Skip to main content

Nanoparticles for Drug Delivery

  • Chapter
  • First Online:
Nanomaterials for Healthcare, Energy and Environment

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 118))

Abstract

Since ages human kind is using natural and synthetic compounds for the cure of diseases. By large synthetic compounds have edged the natural compounds. Discovery of nanomaterials paved way for smart treatment of diseases which were considered incurable. Nanomedicine and nano drug delivery systems are developing at a very fast pace offering multiple benefits in the treatment of chronic human ailments such as cancer, HIV and many other diseases by target-oriented and site-specific delivery of medicines. A detailed importance of nanomaterials in drug delivery systems is given in this chapter. This chapter also presented a comprehensive scrutiny of the nanomaterials that are handy in targeted and site specific delivery of drugs, their synthesis and applications in the field of drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamatsu K, Takei S, Mizuhata M et al (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359:55–60

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  CAS  Google Scholar 

  • Al-Jamal KT, Nunes A, Methven L et al (2012) Degree of Chemical Functionalization of Carbon Nanotubes Determines Tissue Distribution and Excretion Profile. Angew Chem Int Ed 51:6389–6393

    Article  CAS  Google Scholar 

  • Allen TM, Culli PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Delivery Rev 65:36–48

    Article  CAS  Google Scholar 

  • Al-Qadi S, Grenha A, Carrión-Recio D et al (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release 157:383–390

    Article  CAS  Google Scholar 

  • Anne S, Thomas R (2006). In Mozafari MR (eds) Nanocarrier technologies: frontiers of nanotherapy, pp 41–50

    Google Scholar 

  • Antonio AJ, Eliana S (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    Article  CAS  Google Scholar 

  • Arayne MS, Sultana N, Qureshi F (2007) Nanoparticles in delivery of cardiovascular drugs. Pak J Pharm Sci 20:340–348

    CAS  Google Scholar 

  • Artursson P, Lindmark T, Davis SS et al (1994) Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 11:1358–1361

    Article  CAS  Google Scholar 

  • Arunkumar A et al (2016a) Formulation, evaluation and optimization of sustained release Bilayer tablets of Niacin and Green Tea extract by employing Box-Behnken design. J Sci Res Phar 5(2):23–28

    CAS  Google Scholar 

  • Arunkumar A et al (2016b) Development and Validation of New Analytical methods for Simultaneous estimation of Epigallocatechin gallate, a component of Green Tea extract and Niacin in a Pharmaceutical dosage form. J Pharm Res 5(2):21–24

    CAS  Google Scholar 

  • Atrooz OM (2011) Effects of alkylresorcinolic lipids obtained from acetonic extract of Jordanian wheat grains on liposome properties. Int J Biol Chem 5(5):314–321

    Article  CAS  Google Scholar 

  • Bala I, Hariharan S, Kumar MN (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21:387–422

    Article  CAS  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophy Acta 298(4):1015–1019

    Article  CAS  Google Scholar 

  • Benech RO, Kheadr EE, Laridi R et al (2002) Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 68:3683–3690

    Article  CAS  Google Scholar 

  • Bernardi RJ, Lowery AR, Thompson PA et al (2008) Immunoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86(2):165–172

    Article  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182–10188

    Article  CAS  Google Scholar 

  • Bin L, Su-Bin X, Hong Y et al (2006) Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 28(1–2):86–95

    Google Scholar 

  • Borges O, Cordeiro-da-Silva A, Tavares J et al (2008) Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm 69:405–416

    Article  CAS  Google Scholar 

  • Bosi S, Da Ros T, Spalluto G et al (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11):913–923

    Article  CAS  Google Scholar 

  • Cai X, Luo Y, Zhang W et al (2016) pH-Sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces 8:22442–22450

    Article  CAS  Google Scholar 

  • Castelvetro V, De Vita C (2004) Nanostructured hybrid materials from aqueous polymer dispersions. Adv Colloid Interface Sci 108–109:167–185

