Skip to main content

Microalgal Carbohydrates and Proteins: Synthesis, Extraction, Applications, and Challenges

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

Microalgae are a promising feedstock for renewable energy, nutraceuticals, pharmaceuticals, and other high-value industrial products. The major components of algal biomass are carbohydrates, lipids, and proteins, whose concentration depends upon cultivation conditions, composition of growth media, light intensity/duration, and CO2 supplies. Microalgae can also be exploited as an alternative “protein crop” based on amino-acid composition, protein quality, and digestibility. Algal carbohydrates are mainly in the form of starch and cellulose, which can be used to produce bioethanol and degradable bioplastics. Although use of algal biomass for various products looks attractive, yet its commercial demonstration is hindered by the slow growth, low product yields, unavailability of high-throughput extraction procedures, and the product-refining processes. This book chapter comprehends the cultivation conditions to enhance the algal protein and carbohydrate content along with extraction techniques, and associated challenges for the recovery, separation, and characterization of these metabolites. Likewise, the potential applications of the microalgae-based carbohydrates and proteins in energy, food, pharmaceutical, and cosmetic industries along with future opportunities are also discussed to devise a roadmap for designing robust algal biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarthy, A., Kumari, S., Turkar, P., & Subramanian, S. (2018). An insight on algal cell disruption for biodiesel production. Asian Journal of Pharmaceutical and Clinical Research, 11(2), 21–21.

    Article  CAS  Google Scholar 

  • Abramson, B. W., Lensmire, J., Lin, Y.-T., Jennings, E., & Ducat, D. C. (2018). Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium. Algal Research, 33, 248–255.

    Article  Google Scholar 

  • Afzal, I., Shahid, A., Ibrahim, M., Liu, T., Nawaz, M., & Mehmood, M. A. (2017). Microalgae: A promising feedstock for energy and high-value products. In Algae based polymers, blends, and composites (p. 55). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Al hattab, M., & Ghaly, A. (2015). Microalgae oil extraction pre-treatment methods: Critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications, 5(4), 172.

    Google Scholar 

  • Alam, M. A., Muhammad, G., Rehman, A., Russel, M., Shah, M., & Wang, Z. (2019). Standard techniques and methods for isolating, selecting and monitoring the growth of microalgal strain. In M. A. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuels and wastewater treatment (pp. 75–94). Singapore: Springer.

    Chapter  Google Scholar 

  • Alam, M. A., Wan, C., Guo, S.-L., Zhao, X.-Q., Huang, Z.-Y., Yang, Y.-L., Chang, J.-S., & Bai, F.-W. (2014). Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Journal of Bioscience and Bioengineering, 118(1), 29–33.

    Google Scholar 

  • Ali, M., & Watson, I. A. (2015). Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renewable Energy, 76, 470–477.

    Article  CAS  Google Scholar 

  • Aniket, K. (2013). Selective heated extraction of albumin proteins from intact freshwater algal cells. Google Patents.

    Google Scholar 

  • Aniket, K. (2014). Selective heated extraction of globulin proteins from intact freshwater algal cells. Google Patents.

    Google Scholar 

  • Apandi, N. M., Mohamed, R. M. S. R., Al-Gheethi, A., & Kassim, A. H. M. (2019). Microalgal biomass production through phycoremediation of fresh market wastewater and potential applications as aquaculture feeds. Environmental Science and Pollution Research, 26(4), 3226–3242.

    Article  CAS  PubMed  Google Scholar 

  • Ariede, M. B., Candido, T. M., Jacome, A. L. M., Velasco, M. V. R., de Carvalho, J. C. M., & Baby, A. R. (2017). Cosmetic attributes of algae—A review. Algal Research, 25, 483–487.

    Article  Google Scholar 

  • Baier, T., Kros, D., Feiner, R. C., Lauersen, K. J., Müller, K. M., & Kruse, O. (2018). Engineered fusion proteins for efficient protein secretion and purification of a human growth factor from the green microalga Chlamydomonas reinhardtii. ACS Synthetic Biology, 7(11), 2547–2557.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, S., Allen, J. D., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system – Design, optimization, and quality characterization. Bioresource Technology, 102(3), 3396–3403.

