Skip to main content

Abiotic Stress Tolerance in Field Crops: Integration of Omics Approaches

  • Chapter
  • First Online:
Agronomic Crops

Abstract

The development, growth, and productivity of field crops are negatively influenced by abiotic stresses resulting in significant losses in crop yield. Therefore, understanding tolerance of agronomic crops to abiotic stress factors like drought, salinity, heat, and chilling is of paramount importance for plant scientists for effective management. However, due to the complexity of abiotic stress response and tolerance, initial efforts through gene-based approaches were not enough to understand whole level mechanisms. Recently, tremendous developments made in the field of omics (genomics, transcriptomics, proteomics, metabolomics, and phenomics) have opened new avenues to understand and investigate the complex mechanisms of abiotic stress tolerance in plants, although integration of data collected from omics studies with such traits is still a challenging one. This chapter will emphasize the significance of omics field in understanding crop responses to different abiotic stresses, focusing on the recent developments made in field of omics with future prospects to overcome the major drawbacks of omic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D-PAGE:

2-dimensional polyacrylamide gel electrophoresis

ABA:

abscisic acid

CE-MS:

capillary electrophoresis mass spectroscopy

EGFP:

enhanced green fluorescent protein

FT-ICR-MS:

Fourier transform ion cyclotron resonance mass spectroscopy

G x E:

genotype–environment interaction

GBS:

genotyping by sequencing

GC-MS:

gas-chromatography mass spectroscopy

GWAS:

genome-wide association study

ICP-MS:

inductively coupled plasma mass spectrometer

ICP-OES:

inductively coupled plasma-optical emission spectrometry

LA-ICP-MS:

laser ablation inductively coupled plasma mass spectroscopy

LC-MS:

liquid-chromatography mass spectroscopy

MALDI-TOF:

matrix-assisted laser desorption/ionization time-of-flight

MAS:

marker-assisted selection

mQTL:

metabolite quantitative trait locus

MS:

mass spectroscopy

MW:

molecular weight

NAA:

neutron activation analysis

NGS:

next-generation sequencing

NMR:

nuclear magnetic resonance

pI:

isoelectric point

QTL:

quantitative trait loci

ROS:

reactive oxygen species

SNP:

single-nucleotide polymorphism

XAP:

X-ray absorption spectroscopy

XRF:

X-ray fluorescence

References

  • Abreu IA, Farinha AP, Negrao S, Gonçalves N, Fonseca C, Rodrigues M, Batista R, Saibo NJM, Oliveria MM (2013) Coping with abiotic stress: proteome changes for crop improvement. J Proteome 93:145–168

    Article  CAS  Google Scholar 

  • Agarwal GK, Pedreschi R, Barkla BJ, Bindshedler LV, Cramer R, Sarkar A, Renault J, Job D, Rakwal R (2012) Translational plant proteomics: a perspective. J Proteome 75:4588–4601

    Article  CAS  Google Scholar 

  • Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK (2014) Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 9:1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS (2016) Elucidation of complex nature of PEG induced drought-stress response in rice root using comparative proteomics approach. Front Plant Sci 7:1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204

    Article  CAS  PubMed  Google Scholar 

  • Alagoz SM, Toorchi M (2018) An investigation of some key morpho-physiological attributes and leaf proteome profile in canola (Brassica napus L.) under salinity stress. Pak J Bot 50:847–852

    CAS  Google Scholar 

  • Alexandersson E, Jacobson D, Vivier MA, Weckwerth W, Andreasson E (2014) Field-omics – understanding large-scale molecular data from field crops. Front Plant Sci 5:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94:933–942

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Roy Choudhury S, Pandey S (2014) Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 13:1688–1701

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Rakshit A, Singh H (eds) Advances in seed priming. Springer, Singapore, pp 51–59

    Chapter  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O (2013) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13:1801–1815

    Article  CAS  PubMed  Google Scholar 

  • Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV (2017) Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci 263:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batayeva D, Labaco B, Ye C, Li X, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H (2018) Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet 19(2):1–11

    Google Scholar 

  • Baxter I (2015) Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? J Exp Bot 66:2127–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baytar AA, Peynircioğlu C, Sezener V, Basal H, Frary A, Frary A, Doğanlar S (2018) Genome-wide association mapping of yield components and drought tolerance-related traits in cotton. Mol Breed 38:74

