Skip to main content

Microbial Production of Natural Food Colorants

  • Chapter
  • First Online:
Systems and Synthetic Biotechnology for Production of Nutraceuticals
  • 634 Accesses

Abstract

Colors give food unique visual senses, and are always connected to flavor. Some colorants possess special nutritional values. Due to the increasing concern on food safety, natural colorants gain more and more attention. However, there are some disadvantages of natural colorant isolated from plant tissues, such as lower stability, high cost, low yield and tedious extraction process. Microbial fermentation becomes a compelling alternative for food pigments due to the superiority on production at large scales. Up to now, various food pigments realized the microbial production, while others still undergo study in laboratory scale. In this chapter, we summarized the microbial production of four main food colorants (carotenoids, lycopene, anthocyanins, and monascus pigments), the production and application of which were relatively mature in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberoumand A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci. 2011;6:71–8.

    Google Scholar 

  • Aksu Z, Eren AT. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J. 2007;35(2):107–13.

    Article  CAS  Google Scholar 

  • Almeida ER, Cerda-Olmedo E. Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet. 2008;53(3):129–37.

    Article  CAS  PubMed  Google Scholar 

  • Babitha S, Soccol CR, Pandey A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour Technol. 2007;98(8):1554–60.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharkey TD. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep. 2014;31(8):1043–55.

    Article  CAS  PubMed  Google Scholar 

  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M. Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr. 2016;56(13):2209–22.

    Article  CAS  PubMed  Google Scholar 

  • Bhataya A, Schmidt-Dannert C, Lee PC. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem. 2009;44(10):1095–102.

    Article  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G. Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol. 1995;27(2–3):201–13.

    Article  CAS  PubMed  Google Scholar 

  • Boucher Y, Doolittle WF. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol. 2000;37(4):703–16.

    Article  CAS  PubMed  Google Scholar 

  • Buhler RM, Muller BL, Moritz DE, Vendruscolo F, de Oliveira D, Ninow JL. Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation. Appl Biochem Biotechnol. 2015;176(5):1277–89.

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol. 2007;53(8):1024–31.

    Article  CAS  PubMed  Google Scholar 

  • Camejo D, Jimenez A, Alarcon JJ, Torres W, Gomez JM, Sevilla F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol. 2006;33(2):177–87.

    Article  CAS  PubMed  Google Scholar 

  • Celli GB, Tan C, Selig MJ. Anthocyanidins and anthocyanins. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Oxford: Academic; 2019. p. 218–23.

    Chapter  Google Scholar 

  • Chávez-Parga MDC, Munguía-Franco A, Aguilar-Torres M, Escamilla-Silva EM. Optimization of zeaxanthin production by immobilized Flavobacterium sp. cells in fluidized bed bioreactor. Adv Microbiol. 2012;2(4):598.

    Article  CAS  Google Scholar 

  • Chemler JA, Koffas MA. Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol. 2008;19(6):597–605.

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Shen HJ, Cui YY, Chen SG, Weng ZM, Zhao M, Liu JZ. Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol. 2013;13(1):6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Saf. 2015;14(5):555–67.

    Article  CAS  Google Scholar 

  • Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci. 2017;8(7):4917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhari SM, Ananthanarayan L, Singhal RS. Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol. 2008;99(8):3166–73.

    Article  CAS  PubMed  Google Scholar 

  • Chouhan S, Sharma K, Zha J, Guleria S, Koffas M. Recent advances in the recombinant biosynthesis of polyphenols. Front Microbiol. 2017;8:2259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clinton SK. Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev. 1998;56(2):35–51.

    Article  CAS  PubMed  Google Scholar 

  • Coulson J. Miscellaneous naturally occurring colouring materials for foodstuff. Dev Food Colour. 1980;189:218.

    Google Scholar 

  • Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MA. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Factories. 2017;16(1):10.

    Article  CAS  Google Scholar 

  • Dan Pelah ASAE. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol. 2004;20(5):483–6.

    Article  Google Scholar 

  • Davoli P, Mierau V, Weber RW. Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Prikl Biokhim Mikrobiol. 2004;40(4):460–5.

    CAS  PubMed  Google Scholar 

  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74(6):1163–74.

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Vargas F, Jimenez AR, Paredes-Lopez O. Natural pigments: carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40(3):173–289.

    Article  CAS  PubMed  Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Chidambara Murthy KN, Ravishankar GA. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol. 2005;16(9):389–406.

    Article  CAS  Google Scholar 

  • Eilers U, Bikoulis A, Breitenbach J, Büchel C, Sandmann G. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J Appl Phycol. 2016;28(1):123–9.