    Article  CAS  PubMed  Google Scholar 

  • Barati, B., Gan, S.-Y., Lim, P.-E., Beardall, J., & Phang, S.-M. (2019). Green algal molecular responses to temperature stress. Acta Physiologiae Plantarum, 41(2), 26.

    Article  CAS  Google Scholar 

  • Barrow, C. J., & Shahidi, F. (2008). Marine nutraceuticals and functional foods. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., & Sani, R. K. (2013). Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 128, 751–759.

    Article  CAS  PubMed  Google Scholar 

  • Biller, P., Friedman, C., & Ross, A. B. (2013). Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresource Technology, 136, 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Food, 6(5), 33.

    Article  CAS  Google Scholar 

  • Borodyanski, G., & Konstantinov, I. (2003). Microalgae separator apparatus and method. Google Patents.

    Google Scholar 

  • Buono, S., Langellotti, A. L., Martello, A., Rinna, F., & Fogliano, V. (2014). Functional ingredients from microalgae. Food & Function, 5, 1669–1685.

    Article  CAS  Google Scholar 

  • Buyel, J. F., Twyman, R. M., & Fischer, R. (2015). Extraction and downstream processing of plant-derived recombinant proteins. Biotechnology Advances, 33, 902–913.

    Article  CAS  PubMed  Google Scholar 

  • Byreddy, A. R., Gupta, A., Barrow, C. J., & Puri, M. (2015). Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Marine Drugs, 13(8), 5111–5127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B., Wan, C., Mehmood, M. A., Chang, J.-S., Bai, F., & Zhao, X. (2017). Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresource Technology, 244(Pt 2), 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W., & Chang, J.-S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.

    Article  CAS  Google Scholar 

  • Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1(1), 75–87.

    Article  Google Scholar 

  • Chia, S. R., Chew, K. W., Show, P. L., Yap, Y. J., Ong, H. C., Ling, T. C., & Chang, J. S. (2018). Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: A review. Biotechnology Journal, 13(6), e1700618.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. P., Nguyen, M. T., & Sim, S. J. (2010). Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology, 101, 5330–5336.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y. Y., Hong, M.-E., Chang, W. S., & Sim, S. J. (2019). Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnology and Bioprocess Engineering, 24(1), 223–231.

    Article  CAS  Google Scholar 

  • Coronel, C. D., Do Nascimento, M., & Curatti, L. (2019). Effect of matching microalgal strains origin and regional weather condition on biomass productivity in environmental photobioreactors. Bioresource Technology Reports, 5, 104–112.

    Article  Google Scholar 

  • Couteau, C., & Coiffard, L. (2018). Microalgal application in cosmetics. In Microalgae in health and disease prevention (pp. 317–323). London: Elsevier.

    Chapter  Google Scholar 

  • Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15(5), 898–902.

    Article  CAS  PubMed  Google Scholar 

  • Czartoski, T. J., Perkins, R., Villanueva, J. L., & Richards, G. (2016). Algae biomass fractionation. Google Patents.

    Google Scholar 

  • Dammak, M., Hadrich, B., Miladi, R., Barkallah, M., Hentati, F., Hachicha, R., Laroche, C., Michaud, P., Fendri, I., & Abdelkafi, S. (2017). Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids in Health and Disease, 16(1), 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Carvalho, J. C., Sydney, E. B., Tessari, L. F. A., & Soccol, C. R. (2019). Culture media for mass production of microalgae. In Biofuels from algae (pp. 33–50). London: Elsevier.

    Chapter  Google Scholar 

  • de Farias Silva, C. E., Barbera, E., & Bertucco, A. (2019a). Biorefinery as a promising approach to promote ethanol industry from microalgae and cyanobacteria. In Bioethanol production from food crops (pp. 343–359). London: Elsevier.

    Chapter  Google Scholar 

  • de Farias Silva, C. E., Sforza, E., & Bertucco, A. (2018). Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: Effect of irradiation regime and intensity on Tetradesmus obliquus. Journal of Applied Phycology, 30(1), 261–270.

