Skip to main content

Alginate-Based Interpenetrating Network Carriers for Biomedical Applications

  • Chapter
  • First Online:
Interpenetrating Polymer Network: Biomedical Applications

Abstract

With advances in modern medicine, there has been a constant need to develop a single material that caters to all demands such as high tensile strength, biocompatibility and biodegradability. The development of an interpenetrating polymer network (IPN) is both an outstanding innovation and contribution that has led to massive technological advances across a wide spectrum of applications in medicine. IPNs comprising natural and synthetic polymers are typically endowed with improved properties compared to monolithic materials and offer superior properties. Most importantly, synergism of properties has also been observed in most of the systems. This chapter discusses the potential of alginate-based IPN carriers for biomedical applications.

Alginate is a naturally occurring anionic polysaccharide widely employed in a broad spectrum of biomedical applications. The ability to assemble alginate with a diversity of polymers and to fabricate IPNs makes it a promising choice for various applications in biomedicine. This chapter discusses at length the various inherent properties of alginate that make it suitable as a biomaterial. The state-of-art applications of alginate IPNs in drug delivery, wound healing and tissue engineering have also been elaborated. The prospective of alginate in delivery of small molecule drugs as well as protein drugs has been presented. This chapter further focuses on the potential of alginate IPNs in wound dressings and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguero L, Zaldivar-Silva D, Pena L, Dias ML (2017) Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym 168:32–43

    Article  CAS  PubMed  Google Scholar 

  • Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M (2018) In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: curcumin therapeutic potential. Int J Biol Macromol 120:2418–2430

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Husain Q (2018) Guar gum blended alginate/agarose hydrogel as a promising support for the entrapment of peroxidase: stability and reusability studies for the treatment of textile effluent. Int J Biol Macromol 116:463–471

    Article  CAS  PubMed  Google Scholar 

  • Aljohani W, Ullah MW, Li W, Shi L, Zhang X, Yang G (2018) Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. J Polym Res 25:62

    Article  CAS  Google Scholar 

  • Amirian J, Van TTT, Bae S-H, Jung H-I, Choi H-J, Cho H-D, Lee B-T (2017) Examination of in vitro and in vivo biocompatibility of alginate-hyaluronic acid microbeads as a promising method in cell delivery for kidney regeneration. Int J Biol Macromol 105:143–153

    Article  CAS  PubMed  Google Scholar 

  • Anwar H, Ahmad M, Minhas MU, Rehmani S (2017) Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and In-vitro characterization. Carbohydr Polym 166:183–194

    Article  CAS  PubMed  Google Scholar 

  • Arjmandi M, Ramezani M, Nand A, Neitzert T (2018a) Tribological characterization of polyacrylamide-alginate hybrid hydrogels as a potential candidate for cartilage replacement. Key Eng Mater 775:109–114

    Article  Google Scholar 

  • Arjmandi M, Ramezani M, Nand A, Neitzert T (2018b) Experimental study on friction and wear properties of interpenetrating polymer network alginate-polyacrylamide hydrogels for use in minimally-invasive joint implants. Wear 406:194–204

    Article  CAS  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  PubMed  Google Scholar 

  • Babu VR, Rao KSVK, Sairam M, Naidu BVK, Hosamani KM, Aminabhavi TM (2006) pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J Appl Polym Sci 99:2671–2678

    Article  CAS  Google Scholar 

  • Bajpai SK, Saxena SK, Sharma S (2006) Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate–carboxymethyl guar gum blend beads. React Funct Polym 66:659–666

    Article  CAS  Google Scholar 

  • Bakhshayesh ARD, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A (2018) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 46:691–705

    Article  CAS  Google Scholar 

  • Basu S, Samanta HS, Ganguly J (2017) Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Materials 16:7–19

    Article  Google Scholar 

  • Baysal K, Aroguz AY, Adiguzel Z, Baysal BM (2013) Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. Int J Biol Macromol 59:342–348

    Article  CAS  PubMed  Google Scholar 

  • Belhadji L, Hadj-Sadok A, Moulai-Mostefa N (2018) Design and characterization of calcium-free in-situ gel formulation based on sodium alginate and chitosan. Drug Develop Ind Pharm 44:662–669

    Article  CAS  Google Scholar 

  • Benfattoum K, Haddadine N, Bouslah N, Benaboura A, Maincent P, Barille R, Sapin-Minet A, El-Shall MS (2018) Formulation characterization and in vitro evaluation of acacia gum–calcium alginate beads for oral drug delivery systems. Polym Adv Technol 29:884–895

    Article  CAS  Google Scholar 

  • Bernela M, Kaur P, Chopra M, Thakur R (2014) Synthesis, characterization of nisin loaded alginate–chitosan–pluronic composite nanoparticles and evaluation against microbes. LWT-Food Sci Technol 59:1093–1099

    Article  CAS  Google Scholar 

  • Berth G (1992) Methodical aspects of characterization of alginate and pectate by light scattering and viscometry coupled with GCP. Carbohydr Polym 19:1–9

    Article  CAS  Google Scholar 

  • Bhutani U, Laha A, Mitra K, Majumdar S (2016) Sodium alginate and gelatin hydrogels: Viscosity effect on hydrophobic drug release. Mater Lett 164:76–79

