Skip to main content

Interpenetrating Polymer Network (IPN) Nanoparticles for Drug Delivery Applications

  • Chapter
  • First Online:
Book cover Interpenetrating Polymer Network: Biomedical Applications

Abstract

Recent studies emphasize the interpenetrating polymer network (IPN) as a combination of two or more polymers in the form of network where covalent bond is unlikely to be formed when at least one of the polymers is synthesized or cross-linked in the presence of the other during formation of IPN. One of the most IPN hydrogel applications is the formation of stimuli-sensitive delivery system. Researchers have used them alone or in combination with synthetic polymers to fabricate IPN hydrogels with desired properties. Those polymers include polysaccharides such as chitosan, cellulose, dextran and xyloglucan, and proteins such as gelatin as well as synthetic polymers such as poloxamer. The IPN nanoparticle-based hydrogels have the ability to form aqueous solutions with high colloidal stability in vivo and entrap of macromolecules, such as proteins and peptides, target, and control the drug release, feasibility of surface modifications by various types of site-specific ligands in order to improve targeted delivery in the body in addition to feasibility for administration through different pathways, such as oral, parenteral, nasal, pulmonary, and ocular routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander A et al (2011) Mechanism responsible for mucoadhesion of mucoadhesive drug delivery system: a review. Int J Appl Biol Pharm Technol 2(1):434–445

    Google Scholar 

  • Al-Kahtani AA, Sherigara B (2009) Controlled release of theophylline through semi-interpenetrating network microspheres of chitosan-(dextran-g-acrylamide). J Mater Sci Mater Med 20(7):1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles: preparation methods and drug targeting issues. Eur J Pharm Biopharm 39(5):173–191

    CAS  Google Scholar 

  • Angadi SC, Manjeshwar LS, Aminabhavi TM (2010) Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol 47(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Anzlovar A, Zigon M (2005) Semi-interpenetrating polymer networks with varying mass ratios of functional urethane and methacrylate prepolymers. Acta Chim Slov 52(3):230

    CAS  Google Scholar 

  • Baklaushev VP et al (2015) Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1. Drug Deliv 22(3):276–285

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S et al (2010a) Interpenetrating polymer network (IPN): a novel biomaterial. Int J Appl Pharm 2(1):28–34

    Google Scholar 

  • Banerjee S et al (2010b) Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 69(10):777–784

    CAS  Google Scholar 

  • Banerjee S et al (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50(1):198–206

    Article  CAS  PubMed  Google Scholar 

  • Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. In: Application of Nanotechnology in Drug Delivery. InTech

    Google Scholar 

  • Bera H, Boddupalli S, Nayak AK (2015) Mucoadhesive-floating zinc-pectinate–sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl. Carbohydr Polym 131:108–118

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj V, Harit G, Kumar S (2012) Interpenetrating polymer network (IPN): novel approach in drug delivery. Int J Drug Dev Res 4(3):41–54

    CAS  Google Scholar 

  • Bhattacharya SS et al (2013) Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym 98(1):64–72

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai N et al (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):609–624

    Article  CAS  PubMed  Google Scholar 

  • Billiet T et al (2014) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Boaro LCC et al (2010) Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater 26(12):1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Bon SA, Cauvin S, Colver PJ (2007) Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules. Soft Matter 3(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Bulut E (2016) Ibuprofen microencapsulation within acrylamide-grafted chitosan and methylcellulose interpenetrating polymer network microspheres: Synthesis, characterization, and release studies. Artif Cells Nanomed Biotechnol 44(4):1098–1108

    CAS  PubMed  Google Scholar 

  • Burdick JA et al (2003) An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials 24(9):1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Burkoth AK, Anseth KS (2000) A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 21(23):2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Cao H et al (2018) Mechanoregulation of cancer-associated fibroblasts phenotype in 3D interpenetrating hydrogel networks. Langmuir

    Google Scholar 

  • Chen Y et al (2018) Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin. J Mech Behav Biomed Mater 82:61–69