    Article  CAS  Google Scholar 

  • de Farias Silva, C. E., Sforza, E., & Bertucco, A. (2019b). Enhancing carbohydrate productivity in photosynthetic microorganism production: A comparison between cyanobacteria and microalgae and the effect of cultivation systems. In Advances in feedstock conversion technologies for alternative fuels and bioproducts (pp. 37–67). London: Elsevier.

    Chapter  Google Scholar 

  • de Freitas, B. C. B., Brächer, E. H., de Morais, E. G., Atala, D. I. P., de Morais, M. G., & Costa, J. A. V. (2019). Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content. Environmental Technology, 40(8), 1062–1070.

    Article  PubMed  CAS  Google Scholar 

  • Denery, J. R., Dragull, K., Tang, C. S., & Li, Q. X. (2004). Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Analytica Chimica Acta, 501(2), 175–181.

    Article  CAS  Google Scholar 

  • Ejike, C. E. C. C., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B., & Udenigwe, C. C. (2017). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, 30–36.

    Article  CAS  Google Scholar 

  • El-Dalatony, M. M., Salama, E.-S., Kurade, M. B., Kim, K.-Y., Govindwar, S. P., Kim, J. R., Kwon, E. E., Min, B., Jang, M., & Oh, S.-E. (2019). Whole conversion of microalgal biomass into biofuels through successive high-throughput fermentation. Chemical Engineering Journal, 360, 797–805.

    Article  CAS  Google Scholar 

  • Esteves-Ferreira, A. A., Inaba, M., Fort, A., Araújo, W. L., & Sulpice, R. (2018). Nitrogen metabolism in cyanobacteria: Metabolic and molecular control, growth consequences and biotechnological applications. Critical Reviews in Microbiology, 44(5), 541–560.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, F. A., Sevilla, J. M. F., & Grima, E. M. (2019). Costs analysis of microalgae production. In Biofuels from algae (pp. 551–566). London: Elsevier.

    Chapter  Google Scholar 

  • Ferro, L., Gorzsás, A., Gentili, F. G., & Funk, C. (2018). Subarctic microalgal strains treat wastewater and produce biomass at low temperature and short photoperiod. Algal Research, 35, 160–167.

    Article  Google Scholar 

  • García-Cubero, R., Cabanelas, I. T. D., Sijtsma, L., Kleinegris, D. M., & Barbosa, M. J. (2018). Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Research, 29, 330–336.

    Article  Google Scholar 

  • Ghag, S. B., Vavilala, S. L., & D’Souza, J. S. (2019). Metabolic engineering and genetic manipulation of novel biomass species for biofuel production. In Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts (pp. 13–34). London: Elsevier.

    Chapter  Google Scholar 

  • Gifuni, I., Olivieri, G., Pollio, A., & Marzocchella, A. (2018). Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation. New Biotechnology, 41, 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert-López, B., Barranco, A., Herrero, M., Cifuentes, A., & Ibáñez, E. (2017). Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Research International, 99(Pt 3), 1056–1065.

    Article  PubMed  CAS  Google Scholar 

  • Goettel, M., Eing, C., Gusbeth, C., Straessner, R., & Frey, W. (2013). Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Research, 2(4), 401–408.

    Article  Google Scholar 

  • Gonçalves, C. F., Menegol, T., & Rech, R. (2019). Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions. Biocatalysis and Agricultural Biotechnology, 18, 101032.

    Article  Google Scholar 

  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396–1412.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Y., Hu, H., Gao, Y., Xu, X., & Gao, H. (2011). Microalgae as platforms for production of recombinant proteins and valuable compounds: Progress and prospects. Journal of Industrial Microbiology & Biotechnology, 38(12), 1879–1890.

    Article  CAS  Google Scholar 

  • Guedes, A. C., Amaro, H. M., Sousa-Pinto, I., & Malcata, F. X. (2019). Algal spent biomass—A pool of applications. In Biofuels from algae (pp. 397–433). London: Elsevier.