    Article  CAS  Google Scholar 

  • Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662

    Article  CAS  PubMed  Google Scholar 

  • Boateng J, Burgos-Amador R, Okeke O, Pawar H (2015) Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromol 79:63–71

    Article  CAS  PubMed  Google Scholar 

  • Boppana R, Mohan GK, Nayak U, Mutali S, Sa B, Kulkarni RV (2015) Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery. Int J Biol Macromol 75:133–143

    Article  CAS  PubMed  Google Scholar 

  • Bu Y, Xu H-X, Li X, Xu W-J, Yin Y-X, Dai H-L, Wang X-B, Huang Z-J, Xu P-H (2018) A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Adv 8:10806–10817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buyukoz M, Erdal E, Altinkaya SA (2018) Nanofibrous gelatin scaffolds integrated with NGF-loaded alginate microspheres for brain tissue engineering. J Tissue Eng Regen Med 12:e707–e719

    Article  PubMed  CAS  Google Scholar 

  • Chai F, Sun L, He X, Li J, Liu Y, Xiong F, Ge L, Webster TJ, Zheng C (2017) Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int J Nanomedicine 12:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandy T, Mooradian DL, Rao GHR (1998) Chitosan/polyethylene glycol–alginate microcapsules for oral delivery of hirudin. J Appl Polym Sci 70:2143–2153

    Article  CAS  Google Scholar 

  • Chang A (2015) pH-sensitive starch-g-poly(acrylic acid)/sodium alginate hydrogels for controlled release of diclofenac sodium. Iran Polym J 24:161–169

    Article  CAS  Google Scholar 

  • Chang H, Park H, Kelly P, Robinson J (1985) Bioadhesive polymers as platforms for oral controlled drug delivery. Synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J Pharm Sci 74:399–405

    Article  Google Scholar 

  • Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Controlled Release 96:285–300

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhang Z, Deng Z, Zhang R, Fan G, Ma D, McClements DJ (2018a) Controlled-release of antacids from biopolymer microgels under simulated gastric conditions: impact of bead dimensions, pore size, and alginate/pectin ratio. Food Res Int 106:745–751

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Tao N, Fang S, Chen Z, Liang L, Sun X, Li J, Liu Y-N (2018b) Incorporation of Fmoc-Y nanofibers into Ca-alginate hydrogels for improving their mechanical properties and the controlled release of small molecules. New J Chem 42:9651–9657

    Article  CAS  Google Scholar 

  • Chen P, Xia C, Mo J, Mei S, Lin X, Fan S (2018c) Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration. Mater Sci Eng C 91:190–200

    Article  CAS  Google Scholar 

  • Chen Z, Lv X, Zhao M, Zhang P, Ren X, Mei X (2018d) Encapsulation of green tea polyphenol by pH responsive, antibacterial, alginate microgels used for minimally invasive treatment of bone infection. Colloid Surf B: Biointerface 170:648–655

    Article  CAS  Google Scholar 

  • Cheow WS, Kiew TY, Hadinoto K (2014) Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules. Carbohydr Polym 103:587–595

    Article  CAS  PubMed  Google Scholar 

  • Chickering DE, Mathiowitz E (1995) Bioadhesive microspheres: I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa. J Controlled Release 34:251–261

    Article  CAS  Google Scholar 

  • Coskun G, Karaca E, Ozyurtlu M, Ozbek S, Yermezler A, Cavusoglu I (2014) Histological evaluation of wound healing performance of electrospun poly (vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 24:1527–1536

    CAS  PubMed  Google Scholar 

  • Darnell MC, Sun J-Y, Mehta M, Johnson C, Arany PR, Suo Z, Mooney DJ (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34:8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Moura MR, Guilherme MR, Campese GM, Radovanovic E, Rubira AF, Muniz EC (2005) Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: interrelationship between compressive stress and pore morphology. Eur Polym J 41:2845–2852

    Article  CAS  Google Scholar 

  • Desai NP, Sojomihardjo A, Yao Z, Ron N, Soon-Shiong P (2000) Interpenetrating polymer networks of alginate and polyethylene glycol for encapsulation of islets of Langerhans. J Microencapsul 17(6):677–690

    Article  CAS  PubMed  Google Scholar 

  • Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  • Eldin MSM, Kamoun EA, Sofan MA, Elbayomi SM (2015) l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery. Arab J Chem 8:355–365

    Article  CAS  Google Scholar 

  • El-Kamel A, Sokar M, Naggar V, Gamal SA (2002) Chitosan and sodium alginate- based bioadhesive vaginal tablets. AAPS PharmSci 4:224–230

    Article  PubMed Central  Google Scholar 

  • Fareez IM, Lim SM, Lim FT, Mishra RK, Ramasamy K (2017) Microencapsulation of lactobacillus sp. using chitosan-alginate-xanthan gum-β-cyclodextrin and characterization of its cholesterol reducing potential and resistance against pH, temperature and storage. J Food Process Eng 40:e12458

    Article  CAS  Google Scholar 

  • Fattahpour M, Shamanian M, Tavakoli N, Fathi M, Sheykhi SR, Fattahpour S (2015) Design and optimization of alginate−chitosan−pluronic nanoparticles as a novel meloxicam drug delivery system. J Appl Polym Sci 132:42241