    Article  CAS  Google Scholar 

  • Castro E, Garcia AH, Zavala G et al (2017) Fullerenes in biology and medicines. J Mat Chem B 5:6523–6535

    Article  CAS  Google Scholar 

  • Cavalli R, Gasco MR, Chetoni P et al (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238:241–245

    Article  CAS  Google Scholar 

  • Chen JF, Ding HM, Wang JX et al (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25:723–727

    Article  CAS  Google Scholar 

  • Chen JY, Wang DL, Xi JF et al (2007a) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    Article  CAS  Google Scholar 

  • Chen Y, Chi Y, Wen H et al (2007b) Sensitized luminescent terbium nanoparticles: preparation and time-resolved fluorescence assay for DNA. Anal Chem 79:960–965

    Article  CAS  Google Scholar 

  • Cheng Y, Xu Z, Ma M et al (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97:123–143

    Article  CAS  Google Scholar 

  • Choi AO, Cho SJ, Desbarats J et al (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 12:1

    Article  CAS  Google Scholar 

  • Choi KY, Jeon EJ, Yoon HY et al (2012) Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 33:6186–6193

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • De Campos AM, Sánchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168

    Article  Google Scholar 

  • Deamer D, Bangham AD (1976) Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 443(3):629–634

    Article  CAS  Google Scholar 

  • Desai MP (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    Article  CAS  Google Scholar 

  • Devarajan PV, Jain S (2016) Targeted drug delivery: concepts and design. Springer, Berlin

    Google Scholar 

  • Dhar S, Reddy EM, Shiras A et al (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14:10244–10250

    Article  CAS  Google Scholar 

  • Dinesh B, Bianco A et al (2016) Designing multimodal carbon nanotubes by covalent multi-functionalization. Nanoscale 8(44):18596–18611

    Article  CAS  Google Scholar 

  • Downs EC, Robertson NE, Riss TL et al (1992) Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro. J Cell Physiol 152:422–429

    Article  CAS  Google Scholar 

  • Draget KI, Tylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256

    Article  CAS  Google Scholar 

  • Elseoud WSA, Hassan ML, Sabaa MW et al (2018) Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 111:604–613

    Article  CAS  Google Scholar 

  • Fabbro C, Ali-Boucetta H, Da Ros T et al (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926

    Article  CAS  Google Scholar 

  • Fernández-Urrusuno R, Calvo P, Remuñán-López C et al (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    Article  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    Article  Google Scholar 

  • Gibson JD, Bshnu PK, Eugene RZ (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129:11653–11661

    Article  CAS  Google Scholar 

  • Gombotz WR, Wee S (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  CAS  Google Scholar 

  • Gu HW, Ho PL, Tong E et al (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4201

    Article  CAS  Google Scholar 

  • Hamilton RL, Guo LSS (1984) Liposomes preparation methods. J Clin Biochem Nut 7:175

    Google Scholar 

  • Han H-S, Niemeyer E, Huang Y et al (2015) Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc Natl Acad Sci 112:1350–1355

    Article  CAS  Google Scholar 

  • Handa T, Naito S, Hiramatsu M et al (2006) Thermal SiO and H13CO+ line observations of the dense molecular cloud G0.11-0.11 in the Galactic Center Region. Astrophys J 636:261–266

    Article  CAS  Google Scholar 

  • Haque S, Md S, Sahni JK et al (2014) Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res 48:1–12

    Article  Google Scholar 

  • Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–256

    Article  CAS  Google Scholar 

  • Himanshu A, Sitasharan P, Singhai AK (2011) Liposomes as drug carriers. IJPLS 2(7):945–951

    Google Scholar 

  • Hofheinz RD, Gnad-Vogt SU, Beyer U et al (2005) Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16:691–707

    Article  CAS  Google Scholar 

  • Holister P, Cristina RV, Fullerenes HT (2003) Nanoparticles, technology white papers nr. Cientifica 3:1–12

    Google Scholar 

  • Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  CAS  Google Scholar 

  • Huang CL, Huang CC, Mai FD et al (2015) Application of paramagnetic graphene quantum dots as a platform for simultaneous dual modality bioimaging and tumor-targeted drug delivery. J Mater Chem B 3:651–664