    Chapter  Google Scholar 

  • Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243–260.

    Google Scholar 

  • Han, J. W., Klochkova, T. A., Shim, J. B., Yoon, K., & Kim, G. H. (2012). Isolation and characterization of a sex-specific lectin in a marine red alga, Aglaothamnion oosumiense Itono. Applied and Environmental Microbiology, 78, 7283–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanifzadeh, M., Garcia, E. C., & Viamajala, S. (2018). Production of lipid and carbohydrate from microalgae without compromising biomass productivities: Role of Ca and Mg. Renewable Energy, 127, 989–997.

    Article  CAS  Google Scholar 

  • Hempel, F., Lau, J., Klingl, A., & Maier, U. G. (2011). Algae as protein factories: Expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One, 6, e28424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2010). The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Research, 44, 3617–3624.

    Article  CAS  PubMed  Google Scholar 

  • Her, N., Amy, G., Park, H.-R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38, 1427–1438.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-García, A., Velásquez-Orta, S. B., Novelo, E., Yáñez-Noguez, I., Monje-Ramírez, I., & Ledesma, M. T. O. (2019). Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Ecotoxicology and Environmental Safety, 174, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Ho, S.-H., Ye, X., Hasunuma, T., Chang, J.-S., & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae—A critical review. Biotechnology Advances, 32(8), 1448–1459.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, N., Mahlia, T. M. I., Zaini, J., & Saidur, R. (2019). Techno-economics and sensitivity analysis of microalgae as commercial feedstock for bioethanol production. Environmental Progress & Sustainable Energy. https://doi.org/10.1002/ep.13157.

    Article  CAS  Google Scholar 

  • Iwamoto, H. (2003). Industrial production of microalgal cell-mass and secondary products – Major industrial species. In Chlorella (pp. 253–263). Oxford, UK: Blackwell Publishing Ltd.

    Google Scholar 

  • Jaki, B. U., Franzblau, S. G., Cho, S. H., & Pauli, G. F. (2006). Development of an extraction method for mycobacterial metabolome analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(1), 196–200.

    Article  CAS  PubMed  Google Scholar 

  • Kapoore, R. V. (2014). Mass spectrometry based hyphenated techniques for microalgal and mammalian metabolomics. http://etheses.whiterose.ac.uk/8234/.

  • Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., & Atici, T. (2012). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology, 2(2), 1–5.

    Google Scholar 

  • Katz, L. E., Kinney, K. A., Choi, J., & Chen, E. (2013). Continuous flocculation deflocculation process for efficient harvesting of microalgae from aqueous solutions. Google Patents.

    Google Scholar 

  • Khan, A. Z., Shahid, A., Cheng, H., Mahboob, S., Al-Ghanim, K. A., Bilal, M., Liang, F., & Nawaz, M. Z. (2018a). Omics technologies for microalgae-based fuels and chemicals: Challenges and opportunities. Protein and Peptide Letters, 25(2), 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018b). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S.-K., & Kang, K.-H. (2011). Medicinal effects of peptides from marine microalgae. Advances in Food and Nutrition Research, 64, 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.-T., & Show, P.-L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, 16–24.

    Article  Google Scholar 

  • Kumar, S., & Hatcher, P. G. (2013). Fractionation of proteins and lipids from microalgae. Google Patents.

    Google Scholar 

  • Kushwaha, D., Upadhyay, S., & Mishra, P. K. (2018). Growth of cyanobacteria: Optimization for increased carbohydrate content. Applied Biochemistry and Biotechnology, 184(4), 1247–1262.

    Article  CAS  PubMed  Google Scholar 

  • Lai, Y. H., Puspanadan, S., & Lee, C. K. (2019). Nutritional optimization of Arthrospira platensis for starch and total carbohydrates production. Biotechnology Progress, 35(2), e2798.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., & Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75–S77.