    Article  CAS  Google Scholar 

  • Gacesa P (1992) Enzymic degradation of alginates. Int J Biochem 24:545–552

    Article  CAS  PubMed  Google Scholar 

  • Ganguly S, Maity PP, Mondal S, Das P, Bhawal P, Dhara S, Das NC (2018) Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C 92:34–51

    Article  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review. J Controlled Release 114:1–14

    Article  CAS  Google Scholar 

  • George M, Abraham TE (2007) pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129

    Article  CAS  PubMed  Google Scholar 

  • Giri T, Thakur D, Alexander A, Ajazuddin, Badwaik H, Tripathi D (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv 9:539–555

    Article  CAS  PubMed  Google Scholar 

  • Golafshan N, Kharaziha M, Fathi M (2017) Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct. Carbon 111:752–763

    Article  CAS  Google Scholar 

  • Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Delivery Rev 31:267–285

    Article  CAS  Google Scholar 

  • Goncalves VSS, Gurikov P, Poejo J, Matias AA, Heinrich S, Duarte CMM, Smirnova I (2016) Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 107:160–170

    Article  CAS  PubMed  Google Scholar 

  • Graulus G-J, Mignon A, Vlierberghe SV, Declercq H, Feher K, Cornelissen M, Martins JC, Dubruel P (2015) cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. Eur Polym J 72:494–506

    Article  CAS  Google Scholar 

  • Guilherme MR, Toledo EA, Rubira AF, Muniz EC (2002) Water affinity and permeability in membranes of alginate-Ca2+ containing poly(N-isopropylacrylamide). J Membr Sci 210:129–136

    Article  CAS  Google Scholar 

  • Guilherme MR, de Moura MR, Radovanovic E, Geuskens G, Rubira AF, Muniz EC (2005) Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly(N-isopropylacrylamide). Polymer 46:2668–2674

    Article  CAS  Google Scholar 

  • Guo J, Giusti MM, Kaletunc G (2018) Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: impact of processing and storage parameters on encapsulation efficiency. Food Res Int 107:414–422

    Article  CAS  PubMed  Google Scholar 

  • Hanif M, Abbas G (2018) pH-responsive alginate–pectin polymeric rafts and their characterization. Adv Polym Technol 37:1496–1506

    Article  CAS  Google Scholar 

  • Hardy A, Seguin C, Brion A, Lavalle P, Schaaf P, Fournel S, Bourel-Bonnet L, Frisch B, De Giorgi M (2018) Cyclodextrin-functionalized chitosan/alginate compact polyelectrolyte complexes (CoPECs) as functional biomaterials with anti-inflammatory properties. ACS Appl Mater. Interface 10:29347–29356

    CAS  Google Scholar 

  • Hong SH, Kim S, Park JP, Shin M, Kim K, Ryu JH, Lee H (2018) Dynamic bonds between boronic acid and alginate: hydrogels with stretchable, self-healing, stimuli-responsive, remoldable, and adhesive properties. Biomacromolecules 19:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Hu W-W, Ting J-C (2019) Gene immobilization on alginate/ polycaprolactone fibers through electrophoretic deposition to promote in situ transfection efficiency and biocompatibility. Int J Biol Macromol 119:1337–1345

    Article  CAS  Google Scholar 

  • Hu Y, Peng J, Ke L, Zhao D, Zhao H, Xiao X (2016) Alginate/carboxymethyl chitosan composite gel beads for oral drug delivery. J Polym Res 23:129

    Article  CAS  Google Scholar 

  • Hu W-W, Wu Y-C, Hu Z-C (2018a) The development of an alginate/ polycaprolactone composite scaffold for in situ transfection application. Carbohydr Polym 183:29–36

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Zhang Z, Li Y, Ding X, Li D, Shen C, Xu F-J (2018b) Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun 39:e1800069

    Article  CAS  Google Scholar 

  • Isiklan N, Kucukbalci G (2016) Synthesis and characterization of pH- and temperature-sensitive materials based on alginate and poly(N-isopropylacrylamide/acrylic acid) for drug delivery. Polym Bull 73:1321–1342

    Article  CAS  Google Scholar 

  • Jalababu R, Veni SS, Reddy KVNS (2018) Synthesis and characterization of dual responsive sodium alginate-g-acryloyl phenylalanine-poly N-isopropyl acrylamide smart hydrogels for the controlled release of anticancer drug. J Drug Deliv Sci Technol 44:190–204

    Article  CAS  Google Scholar 

  • Jalil A, Khan S, Naeem F, Haider MS, Sarwar S, Raiz A, Ranjha NM (2016) The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium. Des Monomers Polym 20:308–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jana S, Gandhi A, Sheet S, Sen KK (2015) Metal ion-induced alginate–locust bean gum IPN microspheres for sustained oral delivery of aceclofenac. Int J Biol Macromol 72:47–53

    Article  CAS  PubMed  Google Scholar 

  • Joshy KS, George A, Jose J, Kalarikkal N, Pothen LA, Thomas S (2017) Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. Int J Biol Macromol 103:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Jost V, Reinelt M (2018) Effect of Ca2+ induced crosslinking on the mechanical and barrier properties of alginate cast films. J Appl Polym Sci 135:45754

    Article  CAS  Google Scholar 

  • Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/Temperature-responsive remi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci 83:1128–1139