    Article  CAS  Google Scholar 

  • Feng Y, Shao Y, Chen F. Monascus pigments. Appl Microbiol Biotechnol. 2012;96(6):1421–40.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Sevilla JM, Acien FF, Molina GE. Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol. 2010;86(1):27–40.

    Article  CAS  PubMed  Google Scholar 

  • Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protocol Food Anal Chem. 2001;00(1):F1.2.1–F1.2.13.

    Article  Google Scholar 

  • Gong M, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 2016;34(8):1396–412.

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves J, Divya AJ, Lekha G. Study of anthocyanin content, antioxidant property, UV absorbance & SPF analysis of a few petals. J Adv Appl Sci Res. 2016;1(3):1–6.

    Article  CAS  Google Scholar 

  • Gottfried D, Steffen M, Boxer S. Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex. Science. 1991;251(4994):662–5.

    Article  CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Mar Drugs. 2011;9(4):625–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31(9):1409–17.

    Article  CAS  PubMed  Google Scholar 

  • Harker M, Tsavalos AJ, Young AJ. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresour Technol. 1996;55(3):207–14.

    Article  CAS  Google Scholar 

  • Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, Affan A, Oh C, Jung WK, Jeon YJ. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol. 2010;48(8–9):2045–51.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Almanza A, Montañez-Sáenz J, Martínez-Ávila C, Rodríguez-Herrera R, Aguilar CN. Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Biosci. 2014;7:31–6.

    Article  CAS  Google Scholar 

  • Hernández-Almanza A, Montañez J, Martínez G, Aguilar-Jiménez A, Contreras-Esquivel JC, Aguilar CN. Lycopene: progress in microbial production. Trends Food Sci Technol. 2016;56:142–8.

    Article  CAS  Google Scholar 

  • Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, Chang JS. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol. 2014;152:275–82.

    Article  CAS  PubMed  Google Scholar 

  • Hsu WH, Pan TM. Monascus purpureus-fermented products and oral cancer: a review. Appl Microbiol Biotechnol. 2012;93(5):1831–42.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liu J, Li Y, Chen F. Isolation and characterization of the phytoene desaturase gene as a protential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol. 2008;44(3):684–90.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol. 2015;199:55–61.

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim M, Lachance DM, Hahn J, Koffas M. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng. 2016;35:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Jůzlová P, Martinkova L, Křen V. Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol. 1996;16(3):163–70.

    Google Scholar 

  • Kang B, Zhang X, Wu Z, Wang Z, Park S. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzym Microb Technol. 2014;55:50–7.

    Article  CAS  Google Scholar 

  • Kantifedaki A, Kachrimanidou V, Mallouchos A, Papanikolaou S, Koutinas AA. Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J Clean Prod. 2018;185:882–90.

    Article  CAS  Google Scholar 

  • Kaur S. Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci. 2015;1(1):70–6.

    Google Scholar 

  • Kolakul P, Sripanidkulchai B. Phytochemicals and anti-aging potentials of the extracts from Lagerstroemia speciosa and Lagerstroemia floribunda. Ind Crop Prod. 2017;109:707–16.

    Article  CAS  Google Scholar 

  • Kyriakopoulou K, Papadaki S, Krokida M. Life cycle analysis of β-carotene extraction techniques. J Food Eng. 2015;167:51–8.

    Article  CAS  Google Scholar 

  • Lee C, Lin P, Hsu Y, Pan T. Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid β-protein intracerebroventricular-infused rat via the suppression of Alzheimer’s disease risk factors. J Funct Foods. 2015;18:387–99.

    Article  CAS  Google Scholar 

  • Leonard E, Yan Y, Koffas MA. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng. 2006;8(2):172–81.

    Article  CAS  PubMed  Google Scholar 

  • Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MA. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm. 2008;5(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  • Levisson M, Patinios C, Hein S, de Groot PA, Daran JM, Hall RD, Martens S, Beekwilder J. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Factories. 2018;17(1):103.

    Article  CAS  Google Scholar 

  • Li Y, Smolke CD. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun. 2016;7:12137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhu D, Niu J, Shen S, Wang G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv. 2011;29(6):568–74.

    Article  CAS  PubMed  Google Scholar 

  • Liang MH, Zhu J, Jiang JG. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci Nutr. 2018;58(14):2314–33.

    Article  CAS  PubMed  Google Scholar 

  • Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016;7(1):375–93.

    Article  CAS  PubMed  Google Scholar 

  • Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MA. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol. 2015;81(18):6276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wu S, Tan F. Effects of addition of anka rice on the qualities of low-nitrite Chinese sausages. Food Chem. 2010;118(2):245–50.