    Article  CAS  PubMed  Google Scholar 

  • Liang, F., Englund, E., Lindberg, P., & Lindblad, P. (2018). Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metabolic Engineering, 46, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn, C. A., & Airs, R. L. (2010). Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs, 8, 1273–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani, U. V., Iyer, U. M., Dhruv, S. A., Mani, I. U., & Sharma, K. S. (2007). Therapeutic utility of Spirulina. In Spirulina in human nutrition and health (pp. 85–114). London: Taylor & Francis Group.

    Google Scholar 

  • Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., & Jing, K. (2016). Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 109, 282–296.

    Article  CAS  Google Scholar 

  • Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.

    Article  CAS  PubMed  Google Scholar 

  • Massetti, F., Capuano, F., Medici, R., & Miglio, R. (2014). Process for the extraction of lipids and sugars from algal biomass. Google Patents.

    Google Scholar 

  • Massetti, F., Capuano, F., Medici, R., & Miglio, R. (2016). Process for the extraction of lipids and sugars from algal biomass. Google Patents.

    Google Scholar 

  • Mathiot, C., Ponge, P., Gallard, B., Sassi, J.-F., Delrue, F., & Le Moigne, N. (2019). Microalgae starch-based bioplastics: Screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydrate Polymers, 208, 142–151.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, P., Singh, D., Saxena, R., Rani, R., Gupta, R. P., Puri, S. K., & Mathur, A. S. (2018). High-value coproducts from algae—An innovational way to deal with advance algal industry. In Waste to wealth (pp. 343–363). Singapore: Springer.

    Chapter  Google Scholar 

  • Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., & Morais, R. (2001). Evaluation of different cell disruption process on encysted cells of Haematococcus pluvialis. Journal of Applied Phycology, 13, 19–24.

    Article  Google Scholar 

  • Molina Grima, E., Belarbi, E.-H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20, 491–515.

    Article  CAS  PubMed  Google Scholar 

  • Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., & Musmarra, D. (2018). Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), 2436.

    Article  CAS  PubMed Central  Google Scholar 

  • Mousavi, S., Najafpour, G. D., & Mohammadi, M. (2018). CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environmental Science and Pollution Research, 25(30), 30139–30150.

    Article  CAS  PubMed  Google Scholar 

  • Munir, M., Qureshi, R., Bibi, M., & Khan, A. M. (2019). Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Research, 39, 101476.

    Article  Google Scholar 

  • Naghshbandi, M. P., Tabatabaei, M., Aghbashlo, M., Aftab, M. N., & Iqbal, I. (2019). Metabolic engineering of microalgae for biofuel production. https://doi.org/10.1007/7651_2018_205.

    Google Scholar 

  • Nobre, B., Marcelo, F., Passos, R., Beirão, L., Palavra, A., Gouveia, L., & Mendes, R. (2006). Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 223(6), 787–790.

    Article  CAS  Google Scholar 

  • Pancha, I., Chokshi, K., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2015). Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 193, 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Pang, X., Tong, Y., Xue, W., Y-f, Y., Chen, X., Liu, J., & Chen, D. (2019). Expression and characterization of recombinant human lactoferrin in edible alga Chlamydomonas reinhardtii. Bioscience, Biotechnology, and Biochemistry, 83(5), 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Passos, F., Carretero, J., & Ferrer, I. (2015). Comparing pretreatment methods for improving microalgae anaerobic digestion: Thermal, hydrothermal, microwave and ultrasound. Chemical Engineering Journal, 279, 667–672.

    Article  CAS  Google Scholar 

  • Patel, A., Matsakas, L., Rova, U., & Christakopoulos, P. (2019). A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresource Technology, 278, 424–434.

    Article  CAS  PubMed  Google Scholar 

  • Patinier, S. (2017). Method for extracting soluble proteins from microalgal biomass. Google Patents.

    Google Scholar 

  • Ranadheer, P., Kona, R., Sreeharsha, R. V., & Mohan, S. V. (2019). Non-lethal nitrate supplementation enhances photosystem II efficiency in mixotrophic microalgae towards the synthesis of proteins and lipids. Bioresource Technology, 283, 373–377.