    Article  CAS  Google Scholar 

  • Kajjari PB, Manjeshwar LS, Aminabhavi TM (2012) Novel pH- and temperature responsive blend hydrogel microspheres of sodium alginate and PNIPAAm-g-GG for controlled release of isoniazid. AAPS PharmSciTech 13:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoun EA, Kenawy ES, Tamer TM, El-Meligy MA, Eldin MSM (2018) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arab J Chem 8:38–47

    Article  CAS  Google Scholar 

  • Khalid I, Ahmad M, Minhas MU, Barkat K (2018) Preparation and characterization of alginate-PVA-based semi-IPN: controlled release pH-responsive composites. Polym Bull 75(3):1075–1099

    Article  CAS  Google Scholar 

  • Kim MS, Kim GH (2014) Three-dimensional electrospun polycaprolactone (PCL)/ alginate hybrid composite scaffolds. Carbohydr Polym 114:213–221

    Article  CAS  PubMed  Google Scholar 

  • Kim H-L, Jung G-Y, Yoon J-H, Han J-S, Park Y-J, Kim D-G, Zhang M, Kim D-J (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54:20–25

    Article  CAS  Google Scholar 

  • Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR (2018) Graphene oxide–a tool for preparation of chemically crosslinking free alginate-chitosan-collagen scaffold for bone tissue engineering. ACS Appl Mater Interface 10:12441–12452

    Article  CAS  Google Scholar 

  • Kong HJ, Mooney DJ (2003) The effects of poly(ethyleneimine) (PEI) molecular weight on reinforcement of alginate hydrogels. Cell Transplant 12:779–785

    Article  PubMed  Google Scholar 

  • Kong HJ, Lee KY, Mooney DJ (2002) Decoupling the dependence of rheological/ mechanical properties of hydrogels from solids concentration. Polymer 43:6239–6246

    Article  CAS  Google Scholar 

  • Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24:4023–4029

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RV, Sreedhar V, Mutalik S, Setty CM, Sa B (2010) Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int J Biol Macromol 47:520–527

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RV, Baraskar VV, Setty CM, Sa B (2011) Interpenetrating polymer network matrices of sodium alginate and carrageenan for controlled drug delivery application. Fiber Polym 12:352–358

    Article  CAS  Google Scholar 

  • Kulkarni RV, Boppana R, Mohan GK, Mutalik S, Kalyane NV (2012) pH-responsive interpenetrating network hydrogel beads of poly(acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: Synthesis, in vitro and in vivo evaluation. J Colloid Interface Sci 367:509–517

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rao KM, Han SS (2017) Development of sodium alginate-xanthan gum-based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test 63:214–225

    Article  CAS  Google Scholar 

  • Kundu J, Shim J-H, Jang J, Kim S-W, Cho D-W (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  CAS  PubMed  Google Scholar 

  • Kunjukunju S, Roy A, Shekhar S, Kumta PN (2018) Cross-linked enzyme aggregates of alginate lyase: A systematic engineered approach to controlled degradation of alginate hydrogel. Int J Biol Macromol 115:176–184

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Choi WS, Byun MW, Park HJ, Yu YM, Lee CM (2003) Effect of gamma-irradiation on degradation of alginate. J Agric Food Chem 51:4819–4823

    Article  CAS  PubMed  Google Scholar 

  • LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang M (2005) Chitosan–alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res 75A:485–493

    Article  CAS  Google Scholar 

  • Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li D, Yang Y, Zhang L, Xu K, Wang J (2018) Study of thermal-sensitive alginate-Ca+2/poly(N-isopropylacrylamide) hydrogels supported by cotton fabric for wound dressing applications. Textile Res J. https://doi.org/10.1177/0040517518755790

    Article  CAS  Google Scholar 

  • Liao JF, Wang BY, Huang YX, Qu Y, Peng JR, Qian ZY (2017) Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering. ACS Omega 2:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JF, Jia YP, Wang BY, Shi K, Qian ZY (2018) Injectable hybrid poly(ε caprolactone)-b-poly(ethyleneglycol)-b-poly(ε-caprolactone) porous microspheres/ alginate hydrogel cross-linked by calcium gluconate crystals deposited in the pores of microspheres improved skin wound healing. ACS Biomater Sci Eng 4:1029–1036

    Article  CAS  Google Scholar 

  • Liberski A, Latif N, Raynaud C, Bollensdorf C, Yacoub M (2016) Alginate for cardiac regeneration: from seaweed to clinical trials. Glob Cardiol Sci Pract 1:e201604

    Google Scholar 

  • Lim H-P, Ooi C-W, Tey B-T, Chan E-S (2017) Controlled delivery of oral insulin aspart using pH-responsive alginate/κ-carrageenan composite hydrogel beads. React Funct Polym 120:20–29

    Article  CAS  Google Scholar 

  • Lima DS, Tenorio-Neto ET, Lima-Tenorio MK, Guilherme MR, Scariot DB, Nakamura CV, Muniz EC, Rubira AF (2018) pH-responsive alginate-based hydrogels for protein delivery. J Mol Liq 262:29–36

    Article  CAS  Google Scholar 

  • Lin H-R, Sung KC, Vong W-J (2004) In situ gelling of alginate/ pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules 5:2358–2365