    Article  CAS  PubMed  Google Scholar 

  • Chenite A et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Chien Y et al (2012) Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials 33(32):8003–8016

    Article  CAS  PubMed  Google Scholar 

  • Cho YI et al (2009) In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan–doxorubicin conjugates. Eur J Pharm Biopharm 73(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Chvapil M (1982) Considerations on manufacturing principles of a synthetic burn dressing: a review. J Biomed Mater Res 16(3):245–263

    Article  CAS  PubMed  Google Scholar 

  • Csóka G et al (2007) Potential application of Metolose® in a thermoresponsive transdermal therapeutic system. Int J Pharm 338(1-2):15–20

    Article  PubMed  CAS  Google Scholar 

  • Cui Z et al (2011) Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels. J Biomed Mater Res A 98(2):159–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debauche A (2011) Viol et rapports de genre: émergence, enregistrements et contestations d’un crime contre la personne. Institut d’études politiques, Paris

    Google Scholar 

  • Eswaramma S, Rao KK (2017) Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug. Carbohydr Polym 156:125–134

    Article  CAS  PubMed  Google Scholar 

  • Fares MM et al (2018) Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 6(11):2938–2950

    Article  CAS  PubMed  Google Scholar 

  • Ganguly S et al (2017) Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int J Biol Macromol 95:185–198

    Article  CAS  PubMed  Google Scholar 

  • Ganguly S et al (2018) Green reduced graphene oxide toughened semi-ipn monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J Phys Chem B 122(29):7201–7218

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SK et al (2018) Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Int J Biol Macromol 120:1823–1833

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves G et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20(44):9927–9934

    Article  CAS  Google Scholar 

  • Hastings CL et al (2012) Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J Control Release 161(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Honmute S et al (2012) Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int J Sci Res 1(2):102–106

    Google Scholar 

  • Hoosain FG et al (2017) In vivo evaluation of a PEO-gellan gum semi-interpenetrating polymer network for the oral delivery of sulpiride. AAPS PharmSciTech 18(3):654–670

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Siow KS (2001) Novel interpenetrating polymer network electrolytes. Polymer 42(9):4181–4188

    Article  CAS  Google Scholar 

  • Ianchis R et al (2017) Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. Nanomaterials 7(12):443

    Article  PubMed Central  CAS  Google Scholar 

  • Jain N et al (2011) Pharmaceutical and biomedical applications of interpenetrating polymer network. Curr Drug Ther 6(4):263–270

    Article  CAS  Google Scholar 

  • Jana S, Sen KK, Basu SK (2014) In vitro aceclofenac release from IPN matrix tablets composed of chitosan-tamarind seed polysaccharide. Int J Biol Macromol 65:241–245

    Article  CAS  PubMed  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2-3):189–212

    Article  CAS  PubMed  Google Scholar 

  • Kaufman G et al (2018) Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration. Biomed Mater 13(2):025006

    Article  PubMed  Google Scholar 

  • Kawashima Y (2001) Panoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 47(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Yoon SG, Kim SI (2004) Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly (diallydimethylammonium chloride). J Appl Polym Sci 91(6):3705–3709

    Article  CAS  Google Scholar 

  • Kim IY et al (2007) Evaluation of semi-interpenetrating polymer networks composed of Chitosan and Poloxamer for artificial skin. In Key Eng Mater. Trans Tech Publ

    Google Scholar 

  • Kim JK et al (2014) Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes. J Control Release 194:316–322

    Article  CAS  PubMed  Google Scholar 

  • Kim AR, Lee SL, Park SN (2018) Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol 118:731–740

    Article  CAS  PubMed  Google Scholar 

  • Kouser R et al (2018) Na-Montmorillonite-Dispersed Sustainable Polymer Nanocomposite Hydrogel Films for Anticancer Drug Delivery. ACS Omega 3(11):15809–15820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudela V (1987) Hydrogels. In: Herman FM (ed) Encyclopedia of polymer science and engineering, vol 7. Wiley, New York, pp 703–807

