Skip to main content

Functional Chitosan Carriers for Oral Colon-Specific Drug Delivery

  • Chapter
  • First Online:
Functional Chitosan

Abstract

Chitosan is a polysaccharide consisting of D-glucosamine and N-acetyl-D-glucosamine units linked by β-(1,4) linkages. It is derived via deacetylation of chitin. Chitosan is a cationic polymer which is biodegradable, biocompatible, nontoxic, and mildly allergenic. It is characterized by antitumor, antimicrobial, and antioxidant activities which render a widespread research interest for pharmaceutical and biomedical applications. Used as a matrix and/or coat material, chitosan can protect drugs from chemical and enzymatic degradation with reference to oral delivery. Chitosan binds strongly to mucus and exhibits mucosal permeation-enhancing property that promotes drug absorption through intestinal epithelial cells. Oral colon-specific delivery systems have been explored for targeted drug administration for the treatment of colon cancer, ulcerative colitis, Crohn’s disease, diverticulitis, irritable bowel syndrome, Hirschsprung’s disease, antibiotic-associated colitis, and other colon diseases. This chapter gives an overview of relevant physicochemical and biological properties of chitosan and its derivatives and innovative formulations with respect to their use as oral colon-specific drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham M-K et al (2017) Nanoliposomes for safe and efficient therapeutic mrna delivery: a step toward nanotheranostics in inflammatory and cardiovascular diseases as well as cancer. Nano 1(2):154–165

    Google Scholar 

  • Abruzzo A et al (2015) Mucoadhesive buccal tablets based on chitosan / gelatin microparticles for delivery of propranolol hydrochloride. J Pharm Sci 104(12):4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Ahmad MZ et al (2012) In vitro and in vivo evaluation of Assam bora rice starch-based bioadhesive microsphere as a drug carrier for colon targeting. Expert Opin Drug Deliv 9(12):141–149

    Article  CAS  PubMed  Google Scholar 

  • Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 10:483–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfatama M, Lim LY, Wong TW (2018) Alginate-C18 conjugate nanoparticles loaded in coated calcium alginate beads as oral insulin carrier. Mol Pharm 15(8):3369–3382

    Article  CAS  PubMed  Google Scholar 

  • Amidon S, Brown JE, Dave VS (2015) Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 16(4):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andishmand H et al (2017) Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int J Biol Macromol 97:16–22

    Article  CAS  PubMed  Google Scholar 

  • Anitha a et al (2014) Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta Gen Subj 1840(9):2730–2743

    Article  CAS  Google Scholar 

  • Aranaz I et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  • Atyabi F et al (2005) In vitro evaluation and modification of pectinate gel beads containing trimethyl chitosan, as a multi-particulate system for delivery of water-soluble macromolecules to colon. Carbohydr Polym 61(1):39–51

    Article  CAS  Google Scholar 

  • Azuma K et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6:33–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Bansal V et al (2011) Applications of chitosan and chitosan derivatives in drug delivery. Adv Biol Res 5(1):28–37

    CAS  Google Scholar 

  • Bernkop-schnürch A, Hornof M, Zoidl T (2003) Thiolated polymers — thiomers : synthesis and in vitro evaluation of chitosan – 2-iminothiolane conjugates. Int J Pharm 260:229–237

    Article  PubMed  CAS  Google Scholar 

  • Bose A, Wong TW (2018) 18: Oral colon cancer targeting by chitosan nanocomposites. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813741-3.00018-2

    Chapter  Google Scholar 

  • Cerchiara T et al (2015) Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 92:112–119

    Article  CAS  PubMed  Google Scholar 

  • Cerchiara T et al (2016) Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 143:124–130

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Xiao L, Du Y (2009) Preparation and properties of a novel thermosensitive N-trimethyl chitosan hydrogel. Polym Bull 63(4):531–545

    Article  CAS  Google Scholar 

  • Changyong Q, Nam J, Nah J (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10

    Article  CAS  Google Scholar 

  • Chaudhary A et al (2011) Chemoprevention of colon cancer in a rat carcinogenesis model using a novel nanotechnology-based combined treatment system. Cancer Prev Res (Phila) 4(10):1655–1664