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-S, Liang H-F, Chung C-K, Chen M-C, Sung H-W (2005) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. J Controlled Release 26:2105–2113

    CAS  Google Scholar 

  • Lin H-Y, Tsang-Wen C, Peng T-K (2018) 3D plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation. J Biomed Mater Res A 106(6):1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Zheng R, Chen J, Su W, Dong B, Lin C, Huang B, Lu B (2019) Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels. Carbohydr Polym 205:244–254

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Song X, Wen Y, Zhu Z-L, Li J (2017) Injectable thermoresponsive hydrogel formed by alginate-g-poly(N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl Mater Interfaces 9:35673–35682

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xiao J, Li F, Shi Y, Li D, Huang Q (2018a) Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: preparation, characterization and antimicrobial activity. Int J Biol Macromol 91:302–310

    CAS  Google Scholar 

  • Liu X, Nielsen LH, Klodzinska SN, Nielsen HM, Qu H, Christensen LP, Rantanen J, Yang M (2018b) Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 123:42–49

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Lu M, Takeuchi M, Yue T, Hasegawa Y, Huang Q, Fukuda T (2018c) In vitro mimicking the morphology of hepatic lobule tissue based on Ca-alginate cell sheets. Biomed Mater 13:035004

    Article  PubMed  Google Scholar 

  • Livnat M, Beyar R, Seliktar D (2005) Endoluminal hydrogel films made of alginate and polyethylene glycol: physical characteristics and drug-eluting properties. J Biomed Mater Res Part A 75A:710–722

    Article  CAS  Google Scholar 

  • Lohani A, Singh G, Bhattacharya SS, Verma A (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:1–11

    Article  CAS  Google Scholar 

  • Lv X, Liu Y, Song S, Tong C, Shi X, Zhao Y, Zhang J, Hou M (2018) Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr Polym 198:86–93

    Article  CAS  PubMed  Google Scholar 

  • Madrigal JL, Sharma SN, Campbell KT, Stilhano RS, Gijsbers R, Silva EA (2018) Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors. Acta Biomater 69:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavinia GR, Rahmani Z, Karami S, Pourjavadi A (2014) Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed 25:1891–1906

    Article  CAS  PubMed  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Matricardi P, Pontoriero M, Coviello T, Casadei MA, Alhaique F (2008) In situ cross-linkable novel alginate-dextran methacrylate IPN hydrogels for biomedical applications: Mechanical characterization and drug delivery properties. Biomacromolecules 9:2014–2020

    Article  CAS  PubMed  Google Scholar 

  • Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187

    Article  CAS  PubMed  Google Scholar 

  • Mazza G, Al-Akkad W, Rombouts K, Pinzani M (2018) liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun 2:131–141

    Article  PubMed  Google Scholar 

  • Moebus K, Siepmann J, Bodmeier R (2009) Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur J Pharm Biopharm 72:42–53

    Article  CAS  PubMed  Google Scholar 

  • Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioactiv Compat Polym 22:342–356

    Article  CAS  Google Scholar 

  • Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2008) Ionically cross-linked carrageenan-alginate hydrogel beads. J Biomater Sci Polym Ed 19:47–59

    Article  CAS  Google Scholar 

  • Momoh FU, Boateng JS, Richardson SCW, Chowdhury BZ, Mitchell JC (2015) Development and functional characterization of alginate dressing as potential protein delivery system for wound healing. Int J Bio Macromol 81:137–150

    Article  CAS  Google Scholar 

  • Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation optimisation and in vitro characterisation. Eur J Pharm Biopharm 68:513–525

    CAS  PubMed  Google Scholar 

  • Mumcuoglu D, Fahmy-Garcia S, Ridwan Y, Nickel J, Farrell E, Kluijtmans SG, van Osch GJ (2018) Injectable bmp-2 delivery system based on collagen derived microspheres and alginate induced bone formation in a time-and dose-dependent manner. Eur Cell Mater 35:242–254

    Article  CAS  PubMed  Google Scholar 

  • Naghizadeh Z, Karkhaneh A, Khojasteh A (2018) Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: injectable in situ forming scaffolds. Mater Sci Eng C 89:256–264

    Article  CAS  Google Scholar 

  • Nahar K, Hossain MK, Khan TA (2017) Alginate and its versatile applications in drug delivery. J Pharm Sci Res 9:606–617

    CAS  Google Scholar 

  • Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA (2016) 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng 2:1732–1742

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Sun H, Lelong T, Guilloteau R, Zhu N, Schreyer DJ, Chen X (2018) 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 10:035014

    Article  PubMed  CAS  Google Scholar 

  • Nooeaid P, Chuysinuan P, Techasakul S, Lirdprapamongkol K, Svasti J (2017) Physico-chemical and in vitro cytotoxic properties of alginate/soy protein isolated scaffolds for tissue engineering. Key Eng Mater 757:46–51

    Article  Google Scholar 

  • Nunamaker EA, Purcell EK, Kipke DR (2007) In vivo stability and biocompatibility of implanted calcium alginate disks. J Biomed Mater Res 83A:1128–1137

    Article  CAS  Google Scholar 

  • O’Neill HS, O’Sullivan J, Porteous N, Ruiz-Hernandez E, Kelly HM, O’Brien FJ, Duffy GP (2018) A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. J Tissue Eng Regen Med 12:e384–e394