    Article  CAS  Google Scholar 

  • Cai C, Wu S, Niu E, Cheng C, Guo W (2017) Identification of genes related to salt stress tolerance using intron length polymorphic markers, association mapping and virus induced gene silencing in cotton. Sci Rep 7:528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capriotti AL, Borrelli GM, Colapicchioni V, Papa R, Piovesana S, Samperi R, Stampachiacchiere S, Lagana A (2014) Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions. Anal Bioanal Chem 406:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Charlton AJ, Donarski JA, Harrison M, Jones SA, Godward J, Oehlschlager S, Arques JL, Ambrose M, Chinoy C, Mullineaux PM, Domoney C (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327

    Article  CAS  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:1–14

    Article  CAS  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycine betaine. J Exp Bot 60:2005–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Renaut J, Sergeant K, Wei H, Arora R (2013) Proteomic changes associated with freeze-thaw injury and post-thaw recovery in onion (Allium cepa L.) scales. Plant Cell Environ 36:892–905

    Article  PubMed  CAS  Google Scholar 

  • Chintakovid N, Maipoka M, Phaonakrop N, Mickelbart MV, Roytrakul S, Chadchawan S (2017) Proteomic analysis of drought-responsive proteins in rice reveals photosynthesis-related adaptations to drought stress. Acta Physiol Plant 39:240

    Article  Google Scholar 

  • Damaris RN, Li M, Liu Y, Chen X, Murage H, Yang P (2016) A proteomic analysis of salt stress response in seedlings of two African rice cultivars. Biochim Biophys Acta 1864:1570–1578

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Pandey M, Bisen PS (2011) An omics approach to understand the plant abiotic stress. OMICS 15:739–762

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh V, Mankar SP, Muthukumar C, Divahar P, Bharathi A, Thomas HB, Rajurkar A, Sellamuthu R, Poornima R, Senthivel S, Babu CR (2018) Genome-wide consistent molecular markers associated with phenology, plant production and root traits in diverse rice (Oryza sativa L.) accessions under drought in rainfed target populations of the environment. Curr Sci 114:329–340

    Article  CAS  Google Scholar 

  • Dias DA, Hill CB, Jayasinghe NS, Atieno J, Sutton T, Roessner U (2015) Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. J Chromatogr 1000:1–13

    CAS  Google Scholar 

  • Ding H, Han Q, Ma D, Hou J, Huang X, Wang C, Xie Y, Kang G, Guo T (2017) Characterizing physiological and proteomic analysis of the action of H2S to mitigate drought stress in young seedling of wheat. Plant Mol Biol Report 36:45–57

    Article  CAS  Google Scholar 

  • Du L, Cai C, Wu S, Zhang F, Hou S, Guo W (2016) Evaluation and exploration of favorable QTL alleles for salt stress related traits in cotton cultivars (G. hirsutum L.). PLoS One 11:e0151076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ElBasyoni I, Saadalla M, Baenziger S, Bockelman H, Morsy S (2017) Cell membrane stability and association mapping for drought and heat tolerance in a worldwide wheat collection. Sustain For 9:1606

    Article  CAS  Google Scholar 

  • Elwafa SFA (2016) Association mapping for yield and yield-contributing traits in barley under drought conditions with genome-based SSR markers. CR Biol 339:153–162

    Article  Google Scholar 

  • Ereful NC, Liu LY, Tsai E, Kao SM, Dixit S, Mauleon R, Malabanan K, Thomson M, Laurena A, Lee D, Mackay I, Greenland A, Powell W, Leung H (2016) Analysis of allelic imbalance in rice hybrids under water stress and association of asymmetrically expressed genes with drought-response QTLs. Rice 9:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Evers D, Legay S, Lamoureux D, Hausman JF, Hoffmann L, Renaut J (2012) Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol 78:503–514

    Article  CAS  PubMed  Google Scholar 

  • Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, Farsad LK, Salekdeh GH (2014) Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteome 114:1–15

    Article  CAS  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Feng K, Nie X, Cui L, Deng P, Wang M, Song W (2017) Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Gene 8:156

    Article  CAS  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Lagana A (2014) Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteome 108:238–257

    Article  CAS  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Stampachiacchiere S, Chiozzi RZ, Lagan A (2016) Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 16:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  • Ford KL, Cassin A, Bacic A (2011) Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front Plant Sci 2:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Frouin J, Languillaume A, Mas J, Mieulet D, Boisnard A, Labeyrie A, Bettembourg M, Bureau C, Lorenzini E, Portefaix M, Turquay P, Vernet A, Perin C, Ahmadi N, Courtois B (2018) Tolerance to mild salinity stress in japonica rice: a genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS One 13:e0190964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuhrer T, Zamboni N (2015) High-throughput discovery metabolomics. Curr Opin Biotechnol 31:73–78

