Skip to main content

Microbial Ecological Function in Migration of Radionuclides in Groundwater

  • Chapter
  • First Online:
Behavior of Radionuclides in the Environment I

Abstract

This chapter shows findings obtained from a microbial ecological study carried out on groundwater contaminated with radionuclides and nitrate in the area of Lake Karachai in southern Ural. This study was conducted to answer the questions raised from previous studies at the same site on the difference in migration patterns between strontium-90 and nitrate, a co-contaminant regarded as an indicator of the motion of radionuclides. The results suggest that denitrification occurred in some part of the given groundwater, and this caused a decrease in nitrate concentration at that site. Furthermore, microbial denitrification activity leads to a decrease in redox potential. Thus, microbial denitrifying activity may affect the behavior of radionuclide in differentiation of their chemical species in valent status.

Ecological understanding of microbes, in addition to the information of microbial direct function in adsorbing and absorbing radionuclides, and modifying the chemical species of radionuclides through direct reaction with elements, may give us a further and more accurate picture of the role of existing microbes in contaminated groundwater. This may allow a greater move forward in understanding the migration of radionuclides in groundwater.

Chapters 2, 3, 6, 7, and 8 also discuss this study site. Therefore, a concise general description is included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexakhin AE et al (2007) Impoundment–storage of liquid radioactive waste and its impact on the geological environment. 250pp. Moscow-Ojorsk (in Russian Translation from Russian language to English was done by the courtesy of Elena Mikhaelova, a licenced translator, and it was technically edited by Dr. Alexei Konoplev)

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  • Amann RF, Olson BJ, Chrisholm SW, Devereux R, Ad Stahl DA (1990) Combination of 16SrRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 556:1919–1925

    Article  Google Scholar 

  • Braker G, Fesefeldt, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    Article  CAS  Google Scholar 

  • Cey EE, Rudolph DL, Aravena R, Parkin G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67

    Article  CAS  Google Scholar 

  • Colwell FS (2001) Constraints on the distribution of microorganisms in subsurface environments. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and biogeochemistry. Wiley, New York, pp 71–95

    Google Scholar 

  • Colwell RR, Bryton PR, Grimes DJ (1985) Viable but non-culturable holerae and rrelated pathogens in the environment. Bio-Technology 3:817–820

    Google Scholar 

  • Drozhko EG, Glagolenko YU, Mokorov YG, Postovalova GA, Samsonova LM, Glagolev AV, Ter-Saakian SA, Glinsky ML, Vasil’kova NA, Skokov AV, Wollemberg HA, Tsang CF, Frangos W, Solbau RD, Stevenson KA, Lowder WM, Foley MG (1997) Joint Russian-American hydrogeochemical studies of the Karachai-Mishelyak system, Soouth Urals, Russia. Environ Geol 29:216–227

    Article  CAS  Google Scholar 

  • European Environment Agency (EEA) (2000) Groundwater quality and quantity in Europe. In: Environmental assessment report no. 3. European Environment Agency, Copenhagen

    Google Scholar 

  • Farnleitner AH, Wilhartitz I, Ryzinska G, Kirschner AKT, Stadler H, Burtscher MM, Hornek R, Szewzyk U, Herndl G, Mach RL (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259

    Article  CAS  Google Scholar 

  • Francis AJ, Slater JM, Dodge CJ (1989) Denitrification in deep subsurface sediments. Geomicrobiol J 7:103–116

    Article  CAS  Google Scholar 

  • Fredrickson JK, Blakwill DL (2006) Geomicrobial processes and biodiversity in the deep thrrestrial subsurface. Geomicrobiol J 23:345–356

    Article  CAS  Google Scholar 

  • Fredrickson JK, Onstott TC (2001) Biogeochemical and geological significance of subsurface microbiology. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and biogeochemistry. Wiley, New York, pp 3–37

    Google Scholar 

  • Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT (2009) Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above ~150Ma basement rock. Geomicrobiol J 26:163–178

    Article  CAS  Google Scholar 

  • Fukuda A, Hagiwara H, Ishimura T, Kouduka M, Ioka S, Amano Y, Tsunogai U, Suzuki Y, Mizuno T (2010) Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research Laboratory (MIU), central Japan. Microb Ecol 60:214–225

    Article  CAS  Google Scholar 

  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater eco systems. Freshw Biol 54:649–677

    Article  Google Scholar 

  • Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    Article  Google Scholar 

  • Hargstrom A, Larsson U, Horstedt P, Normark S (1979) Frequency of dividing cells, a new approachj to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol 37:805–812

    Article  Google Scholar 

  • Harvey RW, Metge DW, Barber LB, Aiken GR (2010) Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Water Res 44:1062–1071