    Google Scholar 

  • Kulkarni RV et al (2011) Interpenetrating polymer network matrices of sodium alginate and carrageenan for controlled drug delivery application. Fibers Polym 12(3):352–358

    Article  CAS  Google Scholar 

  • Kulkarni RV et al (2013) Controlled release of an antihypertensive drug through interpenetrating polymer network hydrogel tablets of tamarind seed polysaccharide and sodium alginate. J Macromol Sci Part B 52(11):1636–1650

    Article  CAS  Google Scholar 

  • Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18(20):7291–7298

    Article  CAS  Google Scholar 

  • Liu W et al (2004) A rapid temperature-responsive sol–gel reversible poly (N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25(15):3005–3012

    Article  CAS  PubMed  Google Scholar 

  • Liu R et al (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 195:63–70

    Article  CAS  PubMed  Google Scholar 

  • Lohani A, Chaudhary GP (2012) Mucoadhesive microspheres: a novel approach to increase gastroretention. Chron Young Sci 3(2):121

    Article  CAS  Google Scholar 

  • Lohani A et al (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014

    Google Scholar 

  • Lu J et al (2015) Synthesis and properties of pH-, thermo-, and salt-sensitive modified poly (aspartic acid)/poly (vinyl alcohol) IPN hydrogel and its drug controlled release. Biomed Res Int 2015

    Google Scholar 

  • Luca L et al (2011) Injectable rhBMP-2-loaded chitosan hydrogel composite: Osteoinduction at ectopic site and in segmental long bone defect. J Biomed Mater Res A 96(1):66–74

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, Basu SK, Sa B (2010) Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr Polym 82(3):867–873

    Article  CAS  Google Scholar 

  • Mayet N et al (2014) Synthesis of a semi-interpenetrating polymer network as a bioactive curcumin film. AAPS PharmSciTech 15(6):1476–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena LK et al (2018) Study of locust bean gum reinforced cyst-chitosan and oxidized dextran based semi-IPN cryogel dressing for hemostatic application. Bioact Mater 3(3):370–384

    Article  PubMed  Google Scholar 

  • Merlin DL, Sivasankar B (2009) Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur Polym J 45(1):165–170

    Article  CAS  Google Scholar 

  • Moya-Ortega MD et al (2012) Cross-linked hydroxypropyl-β-cyclodextrin and γ-cyclodextrin nanogels for drug delivery: physicochemical and loading/release properties. Carbohydr Polym 87(3):2344–2351

    Article  CAS  Google Scholar 

  • Mundargi RC et al (2010) Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly (N-isopropylacrylamide) for controlled release of atenolol. J Appl Polym Sci 116(3):1832–1841

    CAS  Google Scholar 

  • Naderi Z, Azizian J (2018) Synthesis and characterization of carboxymethyl chitosan/Fe3O4 and MnFe2O4 nanocomposites hydrogels for loading and release of curcumin. J Photochem Photobiol B Biol 185:206–214

    Article  CAS  Google Scholar 

  • Ochi M et al (2014) Preparation of hydrogel capsules with thermoresponsive interpenetrating polymer network using concentric two-fluid nozzles. Adv Powder Technol 25(2):604–608

    Article  CAS  Google Scholar 

  • Ossipov DA, Hilborn J (2006) Poly (vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39(5):1709–1718

    Article  CAS  Google Scholar 

  • Pan Y et al (2018) Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier. Int J Biol Macromol 118:132–140

    Article  CAS  PubMed  Google Scholar 

  • Park JC et al (2000) Type I atelocollagen grafting onto ozone-treated polyurethane films: cell attachment, proliferation, and collagen synthesis. J Biomed Mater Res 52(4):669–677

    Article  CAS  PubMed  Google Scholar 

  • Parsa P, Paydayesh A, Davachi SM (2019) Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int J Biol Macromol 121:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Peppas N et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Qadri MF, Malviya R, Sharma PK (2015) Biomedical applications of interpenetrating polymer network system. Open Pharm Sci J 2(1)