    Article  PubMed  CAS  Google Scholar 

  • Orive G, Carcaboso AM, Hernandez RM, Gascon AR, Pedraz JL (2005) Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 6:927–931

    Article  CAS  PubMed  Google Scholar 

  • Park D, Hong Z, Kim J-C (2017) Gold nanoparticles-loaded cinnamoyl pluronic F-127/ cinnamoyl alginate microparticles prepared by a spray drying method. Int J Polym Mater Polym Biomater 66:753–761

    Article  CAS  Google Scholar 

  • Pentlavalli S, Chambers P, Sathy BN, O’Doherty M, Chalanqui M, Kelly DJ, Haut-Donahue T, McCarthy HO, Dunne NJ (2017) Simple radical polymerization of poly(alginate-graft-N-isopropylacrylamide) injectable thermoresponsive hydrogel with the potential for localized and sustained delivery of stem cells and bioactive molecules. Macromol Biosci 17:1700118

    Article  CAS  Google Scholar 

  • Peppas NA (2004) Hydrogels. In: Rattner BD, Hoffmann AS, Schoen FJ, Lemons JE (eds) Biomaterials science, 2nd edn. Elsevier, San Diego, CA, pp 100–106

    Google Scholar 

  • Pescosolido L, Vermonden T, Malda J, Censi R, Dhert WJA, Alhaique F, Hennink WE, Matricardi P (2011) In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomater 7:1627–1633

    Article  CAS  PubMed  Google Scholar 

  • Pinkas O, Goder D, Noyvirt R, Peleg S, Kahlon M, Zilberman M (2017) Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism. Acta Biomater 51:125–137

    Article  CAS  PubMed  Google Scholar 

  • Popescu RA, Magyari K, Taulescu M, Vulpoi A, Berce C, Bogdan S, Lelescu C, Dreanca A, Tudoran O, Papuc I, Baia L (2018) New alginate-pullulan-bioactive glasses composites with copper oxide for bone tissue regeneration trials. J Tissue Eng Regen Med 12:2112–2121

    CAS  PubMed  Google Scholar 

  • Prabaharan M (2011) Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol 49:117–124

    Article  CAS  PubMed  Google Scholar 

  • Prabaharan M, Jayakumar R (2009) Chitosan-graft-beta-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol 44:320–325

    Article  CAS  PubMed  Google Scholar 

  • Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569

    CAS  PubMed  Google Scholar 

  • Raguvaran R, Manuja BK, Chopra M, Thakur R, Anand T, Kalia A, Manuja A (2017) Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol 96:185–191

    Article  CAS  PubMed  Google Scholar 

  • Rahmani V, Sheardown H (2018) Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int J Pharm 535:452–461

    Article  CAS  PubMed  Google Scholar 

  • Rassu G, Salis A, Porcu EP, Giunchedi P, Roldo M, Gavini E (2016) Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydr Polym 136:1338–1347

    Article  CAS  PubMed  Google Scholar 

  • Reddy KM, Babu VR, Rao KSVK, Subha MCS, Rao KC, Sairam M, Aminabhavi TM (2008) Temperature sensitive semi-IPN microspheres from sodium alginate and N- Isopropylacrylamide for controlled release of 5-fluorouacil. J Appl Polym Sci 107:2820–2829

    Article  CAS  Google Scholar 

  • Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Malik S, Hussain T, Ashraf M, Iftikhar F, Younus A, Abid S, Zahir A (2018) Development of antibacterial fibers and study on effect of guar-gum addition on properties of carboxymethylcellulose (CMC)/alginate fibers. IOP Conf Ser: Mater Sci Eng 414:012020

    Article  Google Scholar 

  • Rinaudo M (1992) On the abnormal exponents αη and αD in Mark–Houwink type equations for wormlike chain polysaccharides. Polym Bull 27:585–589

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  CAS  Google Scholar 

  • Rosellini E, Zhang YS, Migliori B, Barbani N, Lazzeri L, Shin SR, Dokmeci MR, Cascone MG (2018) Protein/polysaccharide-based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. J Biomed Mater Res Part A 106:769–781

    Article  CAS  Google Scholar 

  • Rottensteiner U, Sarker B, Heusinger D, Dafinova D, Rath SN, Beier JP, Kneser U, Horch RE, Detsh R, Boccaccini AR, Arkudas A (2014) In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials 7:1957–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruvinov E, Cohen S (2016) Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 96:54–76

    Article  CAS  PubMed  Google Scholar 

  • Ruvinov E, Re’em TT, Witte F, Cohen S (2018) Articular cartilage regeneration using acellular bioactive affinity-binding alginate hydrogel: a 6-month study in a mini-pig model of osteochondral defects. J Orthop Trans. https://doi.org/10.1016/j.jot.2018.08.003

    Article  PubMed  Google Scholar 

  • Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678

    Article  CAS  PubMed  Google Scholar 

  • Sarei F, Dounighi NM, Zolfagharian H, Khaki P, Bidhendi SM (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Ind J Pharm Sci 75:442–449

    Article  CAS  Google Scholar 

  • Sarika PR, James NR, Anil Kumar PR, Raj DK (2016) Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde–gelatin nanogels. Mater Sci Eng C 68:251–257