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Islam N, Woo SH, Yamagishi A, Takaoka M, Hirano H (2003) Assessing matrix assisted laser desorption/ionization-time of flight-mass spectrometry as a means of rapid embryo protein identification in rice. Electrophoresis 24:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009) NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions. J Agron Crop Sci 195:77–88

    Article  CAS  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Duan K, Guo G, Du Z, Chen Z, Li L, He T, Lu R, Huang J (2013) Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage. Int J Genomics 139:822–835

    Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  CAS  PubMed  Google Scholar 

  • Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, Weckwerth W (2016) Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteome 43:122–135

    Article  CAS  Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Sengupta DN, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotech Rep 5:89–103

    Article  Google Scholar 

  • Gong FP, Yang L, Tai F, Hu XL, Wang W (2014) “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS 18:714–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross RW (2017) The evolution of lipidomics through space and time. BBA - Mol Cell Biol L 1862:731–739

    Article  CAS  Google Scholar 

  • Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteome 75:1867–1885

    Article  CAS  Google Scholar 

  • Guo R, Shi LX, Yan C, Zhong X, Gu FX, Liu Q, Xia X, Li H (2017) Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol 17:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L (2018) Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Mol Plant 11:789–805

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Sengupta A, Saha J, Gupta K (2013) Plant abiotic stress: ‘Omics’ approach. Plant Biochem Physiol 1:1000e108

    Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Toorchi M, Matsushita K, Iwasaki Y, Komatsu S (2009) Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein Pept Lett 16:685–697

    Article  CAS  PubMed  Google Scholar 

  • Hayward SAL (2014) Application of functional ‘omics’ in environmental stress physiology: insights, limitations, and future challenges. Curr Opin Insect Sci 4:35–41

    Article  PubMed  Google Scholar 

  • Hazzouri KM, Khraiwesh B, Amiri KMA, Pauli D, Blake T, Shahid M, Mullath SK, Nelson D, Mansour AL, Salehi-Ashtiani K, Purugganan M, Masmoudi K (2018) Mapping of HKT1:5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci 9:156

    Article  PubMed  PubMed Central  Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17:767

    Article  PubMed Central  CAS  Google Scholar 

  • Hu G, Li Z, Lu Y, Li C, Gong S, Yan S, Li G, Wang M, Ren H, Guan H, Zhang Z, Qin D, Chai M, Yu J, Li Y, Yang D, Wang T, Zhang Z (2017) Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci Rep 7:10840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9:787–797

    Article  CAS  PubMed  Google Scholar 

  • Humplik JF, Lazar D, Husicova A, Spichal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P (2015) Plant transcriptomics and responses to environmental stress: an overview. J Genet 94:525–537

    Article  CAS  PubMed  Google Scholar 

  • Jacoby RP, Millar AH, Taylor NL (2013) Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant amphiploid (wheat x Lophopyrum elongatum). J Proteome Res 12:4807–4829

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J (2016) Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7:573

    PubMed  PubMed Central  Google Scholar 

  • Ji L, Zhou P, Zhu Y, Liu F, Li R, Qiu Y (2017) Proteomic analysis of rice seedlings under cold stress. Protein J 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Jorrin-Novo (2016) Plant proteomics methods and protocols. Methods Mol Biol 1072:3–13

    Article  CAS  Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT, King CA, Purcell LC (2017) Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theor Appl Genet 130:2203–2217

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH (2016) Translational genomics for plant breeding with the genome sequence explosion. Plant Biotechnol J 14:1057–1069

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwa R (2014) Rice proteomics: a model system for crop improvement and food security. Proteomics 14:593–610

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Wada T, Abalea Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K (2009) Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 8:4487–4499

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Kobayashi Y, Nishizawa K, Nanjo Y, Furukawa K (2010) Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39:1435–1449

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10:3993–4004

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Kamal AHM, Hossain Z (2014) Wheat proteomics: proteome modulation and abiotic stress acclimation. Front Plant Sci 5:684

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosova K, Vitamvas P, Planchon S, Renaut J, Vankova R, Prasil IT (2013) Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J Proteome Res 12:4830–4845

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwa PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S (2015) Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732

    PubMed  PubMed Central  Google Scholar 

  • Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T, Li Y (2016) Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17:894

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L (2017) Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet 13:e1006889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Dossa K, Zhang Y, Wei X, Wang L, Zhang Y, Liu A, Zhou R, Zhang X (2018) GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Gene 9:87