    Article  Google Scholar 

  • Qi X et al (2017) Design of Salecan-containing semi-IPN hydrogel for amoxicillin delivery. Mater Sci Eng C 75:487–494

    Article  CAS  Google Scholar 

  • Ramaraj B, Radhakrishnan G (1994) Hydrogel capsules for sustained drug release. J Appl Polym Sci 51(6):979–988

    Article  CAS  Google Scholar 

  • Rao KK et al (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66(3):333–344

    Article  CAS  Google Scholar 

  • Rasoulzadehzali M, Namazi H (2018) Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int J Biol Macromol 116:54–63

    Article  CAS  PubMed  Google Scholar 

  • Ray D, Sahoo PK, Mohanta GP (2008) Designing of biodegradable interpenetrating polymer network of poly (vinyl alcohol-co-acrylic acid)/sodium chloride hydrogel: an approach to drug delivery. Int J Pharm Sci Nanotech 1:144–151

    CAS  Google Scholar 

  • Ray R et al (2011) Studies on the release of ibuprofen from Al3+ ion cross-linked homopolymeric and interpenetrating network hydrogel beads of carboxymethyl xanthan and sodium alginate. Adv Polym Technol 30(1):1–11

    Article  CAS  Google Scholar 

  • Rokhade AP et al (2007) Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym 69(4):678–687

    Article  CAS  Google Scholar 

  • Rosenthal F, Köhler G (1997) Collagen as matrix for neo-organ formation by gene-transfected fibroblasts. Anticancer Res 17(2A):1179–1186

    CAS  PubMed  Google Scholar 

  • Ryan C et al (2017) Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications. Sci Technol Adv Mater 18(1):528–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama A (2018) Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. Int J Biol Macromol 108:471–476

    Article  CAS  PubMed  Google Scholar 

  • Schild HG (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  • Sharma AK et al (2019) Response surface methodology directed synthesis of luminescent nanocomposite hydrogel for trapping anionic dyes. J Environ Manag 231:380–390

    Article  CAS  Google Scholar 

  • Singh P et al (2012) Interpenetrating polymer network (ipn) microparticles an advancement in novel drug delivery system: a review. Pharm Sci Monit 3(4)

    Google Scholar 

  • Solak EK (2011) Preparation and characterization of IPN microspheres for controlled delivery of naproxen. J Biomater Nanobiotechnol 2(04):445

    Article  CAS  Google Scholar 

  • Somya G et al (2015) Interpenetrating polymer network-based drug delivery systems: emerging applications and recent patents. Egypt Pharm J 14(2):75

    Article  Google Scholar 

  • Soni SR, Ghosh A (2017) Exploring pullulan-poly (vinyl alcohol) interpenetrating network microspheres as controlled release drug delivery device. Carbohydr Polym 174:812–822

    Article  CAS  PubMed  Google Scholar 

  • Soppimath KS, Kulkarni AR, Aminabhavi TM (2000) Controlled release of antihypertensive drug from the interpenetrating network poly (vinyl alcohol)–guar gum hydrogel microspheres. J Biomater Sci Polym Ed 11(1):27–43

    Article  CAS  PubMed  Google Scholar 

  • Soppimath KS et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1-2):1–20

    Article  CAS  PubMed  Google Scholar 

  • Steffensen SL et al (2016) Soft hydrogels interpenetrating silicone—A polymer network for drug-releasing medical devices. J Biomed Mater Res B Appl Biomater 104(2):402–410

    Article  CAS  PubMed  Google Scholar 

  • Su X, Chen B (2018) Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Carbohydr Polym

    Google Scholar 

  • Supper S et al (2014) Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert Opin Drug Deliv 11(2):249–267

    Article  CAS  PubMed  Google Scholar 

  • Suresh PK, Suryawani SK, Dewangan D (2011) Chitosan based interpenetrating polymer network (IPN) hydrogels: a potential multicomponent oral drug delivery vehicle. Pharmacie Globale Int J Compr Pharm 8:1–8