    Article  CAS  Google Scholar 

  • Hazen TC, Jimrnez L, Lopez de Victoria G, Fliermans CB (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microb Ecol 22:293–304

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103:2815–2820

    Article  CAS  Google Scholar 

  • International Science and Technology Center, ISTC Project 3290-2005 (2006) Evaluation of the groundwater colloidal migration of radionuclides from geochemical viewpoint, Annual Report edited by Myasoedov B. F., 169pp

    Google Scholar 

  • Joint Norwegian-Russian Expert Group for Investigation of Radioactive Contamination in the Northern Area, Osteras (1997) Sources contributing to radioactive contamination of the Techa River and areas surrounding the “Mayak” Production Association, Urals, Russia, Norwegian Radiation Protection Authority, 139pp

    Google Scholar 

  • Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, Øvreås L, Steen IH, Thorseth IH, Pedersen RB, Schleper C (2012) Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean 510 Ridge. Proc Natl Acad Sci U S A 109:E2846–E2855

    Article  CAS  Google Scholar 

  • Jungbluth SP, Grote J, Lin HT, Cowen JP, Rapp_e MS (2013) Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME J 7:161–172

    Article  CAS  Google Scholar 

  • Kato K, Nagaosa K, Kimura H, Katsuyama C, Hama K, Kunimaru T, Tsunogai U, Aoki K (2009) Unique distribution of deep groundwater bacteria constrained by geological setting. Environ Microbiol Rep 1:569–574

    Article  CAS  Google Scholar 

  • Katsuyama C, Kondo N, Suwa Y, Yamagishi T, Itoh M, Ohte N, Kimura H, Nagaosa K, Kato K (2008) Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest. Microb Environ 23:337–345

    Article  Google Scholar 

  • Katsuyama C, Nashimoto H, Nagaosa K, Ishibashi T, Furuta K, Kinoshita T, Yoshikawa H, Aoki K, Asano T, Sasaki Y, Sohrin R, Komatsu DD, Tsunogai U, Kimura H, Suwa Y, Kato K (2013) Occurrence and potential activity of denitrifiers and methanogens in groundwater at 140 m depth in Pliocene diatomaceous mudstone of northern Japan. FEMS Microbiol Ecol 86:532–543

    Article  CAS  Google Scholar 

  • Kinoshita T (2013) Denitrification activity and its controlling factors in groundwater polluted with nitrate in Mt. Fuji. Master Thesis for Shizuoka University, Faculty of Science, 30pp

    Google Scholar 

  • Kolganova TV, Kuznetsov BB, Turova TP (2002) Selection and testing of oligonucleotide primers for amplification sequencing of archaeal 16S rRNA genes. Microbiology (English translation of Mikrobiologiya) 71:283–285

    CAS  Google Scholar 

  • Konoplev AV, Bobovnikov TI (1990) Comparative analysis of chemical forms of long-lived radionuclides and their migration and transformation in the environment following the Kyshtym and Chernobyl accoidents. In: Proceedings of seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents, Kyshtum, Windscale, Chernobyl. Luxenburg, 1–5 October, vol 1, pp 527–548

    Google Scholar 

  • Kralova M, Masscheleyn PH, Lindau CW, Patrick WH (1992) Production of dinitrogen and nitrous-oxide in soil suspensions as affected by redox potential. Water Air Soil Pollut 61:37–45

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lin X, McKinley J, Resch CT, Kaluzny R, Lauber CL, Fredrickson J, Knight R, Konopka A (2012) Spatial and temporal dynamics of the microbial community in the Hnford unconfined aquifer. ISME J 6:1665–1676

    Article  CAS  Google Scholar 

  • Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  CAS  Google Scholar 

  • Madsen E (2016) Environmental microbiology, 2nd edn. Wiley Blackwell, 577pp

    Google Scholar 

  • Mahadevan GD, Zhao F (2017) A concise review on microbial remediation cells (MRCs) in soil and groundwater radionuclides remediation. J Radioanal Nucl Chem 314:1477–1485

    Article  CAS  Google Scholar 

  • Marie D, Partensky F, Jacquwt S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBER Green I. Appl Environ Microb 63:186–193

    Article  CAS  Google Scholar 

  • Morris JT, Whiting GJ, Chapelle FH (1988) Potential denitrification rates in deep sediments from the southeastern coastal plain. Environ Sci Technol 22:832–836

    Article  CAS  Google Scholar 

  • Myasoedov BF, Drozhko EG (1998) Up-to-date radioecological situation around the ‘Mayak’ nuclear facility. J Alloy Comp 271–273:216–220

    Article  Google Scholar 

  • Nazina TN, Shestakova NM, Grigor’yan AA, Mikhailova EM, Tourova TP, Poltaraus AB, Feng C, Ni F, Belyaev SS (2006) Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China). Microbiology [English translation of Mikrobiologiya] 75:55–65