    Article  CAS  Google Scholar 

  • Chen H et al (2016) The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf B: Biointerfaces 143:455–462

    Article  CAS  PubMed  Google Scholar 

  • Chien RC, Yen MT, Mau JL (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264

    Article  CAS  PubMed  Google Scholar 

  • Chirkov SN (2002) The antiviral activity of chitosan. Appl Biochem Microbiol 38(1):5–13

    Article  CAS  Google Scholar 

  • Chourasia MK, Jain SK (2004) Design and development of multiparticulate system for targeted drug delivery to colon. Drug Deliv 11(3):201–207

    Article  CAS  PubMed  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    Article  CAS  Google Scholar 

  • Das S, Chaudhury A, Ng KY (2011) Preparation and evaluation of zinc-pectin-chitosan composite particles for drug delivery to the colon: role of chitosan in modifying in vitro and in vivo drug release. Int J Pharm 406(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  • Delmar K, Bianco-Peled H (2015) The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohydr Polym 127:28–37

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 5(4):124–128

    Article  Google Scholar 

  • Dodane V, Amin Khan M, Merwin JR (1999) Effect of chitosan on epithelial permeability and structure. Int J Pharm 182(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7(7):756–761

    Article  CAS  PubMed  Google Scholar 

  • Du J, El-Sherbiny IM, Smyth HD (2014) Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery. AAPS PharmSciTech 15(6):1535–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbaz NM et al (2016) Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol 92:254–269

    Article  CAS  PubMed  Google Scholar 

  • Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570

    Article  CAS  PubMed  Google Scholar 

  • Fallingborg J et al (1993) Very low intraluminal colonic ph in patients with active ulcerative colitis. Dig Dis Sci 38(11):1989–1993

    Article  CAS  PubMed  Google Scholar 

  • Feng C et al (2013) Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 457(1):158–167

    Article  CAS  PubMed  Google Scholar 

  • Feng C et al (2015) Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf B: Biointerfaces 128:439–447

    Article  CAS  PubMed  Google Scholar 

  • Fukui E et al (2000) Preparation of enteric coated timed-release press-coated tablets and evaluation of their function by in vitro and in vivo tests for colon targeting. Int J Pharm 204:7–15

    Article  CAS  PubMed  Google Scholar 

  • Gadalla HH et al (2015) Development and in vitro / in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone. Drug Deliv 23(7):2541–2554

    Article  PubMed  CAS  Google Scholar 

  • Ganguly K et al (2015) In vitro cytotoxicity and in vivo efficacy of 5- chitosan microspheres in colorectal cancer therapy in rats enteric-coated PEG-crosslinked chitosan microspheres in rats. Drug Deliv 23(8):2838–2851

    Article  PubMed  CAS  Google Scholar 

  • Gulbake A, Jain S (2012) Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv 9(6):713–729

    Article  CAS  PubMed  Google Scholar 

  • Gupta A et al (2017) Targeting of herbal bioactives through folate receptors : a novel concept to enhance intracellular drug delivery in cancer therapy. J Recept Signal Transduction 37(3):314–323

    Article  CAS  Google Scholar 

  • Haziyah S et al (2016) In vitro investigation of influences of chitosan nanoparticles on fluorescein permeation into alveolar macrophages. Pharm Res 33(6):1497–1508

    Article  CAS  Google Scholar 

  • Hornof MD, Kast CE, Bernkop-schnu A (2003) In vitro evaluation of the viscoelastic properties of chitosan – thioglycolic acid conjugates. Eur J Pharm Biopharm 55:185–190

    Article  CAS  PubMed  Google Scholar 

  • Hornof M, Guggi D, Bernkop-schnu A (2004) Thiolated chitosans. Eur J Pharm Biopharm 57:9–17

    Article  PubMed  CAS  Google Scholar 

  • Huang R et al (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408

    Article  CAS  PubMed  Google Scholar 

  • Ibekwe VC et al (2008) Interplay between intestinal ph, transit time and feed status on the in vivo performance of ph responsive ileo-colonic release systems. Pharm Res 25(8):1828–1835

