS  Google Scholar 

  • Oughton DH, Fifield LK, Day JP, Cresswell RC, Skipperud L, Di Tada ML, Salbu B, Strand P, Drozcho E, Mokrov Y (2000) Plutonium from Mayak: measurement of isotope ratios and activities using accelerator mass spectrometry. Environ Sci Technol 34(10):1938–1945

    Article  CAS  Google Scholar 

  • Penrose WR, Polzer WL, Essington EH, Nelson DM, Orlandini KA (1990) Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ Sci Technol 24(2):228–234

    Article  CAS  Google Scholar 

  • Powell BA, Fjeld RA, Kaplan DI, Coates JT, Serkiz SM (2005) Pu(V)O2 + adsorption and reduction by synthetic hematite and goethite. Environ Sci Technol 39(7):2107–2114

    Article  CAS  Google Scholar 

  • Powell BA, Duff MC, Kaplan DI, Fjeld RA, Newville M, Hunter DB, Bertsch PM, Coates JT, Eng P, Rivers ML et al (2006) Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff. Environ Sci Technol 40(11):3508–3514

    Article  CAS  Google Scholar 

  • Powell BA, Dai Z, Zavarin M, Zhao P, Kersting AB (2011) Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Environ Sci Technol 45(7):2698–2703

    Article  CAS  Google Scholar 

  • Romanchuk AY, Kalmykov SN, Aliev RA (2011) Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations. Radiochim Acta 99(3):137–144

    Article  CAS  Google Scholar 

  • Romanchuk AY, Kalmykov SN, Egorov AV, Zubavichus YV, Shiryaev AA, Batuk ON, Conradson SD, Pankratov DA, Presnyakov IA (2013) Formation of crystalline PuO2+x·nH2O nanoparticles upon sorption of Pu(V,VI) onto hematite. Geochim Cosmochim Acta 121:29–40

    Article  CAS  Google Scholar 

  • Rothe J, Walther C, Denecke MA, Fanghänel T (2004) XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products. Inorg Chem 43(15):4708–4718

    Article  CAS  Google Scholar 

  • Rumynin VG (2011a) Unsteady-state hydrogeological model of evaporation-induced sedimentation in a surface reservoir, pp 405–413

    Google Scholar 

  • Rumynin VG (2011b) Radioactive brine migration at the Lake Karachai Site (South Urals, Russian Federation). In: Rumynin VG (ed) Subsurface solute transport models and case histories. Springer, Dordrecht, pp 495–518

    Chapter  Google Scholar 

  • Rumynin V, Sindalovskiy L, Konosavsky P, Boronina A, Gallo C, Zaadnoordijk WJ (2002) Study of groundwater contamination by radioactive brine: the Lake Karachai case. Environ Geol 42(2–3):187–198

    Article  CAS  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surfaces A Physicochem Eng Asp 107:1–56

    Article  CAS  Google Scholar 

  • Ryan JN, Elimelech M, Ard RA, Harvey RW, Johnson PR (1999) Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ Sci Technol 33(1):63–73

    Article  CAS  Google Scholar 

  • Samsonova LM, Drozhko EG (1996) Migration of high-density industrial waste solutions through fresh groundwaters. In: Apps JA, Tsang C-F (eds) Deep injection disposal of hazardous and industrial waste: scientific and engineering aspects. Academic, San Diego, pp 669–680

    Google Scholar 

  • Schäfer T, Huber F, Seher H, Missana T, Alonso U, Kumke M, Eidner S, Claret F, Enzmann F (2012) Nanoparticles and their influence on radionuclide mobility in deep geological formations. Appl Geochem 27(2):390–403

    Article  CAS  Google Scholar 

  • Solodov IN, Zotov AV, Khoteev AD, Mukhamet-Galeev AP, Tagirov BR, Apps JA (1998) Geochemistry of natural and contaminated subsurface waters in fissured bed rocks of the Lake Karachai area, Southern Urals, Russia. Appl Geochem 13(8):921–939

    Article  CAS  Google Scholar 

  • Stumm W (1977) Chemical interaction in particle separation. Environ Sci Technol 11(12):1066–1070

    Article  CAS  Google Scholar 

  • Suresh L, Walz JY (1996) Effect of surface roughness on the interaction energy between a colloidal sphere and a flat plate. J Colloid Interface Sci 183(1):199–213

    Article  CAS  Google Scholar 

  • Tanaka S, Nagasaki S (1997) Impact of colloid generation on actinide migration in high-level radioactive waste disposal: overview and laboratory analysis. Nucl Technol 118(1):58–68

    Article  CAS  Google Scholar 

  • Travis BJ, Nuttall HE (1984) A transport code for Radiocolloid migration: with an assessment of an actual low-level waste site. MRS Proc 44:969

    Article  Google Scholar 

  • US Department of Energy (2004) Radionuclide transport models under ambient conditions. MDL-NBS-HS-000008Rev02, p 550

    Google Scholar 

  • Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission Electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of Nanopar. Environ Sci Technol 37(4):786–791

    Article  CAS  Google Scholar 

  • Utsunomiya S, Palenik CS, Ewing RC (2004a) Electron microscopy imaging techniques in environmental and geological science. In: Schwarz JA, Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, Inc., New York, pp 1087–1097

    Google Scholar 

  • Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2004b) Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere. Environ Sci Technol 38(8):2289–2297

    Article  CAS  Google Scholar 

  • Utsunomiya S, Kogawa M, Kamiishi E, Ewing RC (2011) Scanning transmission electron microscopy and related techniques for research on actinide and radionuclide nanomaterials. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin/Heidelberg, pp 33–62

    Chapter  Google Scholar 

  • Walther C (2011) Actinide nanoparticle characterization by mass spectrometry. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin/Heidelberg/London, pp 137–160

    Chapter  Google Scholar 

  • Walther C, Denecke MA (2013) Actinide colloids and particles of environmental concern. Chem Rev 113(2):995–1015

    Article  CAS  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ Sci Technol 38:4782–4790

    Article  CAS  Google Scholar 

  • Zänker H, Hennig C (2014) Colloid-borne forms of tetravalent actinides: a brief review. J Contam Hydrol 157:87–105

    Article  CAS  Google Scholar 

  • Zavarin M, Powell BA, Bourbin M, Zhao P, Kersting AB (2012) Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ Sci Technol 46:2692–2698

    Article  CAS  Google Scholar 

  • Zhao P, Begg JD, Zavarin M, Tumey SJ, Williams R, Dai ZR, Kips R, Kersting AB (2016) Plutonium(IV) and (V) sorption to goethite at sub-femtomolar to micromolar concentrations: redox transformations and surface precipitation. Environ Sci Technol 50(13):6948–6956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is partially supported by JST Initiatives for Atomic Energy Basic and Generic Strategic Research and by a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (16 K12585, 16H04634, No. JP26257402). The findings and conclusions of the authors of this paper do not necessarily state or reflect those of the JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Utsunomiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Utsunomiya, S. et al. (2020). Application of Electron Microscopy to Understanding Colloid-Facilitated Transport of Radionuclides at the Mayak Production Association Facility, Near Lake Karachai, Russia. In: Kato, K., Konoplev, A., Kalmykov, S. (eds) Behavior of Radionuclides in the Environment I. Springer, Singapore. https://doi.org/10.1007/978-981-15-0679-6_7

Download citation

Publish with us

Policies and ethics