    CAS  Google Scholar 

  • Nielsen ME, Fisk MR, Istok JD, Pedersen K (2006) Microbial nitrate respiration of lactate at in situ conditions in groundwater from a granitic aquifer situated 450 m underground. Geobiology 4:43–52

    Article  CAS  Google Scholar 

  • Nunoura T, Inagaki F, Delwiche ME, Colwell FS, Takai K (2008) Subseafloor microbial communities in methane hydrate-bearing sediment at two distinct locations (ODP Leg204) in the Cascadia margin. Microbes Environ 23:317–325

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA et al (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  CAS  Google Scholar 

  • Pedersen K, Arlinger J, Eriksson S, Hallbeck A, Hallbeck L, Johansson J (2008) Numbers, biomass and cultivable diversity ofmicrobial populations relate to depth and borehole-specific conditions in groundwater from depths of 4450 m in Olkiluoto, Finland. ISME J 2:760–775

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Rivett MO, Busss SB, Morhan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232

    Article  CAS  Google Scholar 

  • Roussel EG, Cambon-Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, Perkes RJ (2008) Extending the sub-seafloor biosphere. Science 320:1046

    Article  CAS  Google Scholar 

  • Rumynin VG (2009) Subsurface solute transport models and case histories. Springer, 815pp

    Google Scholar 

  • Rumynin VG et al (2002) Study of groundwater contamination by radioactive brine: the Lake Karachai case. Environ Geol 42:187–198, Springer

    Google Scholar 

  • Rust CM, Aelion CM, Flora JRV (2000) Control of pH during denitrification in sub-surface sediment microcosms using encapsulated phosphate buffer. Water Res 34(5):1447–1454

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Segawa T, Sugiyama A, Kinoshita T, Sohrin R, Nakano T, Nagaosa K, Greenidge D, Kato K (2015) Microbes in groundwater of a volcanic mountain, Mt. Fuji; 16SrDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater. Geomicrobiol J 32:677–688

    Article  Google Scholar 

  • Solodov IN (1994) Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of Lake Karachai area, Chelyabinsk, southern Urals. Lawrence Barkeley Laboratory, University of California, LBL-36780, UC-603

    Google Scholar 

  • Solodov IN, Zotov AV, Aleksandr, Khoteev AD, Mukhamet-Galeev AP, Tagirov (1998) Geochemistry of natural and contaminated subsurface waters in fissured bed rocks of the Lake Karachai area, Southern Urals, Russia. Appl Geochem 13(8):921–939

    Article  CAS  Google Scholar 

  • Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248

    Google Scholar 

  • Status Report #10 of Joint U.S. DOE/Russian Academy of Sciences Program “Actinides science relevant to environment, radioactive waste management and migration behavior of actinides and fission products in Geosphere” (2002) DOE Project Number: M6RAS0006, 38pp, Moscow

    Google Scholar 

  • Strand P, Brown JA, Drozhko E, Yu M, Salbu B, Oughton D, Christensen GC, Amundsen I (1999) Biogeochemical behavior of 137Cs and 90Sr in the artificial reservoirs of Mayak PA, Russia. Sci Total Environ 241:107–116

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Ucisik AS, Henze M (2004) Biological denitrification of fertilizer wastewater at high chloride concentration. Water SA 30(2):191–195

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  • Wilhartitz IC, Kirschner AKT, Stadler H, Herndl GJ, Dietzel M, Latal C, Mach RL, Farnleitner AH (2009) Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications. FEMS Microbiol Ecol 68:287–299

    Article  CAS  Google Scholar 

  • Williams KH, Barger JR, Lloyd JR, Lovley DR (2013) Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol 24:489–497

    Article  CAS  Google Scholar 

  • Wright JJ, Konowar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol 10:381–394

    Article  CAS  Google Scholar 

  • Zhou Y, Kellermann C, Grieber C (2012) Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiol Ecol 81:230–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are due to Drs. Hidemi Ishibashi, Koichi Sakakibara, Kazuhiro Aoki, and Sakae Fukunaga for kindly reading the early draft and providing useful suggestions. Sincere thanks are also due to Jeffrey Shaffer, Associate Profesor at Shizuoka University, for his valuable suggestions on English expression. Thanks are also due to Norwegian Radiation and Nuclear Safety Authority for its permission to reuse a figure from its published report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, K. et al. (2020). Microbial Ecological Function in Migration of Radionuclides in Groundwater. In: Kato, K., Konoplev, A., Kalmykov, S. (eds) Behavior of Radionuclides in the Environment I. Springer, Singapore. https://doi.org/10.1007/978-981-15-0679-6_1

Download citation

Publish with us

Policies and ethics