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F. Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol. 2014;98(11):5069–79.

    Article  CAS  PubMed  Google Scholar 

  • López-Nieto MJ, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, de la Fuente JL, Cabri W, Barredo JL. Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol. 2004;66(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol. 2013;97(6):2357–65.

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Zhang B, Liu X, Zhang C, Chen L, Xu G, Cheung PCK. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relationship between fermentation conditions and mycelial morphology. J Biosci Bioeng. 2017;124(4):452–8.

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Qian G, Chen L, Liu H, Xu H, Xu G, Zhang B, Zhang C. Efficient biosynthesis of natural yellow pigments by Monascus purpureus in a novel integrated fermentation system. J Agric Food Chem. 2018;66(4):918–25.

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Deng Z, Liu T. Microbial production strategies and applications of lycopene and other terpenoids. World J Microbiol Biotechnol. 2016;32(1):15.

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, Xia J, Nielsen J, Deng Z, Liu T. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng. 2019;52:134–42.

    Article  CAS  PubMed  Google Scholar 

  • Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP. Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chem. 2008;107(1):145–50.

    Article  CAS  Google Scholar 

  • Malisorn C, Suntornsuk W. Improved β-carotene production of Rhodotorula glutinis in fermented radish brine by continuous cultivation. Biochem Eng J. 2009;43(1):27–32.

    Article  CAS  Google Scholar 

  • Mata-Gomez LC, Montanez JC, Mendez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories. 2014;13:12.

    Article  CAS  Google Scholar 

  • Mezzomo N, Ferreira SRS. Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem. 2016;2016:1–16.

    Article  CAS  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016;7:546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol. 2005;68(4):498–504.

    Article  CAS  PubMed  Google Scholar 

  • Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MA. Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential. Curr Opin Biotechnol. 2014;25:86–94.

    Article  CAS  PubMed  Google Scholar 

  • Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira J. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol. 2019;103(3):1095–114.

    Article  CAS  PubMed  Google Scholar 

  • Narsing RM, Xiao M, Li WJ. Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol. 2017;8:1113.

    Article  Google Scholar 

  • Nasri Nasrabadi MR, Razavi SH. High levels lycopene accumulation by Dietzia natronolimnaea HS-1 using lycopene cyclase inhibitors in a fed-batch process. Food Sci Biotechnol. 2010a;19(4):899–906.

    Article  CAS  Google Scholar 

  • Nasri Nasrabadi MR, Razavi SH. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J Biosci Bioeng. 2010b;109(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  • Nicolás-Molina FE, Navarro E, Ruiz-Vázquez RM. Lycopene over-accumulation by disruption of the negative regulator gene crgA in Mucor circinelloides. Appl Microbiol Biotechnol. 2008;78(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen BR, Mortensen A, Jørgensen K, Skibsted LH. Singlet versus triplet reactivity in photodegradation of C40 carotenoids. J Agric Food Chem. 1996;44(8):2106–13.

    Article  CAS  Google Scholar 

  • Olivieri G, Salatino P, Marzocchella A. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol. 2014;89(2):178–95.

    Article  CAS  Google Scholar 

  • Oplatowska-Stachowiak M, Elliott CT. Food colors: existing and emerging food safety concerns. Crit Rev Food Sci Nutr. 2017;57(3):524–48.

    Article  CAS  PubMed  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J. Production and analysis of secondary carotenoids in green algae. J Appl Phycol. 2000;12(3–5):553–6.

    Article  CAS  Google Scholar 

  • Pandey RP, Parajuli P, Koffas M, Sohng JK. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv. 2016;34(5):634–62.

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou EH, Liakopoulou-Kyriakides M. Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food Bioprod Process. 2010;88(2–3):305–11.

    Article  CAS  Google Scholar 

  • Phillips LG, Cowan AK, Rose PD, Logie MRR. Operation of the xanthophyll cycle in non-stressed and stressed cells of Dunaliella salina Teod. In response to diurnal changes in incident irradiation: a correlation with intracellular β-carotene content. J Plant Physiol. 1995;146(4):547–53.

    Article  CAS  Google Scholar 

  • Pontrelli S, Chiu T, Lan EI, Chen FYH, Chang P, Liao JC. Escherichia coli as a host for metabolic engineering. Metab Eng. 2018;50:16–46.

    Article  CAS  PubMed  Google Scholar 

  • Potera C. The artificial food dye blues. Environ Health Perspect. 2010;118(10):A428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prommuak C, Pavasant P, Quitain AT, Goto M, Shotipruk A. Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chem Eng Technol. 2013;36(5):733–9.