    Article  CAS  Google Scholar 

  • Liu JX, Bennett J (2011) Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan. Mol Plant 4:59–69

    Article  PubMed  CAS  Google Scholar 

  • Liu XP, Yu LX (2017) Genome-wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.). Front Plant Sci 8:853

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Ford KL, Roessner U, Natera S, Cassin AM, Patterson JH, Bacic A (2013) Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics 13:2046–2062

    Article  CAS  PubMed  Google Scholar 

  • Longo V, Valizadeh KR, Michaletti A, Toorchi M, Zolla L, Rinalducci S (2017) Proteomic and physiological response of spring barley leaves to cold stress. Int J Plant Biol Res 5:1061

    Google Scholar 

  • Lu Y, Lam H, Pi E, Zhan Q, Tsai S, Wang C (2013) Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J Agric Food Chem 61:8711–8721

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Chen X, Mu M, Wang J, Wang X, Wang D, Yin Z, Fan W, Wang S, Guo L, Ye W (2016) Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton (Gossypium hirsutum L.). PLoS One 11:e0156723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, Yu T, Gu W, Ma H (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteome 75:1529–1546

    Article  CAS  Google Scholar 

  • Ma X, Feng F, Wei H, Mei H, Xu K, Chen S, Li T, Liang X, Liu H, Luo L (2016) Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front Plant Sci 7:1801

    PubMed  PubMed Central  Google Scholar 

  • Ma Q, Kang J, Long R, Zhang T, Xiong J, Zhang K, Wang T, Yang Q, Sun Y (2017) Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Mol Biol Rep 44:261–272

    Article  CAS  PubMed  Google Scholar 

  • Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Mangin B, Casadebaig P, Cadic E, Blanchet N, Boniface MC, Carrère S, Gouzy J, Legrand L, Mayjonade B, Pouilly N, André T, Coque M, Piquemal J, Laporte M, Vincourt P, Munos S, Langlade NB (2017) Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant Cell Environ 40:2276–2291

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchuk-Ovnat L, Silberman R, Laiba E, Maurer A, Pillen K, Faigenboim A, Fridman E (2018) Genome scan identifies flowering-independent effects of barley HsDry2.2 locus on yield traits under water deficit. J Exp Bot 69:1765–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7

    Article  Google Scholar 

  • Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Eeuwijk FV, Tardieu F (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172:749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for system analyses of plant functions. Plant Cell Physiol 52:2017–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Risueno MA, Busch W, Benfey PN (2010) Omics meet networks-using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:126–131

    Article  PubMed  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under droughtstressed and non-stressed conditions. PLoS One 12:e0171692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16

    Article  CAS  PubMed  Google Scholar 

  • Naveed SA, Zhang F, Zhang J, Zheng T-O, Meng L-J, Pang Y-L, Xu J-L, Li Z-K (2018) Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses. Sci Rep 8:6505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngara R, Ndimba R, Borch-Jensen J, Jensen ON, Ndimba B (2012) Identification and profiling of salinity stress – responsive proteins in Sorghum bicolor seedlings. J Proteome 75:4139–4150

    Article  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systemic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  • Oskuei BK, Yin X, Hashiguchi A, Bandehagh A, Komatsu S (2017) Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. Biochim Biophys Acta, Proteins Proteomics 1865:1167–1177

    Article  CAS  Google Scholar 

  • Pan L, Meng C, Wang J, Ma X, Fan X, Yang Z, Zhou M, Zhang X (2018) Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress. BMC Plant Biol 18:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandit E, Tasleem S, Barik SR, Mohanty DP, Nayak DK, Mohanty SP, Das S, Pradhan SK (2017) Genome-wide association mapping reveals multiple QTLs governing tolerance response for seedling stage chilling stress in indica rice. Front Plant Sci 8:552

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantaliao GF, Narciso M, Guimaraes C, Castro A, Colombari JM, Breseghello F, Rodrigues L, Vianello RP, Borba TO, Brondani C (2016) Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica 144:651–664

    Article  CAS  PubMed  Google Scholar 

  • Patishtan J, Hartley TN, Fonseca de Carvalho R, Maathuis FJM (2018) Genome-wide association studies to identify rice salt-tolerance markers. Plant Cell Environ 41:970–982

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, He S, Gong W, Xu F, Pan Z, Jia Y, Geng X, Du X (2018) Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biol 18:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poland J (2015) Breeding-assisted genomics. Curr Opin Plant Biol 24:119–124