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Bhuiyan MAR, Islam MN (2016) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25(3):854–866

    Article  CAS  Google Scholar 

  • Jana S, Maiti S (2017) Chapter 20: Chitosan-based nanoparticulate systems for oral drug delivery. Elsevier Inc. https://doi.org/10.1016/B978-0-323-47720-8/00021-3

  • Jayakumar R et al (2005) Graft copolymerized chitosan — present status and applications. Carbohydr Polym 62:142–158

    Article  CAS  Google Scholar 

  • Jayakumar R et al (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55(7):675–709

    Article  CAS  Google Scholar 

  • Ji J et al (2012) Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull 68(6):1707–1720

    Article  CAS  Google Scholar 

  • Jiali Z, Xia W, Liu P, Cheng Q, Talba Tahirou WG, Li B (2010) Chitosan modification and pharmaceutical/biomedical. Maine Drugs 8(1):1962–1987

    Google Scholar 

  • Jin L et al (2014) Preparation oral levofloxacin colon-specific microspheres delivery : in vitro and in vivo studies. Drug Deliv 7544:1–7

    Google Scholar 

  • Jridi M et al (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int J Biol Macromol 67:373–379

    Article  CAS  PubMed  Google Scholar 

  • Kaya M et al (2014) Bat guano as new and attractive chitin and chitosan source. Front Zool 11:1–10

    Article  CAS  Google Scholar 

  • Kaya M, Baran T, Karaarslan M (2015) A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 29(15):1477–1480

    Article  CAS  PubMed  Google Scholar 

  • Khlibsuwan R, Pongjanyakul T (2016) Chitosan-clay matrix tablets for sustained-release drug delivery: effect of chitosan molecular weight and lubricant. J Drug Delivery Sci Technol 35:303–313

    Article  CAS  Google Scholar 

  • Kim JH et al (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Kofuji K et al (2005) Relationship between physicochemical characteristics and functional properties of chitosan. Eur Polym J 41(11):2784–2791

    Article  CAS  Google Scholar 

  • Kong M et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Kubota N, Eguchi Y (1997) Facile preparation of water-soluble n-acetylated chitosan and molecular weight dependence of its water-solubility. Polym J 29(2):123–127

    Article  CAS  Google Scholar 

  • Kumar A, Vimal A, Kumar A (2016) Why chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 91:615–622

    Article  CAS  PubMed  Google Scholar 

  • Lakkakula JR et al (2017) Cationic cyclodextrin / alginate chitosan nano fl owers as 5- fluorouracil drug delivery system. Mater Sci Eng C 70:169–177

    Article  CAS  Google Scholar 

  • Lehr C (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48

    Article  CAS  Google Scholar 

  • Li PW et al (2011) Development of ligand incorporated chitosan nanoparticles for the selective delivery of 5-fluorouracil to colon. Adv Mater Res 197–198:238–241

    Google Scholar 

  • Li P et al (2015) Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul 32(1):1–6

    Article  CAS  Google Scholar 

  • Liu XFEI et al (2000) Antibacterial action of chitosan and carboxymethylated. J Appl Polym Sci 79(7):1324–1335

    Google Scholar 

  • Liu L et al (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24(19):3333–3343

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2012) Food hydrocolloids effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based fi lms. Food Hydrocoll 26(1):311–317

    Article  CAS  Google Scholar 

  • Liu J et al (2013) Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. Int J Biol Macromol 62:85–93

    Article  CAS  PubMed  Google Scholar 

  • Malayandi R et al (2014) Biopharmaceutical considerations and characterizations in development of colon targeted dosage forms for inflammatory bowel disease. Drug Deliv Transl Res 4(2):187–202

    Article  CAS  PubMed  Google Scholar 

  • Martins AF et al (2015) Preparation and cytotoxicity of N, N, N -trimethyl chitosan / alginate beads containing gold nanoparticles. Int J Biol Macromol 72:466–471