    Article  CAS  Google Scholar 

  • Pyo YH, Lee TC. The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J Food Sci. 2007;72(3):S218–23.

    Article  CAS  PubMed  Google Scholar 

  • Rad SA, Zahiri HS, Noghabi KA, Rajaei S, Heidari R, Mojallali L. Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World J Microbiol Biotechnol. 2012;28(1):313–21.

    Article  CAS  PubMed  Google Scholar 

  • Rao LG, Mackinnon ES, Josse RG, Murray TM, Strauss A, Rao AV. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int. 2007;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  • Rissanen T, Voutilainen S, Nyyssonen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood). 2002;227(10):900–7.

    Article  CAS  Google Scholar 

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res. 2014;4(1):76–88.

    Article  Google Scholar 

  • Santos-Buelga C, González-Paramás AM. Anthocyanins. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Oxford: Academic; 2019. p. 10–21.

    Chapter  Google Scholar 

  • Sarada R, Tripathi U, Ravishankar GA. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 2002;37(6):623–7.

    Article  CAS  Google Scholar 

  • Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry-challenges and the way forward. Front Nutr. 2019;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol. 2014;8(1):47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Dai Y, Kakuda Y, Mittal G, Xue SJ. Effect of heating and exposure to light on the stability of lycopene in tomato purée. Food Control. 2008;19(5):514–20.

    Article  CAS  Google Scholar 

  • Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng. 2015;120(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  • Sigurdson GT, Tang P, Giusti MM. Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol. 2017;8:261–80.

    Article  CAS  PubMed  Google Scholar 

  • Silbir S, Goksungur Y. Natural red pigment production by Monascus Purpureus in submerged fermentation systems using a food industry waste: Brewer’s spent grain. Foods. 2019;8(5):161.

    Article  PubMed Central  Google Scholar 

  • Singh RN, Sharma S. Development of suitable photobioreactor for algae production-A review. Renew Sust Energ Rev. 2012;16(4):2347–53.

    Article  CAS  Google Scholar 

  • Solopova A, van Tilburg AY, Foito A, Allwood JW, Stewart D, Kulakauskas S, Kuipers OP. Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate. Metab Eng. 2019;54:160–9.

    Article  CAS  PubMed  Google Scholar 

  • Squina FM, Mercadante AZ. Influence of nicotine and diphenylamine on the carotenoid composition of rhodotorula strains. J Food Biochem. 2005;29(6):638–52.

    Article  CAS  Google Scholar 

  • Srianta I, Ristiarini S, Nugerahani I, Sen SK, Zhang BB, Xu GR, Blanc PJ. Recent research and development of Monascus fermentation products. Int Food Res J. 2014;21(1):1–12.

    CAS  Google Scholar 

  • Srivastav P, Yadav VK, Govindasamy S, Chandrasekaran M. Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. Forum Nutr. 2015;14(3):159–67.

    CAS  Google Scholar 

  • Srivastava S, Srivastava AK. Lycopene; chemistry, biosynthesis, metabolism and degradation under various abiotic parameters. J Food Sci Technol. 2015;52(1):41–53.

    Article  CAS  Google Scholar 

  • Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H. Natural products – learning chemistry from plants. Biotechnol J. 2014;9(3):326–36.

    Article  CAS  PubMed  Google Scholar 

  • Story EN, Kopec RE, Schwartz SJ, Harris GK. An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol. 2010;1(1):189–210.

    Article  CAS  PubMed  Google Scholar 

  • Su A, Chi S, Li Y, Tan S, Qiang S, Chen Z, Meng Y. Metabolic redesign of Rhodobacter sphaeroides for lycopene production. J Agric Food Chem. 2018;66(23):5879–85.

    Article  CAS  PubMed  Google Scholar 

  • Suh IS, Joo HN, Lee CG. A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation. J Biotechnol. 2006;125(4):540–6.

    Article  CAS  PubMed  Google Scholar 

  • Tinoi J, Rakariyatham N, Deming RL. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem. 2005;40(7):2551–7.

    Article  CAS  Google Scholar 

  • Valduga E, Valério A, Tatsch PO, Treichel H, Furigo A, Luccio MD. Assessment of cell disruption and carotenoids extraction from Sporidiobolus salmonicolor (CBS 2636). Food Bioprocess Technol. 2008;2(2):234–8.

    Article  CAS  Google Scholar 

  • Varela JC, Pereira H, Vila M, Leon R. Production of carotenoids by microalgae: achievements and challenges. Photosynth Res. 2015;125(3):423–36.