    Article  CAS  PubMed  Google Scholar 

  • Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y (2016) Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol 39:398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee SY, Mutwil M (2014) Towards revealing the functions of all genes in plants. Trends Plant Sci 19:213–221

    Google Scholar 

  • Samota MK, Bhatt L, Yadav DK, Garg N, Bajiya R (2017) Metabolomics for functional genomics. Int J Curr Microbiol App Sci 6:2531–2537

    Article  CAS  Google Scholar 

  • Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ 35:136–149

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Bel P, Egea I, Sanchez-Ballesta MT, Sevillano L, Del Carmen Bolarin M, Flores FB (2012) Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Plant Cell Physiol 53:470–484

    Article  CAS  PubMed  Google Scholar 

  • Satismruti K, Senthil N, Vellaikumar S, Ranjani RV, Raveendran M (2013) Plant ionomics: a platform for identifying novel gene regulating plant mineral nutrition. Am J Plant Sci 4:309–1315

    Article  CAS  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: Mission possible? Cell 21:329–340

    CAS  Google Scholar 

  • Schläppi MR, Jackson AK, Eizenga GC, Wang A, Chu C, Shi Y, Shimoyama N, Boykin DL (2017) Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Front Plant Sci 8:957

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L, Wu D (2018) Zhang G (2018) Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiol Biochem 123:319–330

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Gao L, Wu Z, Zhang X, Wang M, Zhang C, Zhang F, Zhou Y, Li Z (2017) Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol 17:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One 7:e38554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh UM, Sareen P, Sngar RS, Kumar A (2013) Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35:2641–2653

    Article  CAS  Google Scholar 

  • Skliros D, Kalloniati C, Karalias G, Skaracis GN, Rennenberg H, Flemetakis E (2018) Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant Soil 429:451–468

    Article  CAS  Google Scholar 

  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteome 74:1045–1067

    Article  CAS  Google Scholar 

  • Sukumaran S, Reynolds MP, Sansaloni C (2018) Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci 9:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C, Gao X, Chen X, Fu J, Zhang Y (2016) Metabolic and growth responses of maize to successive drought and re-watering cycles. Agric Water Manag 172:62–73

    Article  Google Scholar 

  • Tan M, Liao F, Hou L, Wang J, Wei L, Jian H, Xu X, Li J, Liu L (2017) Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica 213:40

    Article  CAS  Google Scholar 

  • Tavakol E, Elbadry N, Tondelli A, Cattivelli L, Rossini L (2016) Genetic dissection of heading date and yield under Mediterranean dry climate in barley (Hordeum vulgare L.). Euphytica 212:343–353

    Article  Google Scholar 

  • Tenenboim H, Burgos A, Willmitzer L, Brotman Y (2016) Using lipidomics for expanding the knowledge on lipid metabolism in plants. Biochimie 130:91e96

    Article  CAS  Google Scholar 

  • Thimm O, Blaesing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Lam SM, Shui G (2017) Metabolomics, a powerful tool for agricultural research. Int J Mol Sci 17:1871

    Article  CAS  Google Scholar 

  • Ubbens JR, Stavness I (2017) Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci 8:1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhrig RG, Moorhead GB (2013) Plant proteomics: current status and future prospects. J Proteome 88:34–36

    Article  CAS  Google Scholar 

  • Ullah N, Yüce M, Neslihan Öztürk Gökçe Z, Budak H (2017) Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 18:969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unamba CIN, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Emon JM (2016) The omics revolution in agricultural research. J Agric Food Chem 64:36–44

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteome 93:5–19

    Article  CAS  Google Scholar 

  • Vitamvas P, Prasil IT, Kosova K, Planchon S, Renaut J (2012) Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 12:68–85

    Article  CAS  PubMed  Google Scholar 

  • Wade LJ, Salekdeh GH, Siopongco J, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  Google Scholar 

  • Wallace JG, Buckler ES, Zhang X, Beyene Y, Olsen M, Semagn K, Prasanna BM (2016) Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in sub-Saharan Africa. Crop Sci 56:2365–2378

    Article  CAS  Google Scholar 

  • Wang WQ, Moller IM, Song SQ (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteome 77:68–86

    Article  CAS  Google Scholar 

  • Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B (2015) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci 230:33–50

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang ZP, Liang XL, Weng JF, Lv XL, Zhang DG, Yang J, Yong HJ, Li MS, Li FH, Jiang LY, Zhang SH, Hao ZF, Li XH (2016) Identification of loci contributing to maize drought tolerance in a genome-wide association study. Euphytica 210:165–179