    Article  CAS  Google Scholar 

  • Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Hydrobiologia 204/205:589–596

    Article  Google Scholar 

  • Schneider A, Francius G, Obeid R, Schwinte P, Hemmerle J, Frisch B, Schaaf P, Voegel JC, Senger B, Picart C (2006) Polyelectrolyte multilayers with a tunable young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Seeli DS, Dhivya S, Selvamurugan S, Prabaharan M (2016) Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. Int J Biol Macromol 91:45–50

    Article  CAS  PubMed  Google Scholar 

  • Shahzad A, Khan A, Afzal Z, Umer MF, Khan J, Khan GM (2018) Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.11.090

    Article  CAS  PubMed  Google Scholar 

  • Shahzad A, Khan A, Afzal Z, Umer MF, Khan J, Khan GM (2019) Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings. Int J Biol Macromol 124:255–269

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Rhim J-W (2018) Antimicrobial wrapping paper coated with a ternary blend of carbohydrates (alginate, carboxymethyl cellulose, carrageenan) and grapefruit seed extract. Carbohydr Polym 196:92–101

    Article  CAS  PubMed  Google Scholar 

  • Shao X, Hunter CJ (2007) Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. J Biomed Mater Res 82A:701–710

    Article  CAS  Google Scholar 

  • Sharma C, Dinda AK, Potdar PD, Chou C-F, Mishra NC (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater Sci Eng C 64:416–427

    Article  CAS  Google Scholar 

  • Shi J, Alves NM, Mano JF (2006) Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi-IPN beads. Macromol Biosci 6:358–363

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Alves NM, Mano JF (2008) Chitosan coated alginate beads containing poly(N-isopropylacrylamide) for dual-stimuli-responsive drug release. J Biomed Mater Res 84B:595–603

    Article  CAS  Google Scholar 

  • Shi X, Zheng Y, Wang G, Lin Q, Fan J (2014) pH- and electro-responsive characteristics of bacterial cellulose nanofiber/ sodium alginate hybrid hydrogels for the dual controlled drug delivery. RSC Adv 4:47056–47065

    Article  CAS  Google Scholar 

  • Shtenberg Y, Goldfeder M, Schroeder A, Bianco-Peled H (2017) Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhesion. Carbohydr Polym 175:337–346

    Article  CAS  PubMed  Google Scholar 

  • Shtenberg Y, Goldfeder M, Prinz H, Shainsky J, Ghantous Y, El-Naaj IA, Schroeder A, Bianco-Peled H (2018) Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol 111:62–69

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Varshney L, Francis S, Rajneesh (2017) Designing sterile biocompatible moxifloxacin loaded trgacanth-PVA-alginate wound dressing by radiation crosslinking method. Wound Med 17:11–17

    Article  Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  PubMed  Google Scholar 

  • Sondermeijer HP, Witkowski P, Seki T, van der Laarse A, Itescu S, Hardy MA (2018) RGDfK-peptide modified alginate scaffold for cell transplantation and cardiac neovascularization. Tissue Eng Part A 24:740–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Chen B (2018) Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Carbohydr Polym 197:497–507

    Article  CAS  PubMed  Google Scholar 

  • Summa M, Russo D, Penna I, Margaroli N, Bayer IS, Bandiera T, Athanassiou A, Bertorelli R (2018) A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur J Pharm Biopharm 122:17–24

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Liu Y, Wang H, Deng F, Zhang Y, Zhao S, Ma X, Wu H, Sun G (2018) Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells. Int J Biol Macromol 109:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (1991) Alginates. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton Press, New York, pp 309–331

    Google Scholar 

  • Swamy BY, Yun Y-S (2015) In vitro release of metformin from iron (III) cross-linked alginate–carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119

    Article  CAS  PubMed  Google Scholar 

  • Szekalska M, Pucilowska A, Szymanska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:1–17

    Google Scholar 

  • Tam SK, Dusseault J, Bilodeau S, Langlois G, Halle J-P, Yahia L (2011) Factors influencing alginate gel biocompatibility. J Biomed Mater Res Part A 98A:40–52

    Article  CAS  Google Scholar 

  • Tansaz S, Durmann A-K, Detsch R, Boccaccini AR (2017) Hydrogel films and microcapsules based on soy protein isolate combined with alginate. J Appl Polym Sci 134:44358

    Article  CAS  Google Scholar 

  • Tareq AZ (2016) Preparation and characterization of PVA-NaAlg interpenetrating polymer network (IPN) hydrogel for controlled delivery of carbidopa. Am Chem Sci J 17:1–10

    Article  CAS  Google Scholar 

  • Tarusha L, Paoletti S, Travan A, Marsich E (2018) Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. J Mater Sci Mater Med 29:22

    Article  PubMed  CAS  Google Scholar 

  • Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159

    Article  CAS  Google Scholar 

  • Thankam FG, Muthu J, Sankar V, Gopal RK (2013) Growth and survival of cells in biosynthetic poly vinyl alcohol–alginate IPN hydrogels for cardiac applications. Colloid Surf B: Biointerface 107:137–145

    Article  CAS  Google Scholar 

  • Thomas D, Latha MS, Thomas KK (2018) Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol 46:392–399

    Article  CAS  Google Scholar 

  • Tigli RS, Gumusderelioglu M (2009) Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci Mater Med 20:699–709