    Article  CAS  Google Scholar 

  • Hussain N, Jani PU, Florence AT (1997) Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm Res 14:613–618

    Article  CAS  Google Scholar 

  • Hussain I, Brust M, Papworth AJ et al (2003) Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19:4831–4835

    Article  CAS  Google Scholar 

  • Hwu JR, Lin YS, Josephrajan T et al (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131:66–68

    Article  CAS  Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  CAS  Google Scholar 

  • Jain TK, Roy I, De TK et al (1998) Nanometer silica particles enacapsulating active compounds: a novel ceramic drug carrier. J Am Chem Soc 120:11092–11095

    Article  CAS  Google Scholar 

  • Jain K, Gupta U, Jain NK (2014) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm 87:500–509

    Article  CAS  Google Scholar 

  • Jang JH, Shea LD (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Controlled Release 86:157–168

    Article  CAS  Google Scholar 

  • Jie Y, Wenfeng L, Chang Y et al (2013) Amphiphilically modified chitosan cationic nanoparticles for drug delivery. J Nanopart Res 15:2123

    Article  CAS  Google Scholar 

  • John VT, Simmons B, McPherson GL et al (2002) Recent developments in materials synthesis in surfactant systems. Curr Opin Colloid Interface Sci 7:288

    Article  CAS  Google Scholar 

  • Johnston MJ, Semple SC, Klimuk SK et al (2007) Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 1768:1121–1127

    Article  CAS  Google Scholar 

  • Jones CD, Fidalgo MM, Wiesner MR et al (2001) Alumina ultrafiltration membranes derived from carboxylate-alumoxane nanoparticles. J Membr Sci 193:175–184

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Poly Sci 132:41719

    Article  CAS  Google Scholar 

  • Joseph RR, Venkatraman SS (2017) Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine 12:683–702

    Article  CAS  Google Scholar 

  • Joshi HM, Bhumkar DR, Joshi K et al (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22:300–305

    Article  CAS  Google Scholar 

  • Kataria S, Sandhu P, Bilandi A, Akanksha M et al (2011) Stealth liposomes: a review. IJRAP 2(5):1534–1538

    CAS  Google Scholar 

  • Kaur A, Jain K, Mehra NK (2017) Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif Cells Nanomed Biotechnol 45:414–425

    Article  CAS  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Progr Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  • Kesharwani P, Xie L, Banerjee S et al (2015) Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B 136:413–423

    Article  CAS  Google Scholar 

  • Kim CK, Kalluru RR, Singh JP et al (2006) Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties. Nanotech 17:3085

    Article  CAS  Google Scholar 

  • Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  CAS  Google Scholar 

  • Kulthe SS, Choudhari YM, Inamdar NN et al (2012) Polymeric micelles: authoritative aspects for drug delivery. Design Monomers Polym 15:465–521

    Article  CAS  Google Scholar 

  • Kumar RV, Koltypin Y, Cohen YS et al (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem 10:1125–1129

    Article  CAS  Google Scholar 

  • Kumar RV, Elgamiel R, Diamant Y et al (2001) Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir 17:1406–1410

    Article  CAS  Google Scholar 

  • Kumari A, Kumar V, Yadav S (2012) Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res 7:34–42

    Article  CAS  Google Scholar 

  • Laffleur F, Michalek M (2017) Modified xanthan gum for buccal delivery—a promising approach in treating sialorrhea. Int J Biol Macromol 102:1250–1256

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillatioin. Toxicol Sci 77(1):126–134

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  • Lee DE, Koo H, Sun IC et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Article  CAS  Google Scholar 

  • Li X, St John J, Coffer JL et al (2000) Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies. Biomed Microdevices 2:265–272

    Article  CAS  Google Scholar 

  • Li ZZ, Wen LX, Shao L et al (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Controlled Release 98:245–254

    Article  CAS  Google Scholar 

  • Li Houli, Xiaobin Z, Yukun M et al (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Controlled Release 133:238–244