    Article  CAS  PubMed  Google Scholar 

  • Rasala, B. A., Muto, M., Lee, P. A., Jager, M., Cardoso, R. M. F., Behnke, C. A., Kirk, P., Hokanson, C. A., Crea, R., Mendez, M., & Mayfield, S. P. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 8, 719–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid, N., Lee, B., & Chang, Y.-K. (2019). Recent trends in microalgae research for sustainable energy production and biorefinery applications. In M. A. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuels and wastewater treatment (pp. 3–20). Singapore: Springer.

    Chapter  Google Scholar 

  • Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and Applied Phycology. London: John Wiley & Sons, Inc.. https://doi.org/10.1002/9780470995280.

    Book  Google Scholar 

  • Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394–404.

    Article  Google Scholar 

  • Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192.

    Article  CAS  Google Scholar 

  • Rösch, C., Roßmann, M., & Weickert, S. (2019). Microalgae for integrated food and fuel production. GCB Bioenergy, 11(1), 326–334.

    Article  Google Scholar 

  • Rutt, G. C., Flatt, J. H., Domaille, P., & Toledo, G. V. (2017). Protein rich food ingredient from biomass and methods of preparation. Google Patents.

    Google Scholar 

  • Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65.

    Article  Google Scholar 

  • Sahni, P., Aggarwal, P., Sharma, S., & Singh, B. (2019). Nuances of microalgal technology in food and nutraceuticals: A review. Nutrition & Food Science. https://doi.org/10.1108/NFS-01-2019-0008.

  • Salla, A. C. V., Margarites, A. C., Seibel, F. I., Holz, L. C., Brião, V. B., Bertolin, T. E., Colla, L. M., & Costa, J. A. V. (2016). Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technology, 209, 133–141.

    Article  CAS  Google Scholar 

  • Samiee-Zafarghandi, R., Karimi-Sabet, J., Abdoli, M. A., & Karbassi, A. (2018). Increasing microalgal carbohydrate content for hydrothermal gasification purposes. Renewable Energy, 116, 710–719.

    Article  CAS  Google Scholar 

  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo, J. Y., Praveenkumar, R., Kim, B., Seo, J. C., Park, J. Y., Na, J. G., Jeon, S. G., Park, S. B., Lee, K., & Oh, Y. K. (2016). Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chemistry, 18(14), 3981–3989.

    Article  CAS  Google Scholar 

  • Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, M. K., Parsaeimehr, A., Liang, Y., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197–213.

    Article  Google Scholar 

  • Shahid, A., Khan, A. Z., Liu, T., Malik, S., Afzal, I., & Mehmood, M. A. (2017). Production and processing of algal biomass. In Algae based polymers, blends, and composites (pp. 273–299). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Shahid, A., Malik, S., Alam, M. A., Nahid, N., & Mehmood, M. A. (2019). The culture technology for freshwater and marine microalgae. In M. A. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuels and wastewater treatment (pp. 21–44). Singapore: Springer.

    Chapter  Google Scholar 

  • Shamriz, S., & Ofoghi, H. (2016). Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnology and Genetic Engineering Reviews, 32, 92–106.

    Article  PubMed  CAS  Google Scholar 

  • Shamriz, S., & Ofoghi, H. (2019). Expression of recombinant PfCelTOS antigen in the chloroplast of Chlamydomonas reinhardtii and its potential use in detection of malaria. Molecular Biotechnology, 61(2), 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Shankar, M., Chhotaray, P. K., Agrawal, A., Gardas, R. L., Tamilarasan, K., & Rajesh, M. (2017). Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Research, 25, 228–236.

    Article  Google Scholar 

  • Sikkema, R., Junginger, H. M., Pichler, W., Hayes, S., & Faaij, A. P. C. (2010). The international logistics of wood pellets for heating and power production in Europe. Biofuels, Bioproducts and Biorefining, 4, 132–153.

    Article  CAS  Google Scholar 

  • Smachetti, M. E. S., Cenci, M. P., Salerno, G. L., & Curatti, L. (2019). Ethanol and protein production from minimally processed biomass of a genetically-modified cyanobacterium over-accumulating sucrose. Bioresource Technology Reports, 5, 230–237.