    Article  CAS  PubMed  Google Scholar 

  • Muñoz Ortega B, Sallam MA, Marín Boscá MT (2016) Methacrylate micro/nano particles prepared by spray drying: a preliminary in vitro/in vivo study. Drug Deliv 23(7):2439–2444

    Article  PubMed  CAS  Google Scholar 

  • Netsomboon K, Bernkop-schnürch A (2016) Mucoadhesive vs. Mucopenetrating particulate drug delivery. Eur J Pharm Biopharm 98:76–89

    Article  CAS  PubMed  Google Scholar 

  • Nugent SG et al (2001) Intestinal luminal pH in inflammatory bowel disease : possible determinants and implications for therapy with aminosalicylates and other drugs. Br Soc Gastroenterol 48:571–577

    CAS  Google Scholar 

  • Ong S et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    Article  CAS  PubMed  Google Scholar 

  • Ouchi T et al (1989) Synthesis and antitumor activity of chitosan carrying 5-fluorouracils. Makromol Chem 190:1817–1825

    Article  CAS  Google Scholar 

  • Panith N et al (2016) Effect of physical and physicochemical characteristics of chitosan on fat-binding capacities under in vitro gastrointestinal conditions. LWT Food Sci Technol 71:25–32

    Article  CAS  Google Scholar 

  • Paños I, Niuris Acosta AH et al (2008) New drug delivery systems based on chitosan. Curr Drug Discov Technol 5(4):333–341

    Article  PubMed  Google Scholar 

  • Qin C et al (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 84:107–115

    Article  CAS  Google Scholar 

  • Qin C et al (2014) Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀×Oreochromis aureus ♂. Fish Shellfish Immunol 40(1):267–274

    Article  CAS  PubMed  Google Scholar 

  • Rata-Aguilar a et al (2012) Colloidal stability and “in vitro” antitumor targeting ability of lipid nanocapsules coated by folate-chitosan conjugates. J Bioact Compat Polym 27(4):388–404

    Article  Google Scholar 

  • Roldo M et al (2004) Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery : synthesis and in vitro evaluation. Eur J Pharm Biopharm 57:115–121

    Article  CAS  PubMed  Google Scholar 

  • Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47(1–2):67–77

    Article  CAS  PubMed  Google Scholar 

  • Rui L et al (2017) Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr Polym 170:206–216

    Article  CAS  PubMed  Google Scholar 

  • Salah R et al (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52(1):333–339

    Article  CAS  PubMed  Google Scholar 

  • Seth A et al (2014) Performance of magnetic chitosan-alginate core-shell beads for increasing the bioavailability of a low permeable drug. Eur J Pharm Biopharm 88(2):374–381

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth F et al (2008) Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N -acetyl- d -glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm 353:139–148

    CAS  PubMed  Google Scholar 

  • Shao Y et al (2015) ScienceDirect evaluation of chitosan e anionic polymers based tablets for extended-release of highly water- soluble drugs. Asian J Pharm Sci 10(1):24–30

    Article  Google Scholar 

  • Shi Y et al (2018) Polyelectrolyte complex nanoparticles based on chitosan and methoxy poly(ethylene glycol) methacrylate-co-poly(methylacrylic acid) for oral delivery of ibuprofen. Colloids Surf B: Biointerfaces 165:235–242

    Article  CAS  PubMed  Google Scholar 

  • Shitrit Y, Bianco-Peled H (2017) Acrylated chitosan for mucoadhesive drug delivery systems. Int J Pharm 517(1–2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Sinha VR, Kumria R (2003) Microbially triggered drug delivery to the colon. Eur J Pharm Sci 18(1):3–18

    Article  CAS  PubMed  Google Scholar 

  • Song C et al (2013) Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biol Macromol 60:347–354

    Article  CAS  PubMed  Google Scholar 

  • Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 243:23–54

    Article  CAS  Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272

    Article  CAS  Google Scholar 

  • Suganoa M et al (1988) Hypocholesterolemic action of chitosans with different viscosity in rats. Lipids 23(3):187–191