    Article  CAS  Google Scholar 

  • Wang Y, Xu C, Zhang B, Wu M, Chen G (2017) Physiological and proteomic analysis of rice (Oryza sativa L.) in flag leaf during flowering stage and milk stage under drought stress. Plant Growth Regul 82:201–218

    Article  CAS  Google Scholar 

  • Watanabe T, Maejima E, Ypshimura T, Urayama M, Yamauchi A, Owadano M, Okada R, Osaki M, Kanayama Y, Shinano T (2016) The ionomic study of vegetable crops. PLoS One 11:e0160273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson SJ, Sowden RG, Jarvis P (2018) Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. J Exp Bot 69:2773–2781

    Article  CAS  PubMed  Google Scholar 

  • Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang X (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506

    Article  CAS  PubMed  Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley TA, Conley MM, Feldman KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball B, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G (2012) Field-based phenomics for plant genetics research. Field Crop Res 133:101–112

    Article  Google Scholar 

  • Widodo PJH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler H (1920) Verbreitung und ursache der parthenogenesis im pflanzen und tierreiche. Fischer, Jena

    Book  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woldesemayat AA, Modise DM, Gemeildien J, Ndimba BK, Christoffels A (2018) Cross-species multiple environmental stress responses: an integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS One 13:e0192678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu D, Shen Q, Qiu L, Han Y, Ye L, Jabeen Z, Shu Q, Zhang G (2014) Identification of proteins associated with ion homeostasis and salt tolerance in barley. Proteomics 14:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Al-Lawati A, Al-Harrasi I, Patankar HV (2018) Genome-wide DNA methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula). BMC Genomics 19:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin X, Sakata K, Nanjo Y, Komatsu S (2014) Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques. J Proteome 106:1–16

    Article  CAS  Google Scholar 

  • Yin Y, Qi F, Gao L, Rao S, Yang Z, Fang W (2018) iTRAQ-based quantitative proteomic analysis of dark-germinated soybeans in response to salt stress. RSC Adv 8:17905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousuf PY, Ahmad A, Ganie AH, Sareer O, Krishnapriya V, Aref IM, Iqbal M (2017) Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regul 81:31–50

    Article  CAS  Google Scholar 

  • Yu L-X (2017) Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping. Front Plant Sci 8:1152

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L-X, Liu X, Boge W, Liu X-P (2016) Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Front Plant Sci 7:956

    PubMed  PubMed Central  Google Scholar 

  • Yu J, Zao W, He Q, Kim TS, Park YJ (2017) Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage. Mol Gen Genomics 292:1391–1403

    Article  CAS  Google Scholar 

  • Yugi K, Kubota H, Hatano A, Kuroda S (2016) Trans-omics: how to reconstruct biochemical networks across multiple ‘omics’ layers. Trends Biotechnol 34:276–290

    Article  CAS  PubMed  Google Scholar 

  • Zadraznik T, Hollung K, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteome 78:254–272

    Article  CAS  Google Scholar 

  • Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A (2017) Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol Breed 37:30

    Article  CAS  Google Scholar 

  • Zhang C, Shi S (2018) Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci 9:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteome 109:290–308

    Article  CAS  Google Scholar 

  • Zhang X, Warburton ML, Setter T, Liu H, Xue H, Yang N, Yan J, Xiao Y (2016) Genome wide association studies of drought related metabolic changes in maize using an enlarged SNP panel. Theor Appl Genet 129:1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Chen SX, Dai SJ (2013) C4 photosynthetic machinery: insights from maize chloroplast proteomics. Front Plant Sci 4:1–5

    CAS  Google Scholar 

  • Zhuang J, Zhang J, Hou XL, Wang F, Xiong AS (2014) Transcriptomic, proteomic, metabolomics and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit Rev Plant Sci 33:225–237

    Article  CAS  Google Scholar 

  • Zorb C, Schmitt S, Muhling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors have equally contributed to the writing of this chapter. The corresponding author, Zahide Neslihan Ozturk Gokce, wants to acknowledge their tremendous effort in literature search of this wide topic. We would like to apologize to the scientists whose work and publication have not been emphasized in this chapter due to page limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahide Neslihan Ozturk Gokce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozturk Gokce, Z.N. et al. (2020). Abiotic Stress Tolerance in Field Crops: Integration of Omics Approaches. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_24

Download citation

Publish with us

Policies and ethics