Skip to main content

A Parametric Study of Dam Break Flow Feature Over a Dry Bed Using SPH Modeling

  • Conference paper
  • First Online:
APAC 2019 (APAC 2019)

Included in the following conference series:

  • 3310 Accesses

Abstract

The present paper focuses on the validation of a SPH-based numerical modeling for dam break flow over a dry bed. Numerical simulation is implemented on the basis of an open-source code model named DualSPHysics. The numerical sensitivity analysis is first performed to study the appropriate particle number used for dam break flow simulation in a 2D dry bed channel. Then, extensive model validations by comparison with laboratory data are conducted to calibrate three major parameters used in the model, i.e., the kernel function, the smoothing length and the artificial viscosity. Subsequently, the specified parameter values are used in the successive simulation. The model can accurately predict the instantaneous water surface profile measured in the dam break experiments, as well as the measured time-varying wave front positions. Accordingly, the present numerical model demonstrates its efficiency and reliability for 2D dam break flow simulation over an initial dry bed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altomare, C., Domínguez, J.M., Crespo, A.J., Suzuki, T., Caceres, I. and Gómez-Gesteira, M. (2015). Hybridisation of the wave propagation model SWASH and the meshfree particle method SPH for real coastal applications. Coastal Engineering Journal. 57(4), 1550024.

    Article  Google Scholar 

  • Batchelor, G.K. (1974). Introduction to fluid dynamics. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Barreiro, A., Domínguez, J.M., Crespo, A.J., Gonzalezjorge, H., Roca, D. and Gomezgesteira, M. (2014). Integration of UAV photogrammetry and SPH modelling of fluids to study runoff on real terrains. PLOS ONE, 9(11).

    Article  Google Scholar 

  • Crespo, A.J., Gómez-Gesteira, M. and Dalrymple, R.A. (2007). 3D SPH simulation of large waves mitigation with a dike. Journal of Hydraulic Research. 45 (5), 631-642.

    Article  Google Scholar 

  • Deng, X., Liu, H. and Lu, S. (2018). Analytical Study of Dam-Break Wave Tip Region. Journal of Hydraulic Engineering. 144(5), 04018015.

    Article  Google Scholar 

  • Gómez-Gesteira, M. and Dalrymple, R.A. (2004). Using a 3D SPH method for wave impact on a tall structure. Journal of Waterway, Port, Coast and Ocean Engineering. 130(2), 63-69.

    Google Scholar 

  • Gómez-Gesteira, M., Rogers, B.D., Crespo, A.J., Dalrymple, R.A., Naraynaswamy, M. and Domínguez, J.M. (2012a). SPHysics—development of a free-surface fluid solver—Part1: Theory and Formulations. Computers & Geosciences. 48, 289-299.

    Google Scholar 

  • Gómez-Gesteira, M., Crespo, A.J., Rogers, B.D., Dalrymple, R.A., Domínguez, J.M. and Barreiro, A. (2012b). SPHysics—development of a free-surface fluid solver—Part2: Efficiency and testcases. Computers & Geosciences. 48, 300-307.

    Google Scholar 

  • Hogg, A. J. and Pritchard, D. (2004). The effects of hydraulic resistance on dam-break and other shallow inertial flows. Journal of Fluid Mechanics. 501(501), 179-212.

    Article  Google Scholar 

  • Imamura, F., Goto, K. and Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research Oceans. 113(C1), 236-254.

    Google Scholar 

  • Lauber G. and Hager W.H. (1998). Experiments to dambreak wave: horizontal channel. Journal of Hydraulic Research. 36(3), 291-307.

    Article  Google Scholar 

  • Liu, H. and Liu, H. (2017). Experimental Study on Dam-Break Hydrodynamic Characteristics Under Different Conditions. Journal of Disaster Research. 12(1), 198-207.

    Article  Google Scholar 

  • Liu, G.R. and Liu, M.B. (2003). Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Co. Pvt. Ltd., Singapore.

    Google Scholar 

  • Monaghan, J.J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics. 30, 543-574.

    Article  Google Scholar 

  • Monaghan, J.J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics. 110, 399-406.

    Article  Google Scholar 

  • Monaghan, J.J. and Lattanzio, J. C. (1985). A refined method for astrophysical problems. Astronomy & Astrophysics. 149, 135-143.

    Google Scholar 

  • Monaghan, J.J. and Kos, A. (2000). Scott Russell’s wave generator. Physics of Fluids. 12, 622-630.

    Article  Google Scholar 

  • Ritter, A. (1892). Die fortpflanzung de wasserwellen. Zeitschrift Verein Deutscher Ingenieure. 36 (33), 947-954 (in German).

    Google Scholar 

  • Shigematsu, T., Liu, P. L. F. and Oda, K. (2004). Numerical modeling of the initial stages of dam-break waves. Journal of Hydraulic Research. 42 (2), 183-195.

    Article  Google Scholar 

  • Swegle, J.W., Hicks, D.L. and Attaway, S.W. (1995). Smoothed particle hydrodynamics stability analysis. Journal of Computational Physics. 116(1), 123-134.

    Article  Google Scholar 

  • Verlet, L. (1967). Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review. 159, 98-103.

    Article  Google Scholar 

  • Whitham, G. B. (1955). The effects of hydraulic resistance in the dam-break problem. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 227(1170), 399-407.

    Google Scholar 

  • Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics. 4 (1), 389-396.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (No. 11632012), and the Natural Science Foundation of Zhejiang Province, China (No. LZ19E090001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, J., Shen, J., Liu, H. (2020). A Parametric Study of Dam Break Flow Feature Over a Dry Bed Using SPH Modeling. In: Trung Viet, N., Xiping, D., Thanh Tung, T. (eds) APAC 2019. APAC 2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-0291-0_12

Download citation

Publish with us

Policies and ethics