    Article  Google Scholar 

  • Song, X., Wang, J., Wang, Y., Feng, Y., Cui, Q., & Lu, Y. (2018). Artificial creation of Chlorella pyrenoidosa mutants for economic sustainable food production. Bioresource Technology, 268, 340–345.

    Article  CAS  PubMed  Google Scholar 

  • Spiden, E. M., Yap, B. H. J., Hill, D. R. A., Kentish, S. E., Scales, P. J., & Martin, G. J. O. (2013). Quantitative evaluation of the ease of rupture of industrially promising microalgae by high pressure homogenization. Bioresource Technology, 140, 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Takeshita, T., Ota, S., Yamazaki, T., Hirata, A., Zachleder, V., & Kawano, S. (2014). Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresource Technology, 158, 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Tohver, V., Smay, J. E., Braem, A., Braun, P. V., & Lewis, J. A. (2001). Nanoparticle halos: A new colloid stabilization mechanism. Proceedings of the National Academy of Sciences, 98, 8950–8954.

    Article  CAS  Google Scholar 

  • Toledo-Cervantes, A., Solórzano, G. G., Campos, J. E., Martínez-García, M., & Morales, M. (2018). Characterization of Scenedesmus obtusiusculus AT-UAM for high-energy molecules accumulation: Deeper insight into biotechnological potential of strains of the same species. Biotechnology Reports, 17, 16–23.

    Article  PubMed  Google Scholar 

  • Tourang, M., Baghdadi, M., Torang, A., & Sarkhosh, S. (2019). Optimization of carbohydrate productivity of Spirulina microalgae as a potential feedstock for bioethanol production. International journal of Environmental Science and Technology, 16(3), 1303–1318.

    Article  CAS  Google Scholar 

  • Vadlamani, A. K., Relue, P., Viamajala, S., Shao, H., & Varanasi, S. (2016). Enzymatic digestion of microalgal biomass for lipid, sugar, and protein recovery. Google Patents.

    Google Scholar 

  • Varshney, P., Beardall, J., Bhattacharya, S., & Wangikar, P. P. (2018). Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research, 30, 28–37.

    Article  Google Scholar 

  • Venugopal, V. (2016). Marine polysaccharides. Boca Raton, FL: CRC Press. https://doi.org/10.1201/b10516.

    Book  Google Scholar 

  • Verdel, E., Kline, P., Wani, S., & Woods, A. (2000). Purification and partial characterization of haloperoxidase from fresh water algae Cladophora glomerata. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology, 125, 179–187.

    Article  CAS  Google Scholar 

  • Wang, M., Yuan, W., Jiang, X., Jing, Y., & Wang, Z. (2014a). Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 153, 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Wu, X., Tan, J., Zhu, L., Mou, Y., Zhang, D., & Gao, J. (2019). Using response surface methodology optimize culture conditions for human lactoferrin production in desert Chlorella. Protein Expression and Purification, 155, 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Jin, M., Balan, V., Jones, A. D., Li, X., Li, B.-Z., Dale, B. E., & Yuan, Y.-J. (2014b). Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnology and Bioengineering, 111(1), 152–164.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., & Wang, C. (2019). Pyrolysis of microalgae: A critical review. Fuel Processing Technology, 186, 53–72.

    Article  CAS  Google Scholar 

  • Yen, H.-W., Hu, I.-C., Chen, C.-Y., Ho, S.-H., Lee, D.-J., & Chang, J.-S. (2013). Microalgae-based biorefinery—From biofuels to natural products. Bioresource Technology, 135, 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Sanders, J., & Bruins, M. (2014). A process for isolating proteins from solid protein-containing biomass selected from vegetable biomass, algae, seaweed and combinations thereof. Google Patents.

    Google Scholar 

  • Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., & Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology, 101, 5297–5304.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aamer Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, A., Khan, F., Ahmad, N., Farooq, M., Mehmood, M.A. (2020). Microalgal Carbohydrates and Proteins: Synthesis, Extraction, Applications, and Challenges. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_14

Download citation

Publish with us

Policies and ethics