    Article  CAS  Google Scholar 

  • Li J, Yap SQ, Yoong SL et al (2012) Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50:1625–1634

    Article  CAS  Google Scholar 

  • Li Q, Lai KL, Chan PS et al (2016) Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pigment epithelium. Colloids Surf B 140:278–286

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Poly J 59:302–325

    Article  CAS  Google Scholar 

  • Liu S, Yang S, Ho PC (2018) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81

    Article  Google Scholar 

  • Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41(1):242–257

    Article  CAS  Google Scholar 

  • Lovric J, Cho SJ, Winnik FM et al (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1159–1161

    Article  CAS  Google Scholar 

  • Lowe CR (2000) Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Chem Biol 10:428–434

    CAS  Google Scholar 

  • Madaan K, Kumar S, Poonia N et al (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139

    Article  Google Scholar 

  • Mandal A, Bisht R, Rupenthal ID et al (2017) Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Controlled Release 248:96–116

    Article  CAS  Google Scholar 

  • Mayer LD, Bally MB, Hope MJ (1986) Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids 40:333–345

    Article  CAS  Google Scholar 

  • Melike U, Gulgun Y (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2(3):289–300

    Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283

    CAS  Google Scholar 

  • Moussa F (2018) [60] Fullerene and derivatives for biomedical applications. In Nanobiomaterials: nanostructured materials for biomedical applications. Woodhead Publishing, Elsevier, pp 113–136

    Chapter  Google Scholar 

  • Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711–719

    CAS  Google Scholar 

  • Mu L, Feng SS (2001) Fabrication, characterization and in vitro release of paclitaxel (taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Controlled Release 76:239–254

    Article  CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  • Nichkova M, Dosev D, Gee SJ et al (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77:6864–6873

    Article  CAS  Google Scholar 

  • Niemeyer CM (2003) Functional hybrid devices of proteins and inorganic nanoparticles. Angew Chem 42:5796–5800

    Article  CAS  Google Scholar 

  • Olerile LD, Liu Y, Zhang B et al (2017) Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theranostic. Colloids Surf B 150:121–130

    Article  CAS  Google Scholar 

  • Pandey R, Sharma S, Khuller GK (2005) Oral SLN Based antitubercular chemotherapy. Tuberculosis (Edinb) 85:415–420

    Article  CAS  Google Scholar 

  • Pantarotto D, Tagmatarchis N, Bianco A et al (2004) Synthesis and biological properties of fullerene containing amino acids and peptides. Mini Rev Med Chem 4:805–814

    CAS  Google Scholar 

  • Patil NH, Devarajan PV (2016) Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv 23:429–436

    Article  CAS  Google Scholar 

  • Patra JK, Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:219

    Article  CAS  Google Scholar 

  • Pick U (1981) Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch Biochem Biophys 212:186–194

    Article  CAS  Google Scholar 

  • Portero A, Remunan-Lopez C, Criado M et al (2002) Reacetylated chitosan microspheres for controlled delivery of anti-microbial agents to the gastric mucosa. J Microencapsul 19:797–809

    Article  CAS  Google Scholar 

  • Prasad PN (2004) Nanophotonics. Wiley, New York

    Book  Google Scholar 

  • Prato M (1999) Fullerenes and related structures. Springer, Berlin, pp 173–187

    Book  Google Scholar 

  • Prinz AV, Ya Prinz V, Seleznev VA (2003) Semiconductor micro- and nanoneedles for microinjections and ink-jet printing. Microelectron Eng 67–68:782–788

    Article  CAS  Google Scholar 

  • Proffitt F (2004) Yellow light for nanotech. Science 305(5685):762–765

    Article  CAS  Google Scholar 

  • Qiu XY, Hu SW (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781

    Article  CAS  Google Scholar 

  • Qurratul A, Sharma S, Khuller GK et al (2003) Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. J Antimicrob Chemother 51:931–938

    Article  CAS  Google Scholar 

  • Rabinarayan P, Padilama S (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2(1):211–227