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL. Antimicrobial activity of Monascus pigments produced in submerged fermentation. J Food Process Preserv. 2014;38(4):1860–5.

    Article  CAS  Google Scholar 

  • Vendruscolo F, Meinicke BR, Cesar DCJ, de Oliveira D, Moritz DE, Schmidell W, Ninow JL. Monascus: a reality on the production and application of microbial pigments. Appl Biochem Biotechnol. 2016;178(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology. Acta Biochim Pol. 2015;62(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  • Walter MH, Strack D. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep. 2011;28(4):663–92.

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Zhang J, Hou D, Fan J, Li Y, Huang J, Wang J. The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation. Bioresour Technol. 2014;167:276–83.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, He F, Lu M, Zhao C, Xiong L, Yu L. High-quality lycopene overaccumulation via inhibition of γ-carotene and ergosterol biosyntheses in Blakeslea trispora. J Funct Foods. 2014;7:435–42.

    Article  CAS  Google Scholar 

  • Wang Q, Feng LR, Luo W, Li HG, Zhou Y, Yu XB. Effect of inoculation process on lycopene production by Blakeslea trispora in a stirred-tank reactor. Appl Biochem Biotechnol. 2015;175(2):770–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Dai Y, Chen W, Shao Y, Chen F. Effects of light intensity and color on the biomass, extracellular red pigment, and citrinin production of Monascus ruber. J Agric Food Chem. 2016a;64(50):9506–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhang X, Wu Z, Wang Z. Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol. 2016b;100(16):7083–9.

    Article  CAS  PubMed  Google Scholar 

  • Woolston BM, Edgar S, Stephanopoulos G. Metabolic engineering: past and future. Annu Rev Chem Biomol Eng. 2013;4(1):259–88.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Ho SH, Chen CN, Chen CY, Ng IS, Jing KJ, Chang JS, Lu Y. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresour Technol. 2013;144:435–44.

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Zhang X, Wu Z, Wang Z. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol. 2015;99(3):1173–80.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Xu X, Xu Q, Zhang Z, Jiang L, Huang H. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids. Bioprocess Biosyst Eng. 2018;41(4):489–99.

    Article  CAS  PubMed  Google Scholar 

  • Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng. 2012;14(3):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Chemler J, Huang L, Martens S, Koffas MA. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol. 2005;71(7):3617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Li Z, Koffas MA. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng. 2008;100(1):126–40.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chen Q, Wang W, Hu J, Hu C. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation. J Biosci Bioeng. 2015;119(5):564–9.

    Article  CAS  PubMed  Google Scholar 

  • Ye ZW, Jiang JG, Wu GH. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv. 2008;26(4):352–60.

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Koffas MAG. Production of anthocyanins in metabolically engineered microorganisms: current status and perspectives. Synth Syst Biotechnol. 2017;2(4):259–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas M. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb Cell Factories. 2018;17(1):143.

    Article  CAS  Google Scholar 

  • Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol. 2014a;19:81–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Sun Z, Sun P, Chen T, Chen F. Microalgal carotenoids: beneficial effects and potential in human health. Food Funct. 2014b;5(3):413–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu W, Chen X, Cai J, Wang C, He W. Effects and mechanism of blue light on Monascus in liquid fermentation. Molecules. 2017;22(3):385.

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang B, Xing H, Jiang B, Chen L, Xu G, Jiang Y, Zhang D. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber. J Biosci Bioeng. 2018;125(3):333–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XK, Nie MY, Chen J, Wei LJ, Hua Q. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica. J Biotechnol. 2019;289:46–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Jones JA, Lachance DM, Bhan N, Khalidi O, Venkataraman S, Wang Z, Koffas M. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng. 2015;28:43–53.

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Lu L, Fu S, Zhong X, Hu M, Deng Z, Liu T. Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem. 2015;50(3):341–6.

    Article  CAS  Google Scholar 

  • Zhu L, Huang Y, Zhang Y, Xu C, Lu J, Wang Y. The growing season impacts the accumulation and composition of flavonoids in grape skins in two-crop-a-year viticulture. J Food Sci Technol. 2017;54(9):2861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L., Zhang, B. (2019). Microbial Production of Natural Food Colorants. In: Liu, L., Chen, J. (eds) Systems and Synthetic Biotechnology for Production of Nutraceuticals . Springer, Singapore. https://doi.org/10.1007/978-981-15-0446-4_6

Download citation

Publish with us

Policies and ethics