    Article  Google Scholar 

  • Syed Mohamad Al-Azi SO, Tan YTF, Wong TW (2014) Transforming large molecular weight pectin and chitosan into oral protein drug nanoparticulate carrier. React Funct Polym 84:45–52

    Article  CAS  Google Scholar 

  • Tekie FSM et al (2016) Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydr Polym 159:66–75

    Article  PubMed  CAS  Google Scholar 

  • Thanou M et al (2000) Intestinal absorption of octreotide : N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 89(7):951–957

    Article  CAS  PubMed  Google Scholar 

  • Vandamme TF et al (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48(3):219–231

    Article  CAS  Google Scholar 

  • Vin J, Vav E (2011) Chitosan derivatives with antimicrobial, antitumour and antioxidant activities - a review. Curr Pharm Des 17:3596–3607

    Article  Google Scholar 

  • Wan A et al (2013) Antioxidant activity of high molecular weight chitosan and N,O-quaternized chitosans. J Agric Food Chem 61(28):6921–6928

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li P, Peng Z, She FH, Kong LX (2013) Microencapsulation of nanoparticles with enhanced drug loading for pH-sensitive oral drug delivery for the treatment of colon cancer. J Appl Polym Sci 129:714–720

    Article  CAS  Google Scholar 

  • Wang QS et al (2016) Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 515(1–2):176–185

    Article  CAS  PubMed  Google Scholar 

  • Werle M, Takeuchi H, Bernkop-Schnurch A (2008) Modified chitosan for oral drug delivery. J Pharm Sci 98(5):1643–1656

    Article  CAS  Google Scholar 

  • Wiarachai O et al (2012) Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surf B: Biointerfaces 92:121–129

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Nurjaya S (2008) Drug release property of chitosan–pectinate beads and its changes under the influence of microwave. Eur J Pharm Biopharm 69(1):176–188

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Nurulaini H (2012) Sustained-release alginate-chitosan pellets prepared by melt pelletization technique. Drug Dev Ind Pharm 38(12):1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Wong T, Colombo G, Sonvico F (2011) Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech 12(1):201–214

    Article  CAS  PubMed  Google Scholar 

  • Wu H et al (2012) Inhibition of angiogenesis by chitooligosaccharides with specific degrees of acetylation and polymerization. Carbohydr Polym 89(2):511–518

    Article  CAS  PubMed  Google Scholar 

  • Xia W et al (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179

    Article  CAS  Google Scholar 

  • Xiao B, Merlin D (2012) Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv 9(11):1393–1407

    Article  CAS  PubMed  Google Scholar 

  • Xing R et al (2005) Relevance of molecular weight of chitosan and its derivatives and their antioxidant activities in vitro. Bioorg Med Chem 13:1573–1577

    Article  CAS  PubMed  Google Scholar 

  • Xu J et al (2017) Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater 48:247–257

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235(1–2):1–15

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2007) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res 84(1):131–137

    Article  CAS  Google Scholar 

  • Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74(4):840–844

    Article  CAS  Google Scholar 

  • Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21

    Article  CAS  Google Scholar 

  • Yu S et al (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 155:208–217

    Article  CAS  PubMed  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng 2(3):204–226

    CAS  Google Scholar 

  • Zhang DY et al (2008a) Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice. World J Gastroenterol 14(22):3554–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2008b) Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets. Nutr Res 28:383–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2012) A comparative study on hypolipidemic activities of high and low molecular weight chitosan in rats. Int J Biol Macromol 51(4):504–508

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Tang C, Yin C (2015) Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Biomaterials 70:126–137

    Article  CAS  PubMed  Google Scholar 

  • Zolkefpeli SNM, Wong TW (2013) Design of microcrystalline cellulose-free alginate spheroids by extrusion-spheronization technique. Chem Eng Res Des 91(12):2437–2446

    Article  CAS  Google Scholar 

  • Zou P et al (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190(12):1174–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Wui Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Musa, N., Wong, T.W. (2019). Functional Chitosan Carriers for Oral Colon-Specific Drug Delivery. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_5

Download citation

Publish with us

Policies and ethics