    Google Scholar 

  • Renwick LC, Brown D, Clouter A et al (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occup Environ Med 61(5):442–447

    Article  CAS  Google Scholar 

  • Riaz M (1996) Liposome preparation method. Pak J Pharm Sci 9(1):65–77

    CAS  Google Scholar 

  • Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70

    Article  Google Scholar 

  • Román JV, Galán MA, del Valle EMM (2016) Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy. Biomed Phys Eng Express 2:035015

    Article  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR et al (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836

    Article  CAS  Google Scholar 

  • Sajinovic D, Saponjic ZV, Cvjeticanin N et al (2000) Synthesis and characterization of CdS quantum dots–polystyrene composite. Chem Phys Lett 329:168–172

    Article  CAS  Google Scholar 

  • Sameti M, Bohr G, Ravi Kumar MN et al (2003) Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int J Pharm 266:51–60

    Article  CAS  Google Scholar 

  • Schieren H, Rudolph S, Findelstein M et al (1978) Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim Biophys Acta 542(1):137–153

    Article  CAS  Google Scholar 

  • Selvakannan PR, Mandal S, Phadtare S et al (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–102

    Article  CAS  Google Scholar 

  • Sercombe L, Veerati T, Moheimani F (2015) Advances and challenges of liposome assisted drug delivery. Front Pharm 6:286

    Article  CAS  Google Scholar 

  • Shah C, Shah V, Upadhyay U (2011) Solid lipid nanoparticles: a review. Curr Pharm Res 1(4):351–368

    Article  Google Scholar 

  • Shanmuganathan K, Capadona JR, Rowan SJ (2010) Biomimetic mechanically adaptive nanocomposites. Prog Poly Sci 35:212–222

    Article  CAS  Google Scholar 

  • Shehata T, Ogawara K, Higaki K et al (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359:272–279

    Article  CAS  Google Scholar 

  • Shen H, Ackerman AL, Cody V et al (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88

    Article  CAS  Google Scholar 

  • Shengtang H, Ying W, Zheng W et al (2013) Folate-conjugated chitosan–polylactide nanoparticles for enhanced intracellular uptake of anticancer drug. J Nanopart Res 15:2096

    Article  CAS  Google Scholar 

  • Shi M, Yang YY, Chaw CS, Goh SH et al (2003) Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J Controlled Release 89:167–177

    Article  CAS  Google Scholar 

  • Shi Y, Pramanik A, Tchounwou C et al (2015) Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl Mater Interfaces 7:10935–10943

    Article  CAS  Google Scholar 

  • Silva MM, Calado R, Marto J et al (2017) Nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 15:370

    Article  CAS  Google Scholar 

  • So M-K, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339

    Article  CAS  Google Scholar 

  • Song H, Geng HQ, Ruan J et al (2011) Development of polysorbate 80/phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models. Nanoscale Res Lett 6:354

    Article  CAS  Google Scholar 

  • Stroh M, Zimmer JP, Duda DG et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682

    Article  CAS  Google Scholar 

  • Su CH, Sheu HS, Lin CY et al (2006) Nanoshell resonance imaging contrast agents. J Am Chem Soc 129:2139–2146

    Article  CAS  Google Scholar 

  • Sundar RS, Murugesan A, Venkatesan P et al (2010) Formulation development and evaluation of carprofen Microspheres. Int J Pharm Tech Res 2(3):1674–1676

    Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 75(9):4194–4198

    Article  CAS  Google Scholar 

  • Tan W, Wang KM, He X et al (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621–638

    Article  CAS  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Delivery Rev 55:315–328

    Article  CAS  Google Scholar 

  • Terrones M, Terrones H (2003) The carbon nanocosmos: novel materials for the twenty first century. Philos Trans A Math Phys Eng Sci 361(1813):2789–2806

    Article  CAS  Google Scholar 

  • Tom RT, Suryanarayanan V, Reddy PG et al (2004) Ciprofloxacin-protected gold nanoparticles. Langmuir 20:1909–1914

    Article  CAS  Google Scholar 

  • Tripathy S, Das M (2013) Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci 3:142–149