    Google Scholar 

  • Swapna S et al (2013) Microspheres as a promising mucoadhesive drug delivery system-review. Int J Pharm Sci Rev Res 23(2):8–14

    Google Scholar 

  • Takahashi M, Shimazaki M, Yamamoto J (2001) Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci B Polym Phys 39(1):91–100

    Article  CAS  Google Scholar 

  • Tang Q et al (2011) Poly (dimethyl siloxane)/poly (2-hydroxyethyl methacrylate) interpenetrating polymer network beads as potential capsules for biomedical use. Curr Appl Phys 11(3):945–950

    Article  Google Scholar 

  • Thakur A, Monga S, Wanchoo R (2014) Sorption and drug release studies from semi-interpenetrating polymer networks of chitosan and xanthan gum. Chem Biochem Eng Q 28(1):105–115

    CAS  Google Scholar 

  • Ullah K et al (2018) Facile synthesis of chitosan based-(AMPS-co-AA) semi-IPNs as a potential drug carrier: enzymatic degradation, cytotoxicity, and preliminary safety evaluation. Curr Drug Deliv

    Google Scholar 

  • Vancaeyzeele C et al (2005) Polyisobutene–poly (methylmethacrylate) interpenetrating polymer networks: synthesis and characterization. Polymer 46(18):6888–6896

    Article  CAS  Google Scholar 

  • Wahid F et al (2019) Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int J Biol Macromol 122:380–387

    Article  CAS  PubMed  Google Scholar 

  • Wang S-C et al (2007) Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release. Int J Pharm 329(1-2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Wang J-l et al (2010) Study of SiO2/PMMA/CE tri-component interpenetrating polymer network composites. Mater Sci Eng A 527(7-8):2045–2049

    Article  CAS  Google Scholar 

  • Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3(3):1215–1242

    Article  CAS  Google Scholar 

  • Work W et al (2004) Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004). Pure Appl Chem 76(11):1985–2007

    Article  CAS  Google Scholar 

  • Xiao W et al (2011) Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 7(6):2384–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H-q, Wang H-q, Cheng J (2009) Interpenetrating polymer networks from the novel bismaleimide and cyanate containing naphthalene: Cure and thermal characteristics. Eur Polym J 45(8):2383–2390

    Article  CAS  Google Scholar 

  • YerriSwamy B et al (2011) Interpenetrating polymer network microspheres of hydroxy propyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride. Cellulose 18(2):349–357

    Article  CAS  Google Scholar 

  • Yin X, Hoffman AS, Stayton PS (2006) Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7(5):1381–1385

    Article  CAS  PubMed  Google Scholar 

  • Yin L et al (2007) Superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28(6):1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Yin L et al (2008) Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 350(1-2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Yue YM et al (2008) Preparation and characterization of interpenetration polymer network films based on poly (vinyl alcohol) and poly (acrylic acid) for drug delivery. J Appl Polym Sci 108(6):3836–3842

    Article  CAS  Google Scholar 

  • Yue Y et al (2019) Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: mechanical properties and adsorption-desorption capacities. Carbohydr Polym 206:289–301

    Article  CAS  PubMed  Google Scholar 

  • Zakharchenko S et al (2010) Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter 6(12):2633–2636

    Article  CAS  Google Scholar 

  • Zhang X et al (2018) Marine biomaterial-based bioinks for generating 3D printed tissue constructs. Mar Drugs 16(12):484

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Kang J, Tan T (2006) Salt-, pH-and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly (aspartic acid) and poly (acrylic acid). Polymer 47(22):7702–7710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed O. Elzoghby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abou El-Ela, R.M., Freag, M.S., Elkhodairy, K.A., Elzoghby, A.O. (2020). Interpenetrating Polymer Network (IPN) Nanoparticles for Drug Delivery Applications. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_2

Download citation

Publish with us

Policies and ethics