    Article  CAS  PubMed  Google Scholar 

  • Tohamy KM, Mabrouk M, Soliman I, Beherei HH, Aboelnasr MA (2018) Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol 112:448–460

    Article  CAS  PubMed  Google Scholar 

  • Tong X-F, Zhao F-Q, Ren Y-Z, Zhang Y, Cui Y-L, Wang Q-S (2018) Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A 106:3292–3302

    Article  CAS  PubMed  Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Develop Ind Pharm 28:621–630

    Article  CAS  Google Scholar 

  • Treenate P, Monvisade P (2017) In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int J Biol Macromol 99:71–78

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay M, Adena SKR, Vardhan H, Yadav SK, Mishra B (2018) Development of biopolymers based interpenetrating polymeric network of capecitabine: a drug delivery vehicle to extend the release of the model drug. Int J Biol Macromol 115:907–919

    Article  CAS  PubMed  Google Scholar 

  • Vega-Sagardia M, Rocha J, Saez K, Smith CT, Gutierrez-Zamorano C, Garcia-Cancino A (2018) Encapsulation, with and without oil, of biofilm forming Lactobacillus fermentum UCO-979C strain in alginate-xanthan gum and its anti-Helicobacter pylori effect. J Funct Food 46:504–513

    Article  CAS  Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  PubMed  Google Scholar 

  • Vignesh S, Gopalakrishnan A, Poorna MR, Nair SV, Jayakumar R, Mony U (2018) Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced Pluripotent Stem Cells (iPSC) culture. Int J Biol Macromol 112:737–744

    Article  CAS  PubMed  Google Scholar 

  • Volic M et al (2018) Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr Polym 200:15–24

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Newby BZ (2018) Layer-by-layer polyelectrolyte coating of alginate microgels for sustained release of sodium benzoate and zosteric acid. J Drug Deliv Sci Technol 46:46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang N, Hu X, Yang J, Du Y (2007) Alginate/polyethylene glycol blend fibers and their properties for controlled drug release. J Biomed Res 82A:122–128

    CAS  Google Scholar 

  • Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737

    Article  CAS  Google Scholar 

  • Wong TY, Preston LA, Schiller NL (2000) Alginate Lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Liu J, Fang Q, Xiao B, Wan Y (2017) Establishment of nerve growth factor gradients on aligned chitosan-polylactide/alginate fibers for neural tissue engineering applications. Colloid Surf B Biointerface 160:598–609

    Article  CAS  Google Scholar 

  • Xie H, Chen X, Shen X, He Y, Chen W, Luo Q, Ge W, Yuan W, Tang X, Hou D, Jiang D, Wang Q, Liu Y, Liu Q, Li K (2018) Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol 107:93–104

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Wang T, Feng L, Zhu J, Zhang K, Chen X, Cui L, Yin J (2014) Injectable in situ self-cross-linking hydrogels based on poly(l-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 15:4495–4508

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Wu W, Wang S (2018a) Biocompatibility and degradability of alginate-poly-L-arginine microcapsules prepared by high-voltage electrostatic process. Int J Polym Mater Polym Biomater 67:1087–1095

    Article  CAS  Google Scholar 

  • Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J (2018b) Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C 83:195–201

    Article  CAS  Google Scholar 

  • Yigitoglu M, Aydin G, Isiklan N (2014) Microwave-assisted synthesis of alginate-g-polyvinylpyrrolidone copolymer and its application in controlled drug release. Polym Bull 71:385–414

    Article  CAS  Google Scholar 

  • Yin Z-C, Wang Y-L, Wang K (2018) A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. J Drug Deliv Sci Technol 43:12–18

    Article  CAS  Google Scholar 

  • Yu C-Y, Zhang X-C, Zhou F-Z, Zhang X-Z, Cheng S-X, Zhuo R-X (2008) Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int J Pharm 357:15–21

    Article  CAS  PubMed  Google Scholar 

  • Yu C-Y, Yin B-C, Zhang W, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloid Surf B: Biointerfaces 68:245–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang R, Zou L, McClements DJ (2016) Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocolloid 58:308–315

    Article  CAS  Google Scholar 

  • Zhang X, Zhu Y, Cao L, Wang X, Zheng A, Chang J, Wu J, Wen J, Jiang X, Li H, Zhang Z (2018) Alginate-aker injectable composite hydrogels promoted irregular bone regeneration through stem cell recruitment and osteogenic differentiation. J Mater Chem B 6:1951–1964

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Cao M, Li H, Li L, Xu W (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(É›-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res 345:425–431

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhao X, Guo B, Ma PX (2014) Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromolecules 15:3246–3252

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang Y, Niu C, Zhang L, Li G, Yang Y (2018) Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. J Biomed Mater Res A 106:1951–1964

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Kang H, Bielec M, Wu X, Cheng Q, Wei W, Dai H (2018) Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr Polym 197:292–304

    Article  CAS  PubMed  Google Scholar 

  • Zineh BR, Shabgard MR, Roshangar L (2018) Mechanical and biological performance of printed alginate/ methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds. Mater Sci Eng C 92:779–789

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usharani Subuddhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Subuddhi, U. (2020). Alginate-Based Interpenetrating Network Carriers for Biomedical Applications. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_4

Download citation

Publish with us

Policies and ethics