    Google Scholar 

  • Velavan P, Karuppusamy K, Venkatesan P (2015) Nanoparticles as drug delivery systems. J Pharm Sci Res 7(12):1118–1122

    Google Scholar 

  • Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70(2):95–111

    Article  CAS  Google Scholar 

  • Venkatesan P, Manavalan R, Valliappan K (2009) Microencapsulation: a vital technique in novel drug delivery system. J Pharm Sci Res 1(4):26–35

    CAS  Google Scholar 

  • Venkatesan P, Janardhan VS, Manavalan R et al (2011) Preformulation parameters characterization to design, development and formulation of loxoprofen loaded microspheres. Int J Pharm Biomed Res 2(3):107–117

    Google Scholar 

  • Verma A, Uzun O, Hu Y et al (2008) Surface-structured-regulated cell-membrane penetration by monolayer protected nanoparticles. Nat Mater 7(7):588–595

    Article  CAS  Google Scholar 

  • Volkov Y (2015) Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun 468:419–427

    Article  CAS  Google Scholar 

  • Wang L, Zhao W, Tan W (2008) Bioconjugated silica nanoparticles: development and applications. Nano Res 1:99–115

    Article  CAS  Google Scholar 

  • Wang G, Gao S, Tian R et al (2018) Theranostic hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo cancer chemotherapy. ChemMedChem 13:78–86

    Article  CAS  Google Scholar 

  • Weis RP, Montchamp JL, Coffer JL et al (2002) Calcified nanostructured silicon wafer surfaces for biosensing: effects of surface modification on bioactivity. Dis Markers 18:159–165

    Article  CAS  Google Scholar 

  • Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  CAS  Google Scholar 

  • Wilson LJ, Cagle DW, Thrash TP et al (1999) Metallofullerene drug design. Coord Chem Rev 190–192:199–207

    Article  Google Scholar 

  • Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood brain barrier by nanoparticles. J Controlled Release 161:264–273

    Article  CAS  Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Article  CAS  Google Scholar 

  • Xu G, Zeng S, Zhang B et al (2016) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 116:12234–12327

    Article  CAS  Google Scholar 

  • Yamakoshi Y, Umezava N, Ryu A et al (2003) Active oxygen species generated from photoexcited fullerene C-60 as potential medicines O2- vs 1O2. J Am Chem Soc 125:12803–12809

    Article  CAS  Google Scholar 

  • Yang SC, Ge HX, Hu Y et al (2000) Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. J Appl Polym Sci 78:517–526

    Article  CAS  Google Scholar 

  • Yin JJ et al (2010) Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci USA 107:7449–7454

    Article  Google Scholar 

  • Yokoyama M, Miyauchi M, Yamada N et al (1990) Polymer micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Controlled Release 11:269

    Article  CAS  Google Scholar 

  • Yokoyama M, Okano T, Sakurai Y et al (1991) Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 51:3229–3236

    CAS  Google Scholar 

  • Yu SH, Yoshimura M, Moreno JMC et al (2001) In situ fabrication and optical properties of a novel polystyrene/semiconductor nanocomposite embedded with CdS nanowires by a soft solution processing route. Langmuir 17:1700

    Article  CAS  Google Scholar 

  • Zeng R, Rong MZ, Zhang MQ et al (2002) Laser ablation of polymer based silver nanocomposites. Appl Surf Sci 187:239–247

    Article  CAS  Google Scholar 

  • Zhang Y (2011) Relations between size and function of substance particles. Nano Biomed Eng 3(1):1–16

    Article  CAS  Google Scholar 

  • Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1:4199–4211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Showkat Ahmad Bhawani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tariq, A., Bhawani, S.A., Moheman, A. (2019). Nanoparticles for Drug Delivery. In: Bhat, A., Khan, I., Jawaid, M., Suliman, F., Al-Lawati, H., Al-Kindy, S. (eds) Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, vol 118. Springer, Singapore. https://doi.org/10.1007/978-981-13-9833-9_9

Download citation

Publish with us

Policies and ethics