Skip to main content

Heat Shock Proteins and Their Associated Oxidative Stress-Induced Heart Disease

  • Chapter
  • First Online:

Abstract

Heat shock proteins, apart from having a strong impactful function as molecular chaperones, are involved in a variety of diseases including cardiovascular diseases. Various studies have reported that there is an elevation of concentration gradients of circulating heat shock protein antibodies. These HSP antibodies have a strong alliance in case of extremity and advancement of cardiovascular diseases. A major stress factor, such as oxidative stress, contributes largely to endothelial dysfunction through several mechanisms, hence leading to the development of associated cardiovascular diseases. During this time, the heart accumulates misfolded proteins and chaperones/co-chaperone network function for preventing misfolding, refolding denatured proteins, and targeting them for further degradation. In this review, the cardioprotective roles of these chaperones, co-chaperones, and heat shock factors (HSF) will be discussed in correlation with oxidative stress, inflammatory cytokines, and others which are said to be acquainted with the evolution and advancement of cardiovascular diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132. https://doi.org/10.1161/01.RES.83.2.117

    Article  CAS  PubMed  Google Scholar 

  2. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    CAS  PubMed  Google Scholar 

  3. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    CAS  PubMed  Google Scholar 

  5. Hartl F (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    CAS  PubMed  Google Scholar 

  6. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    CAS  PubMed  Google Scholar 

  7. Hutter JJ, Mestril R, Tam EK, Sievers RE, Dillmann WH, Wolfe CL (1996) Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94:1408–1411

    CAS  PubMed  Google Scholar 

  8. Hightower LE, Sadis SE, Takenaka IM (1994) Interactions of vertebrate hsc70 and hsp70 with unfolded proteins and peptides. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  9. Hightower LE, Hendershot LM (1997) Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperones 2:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Currie RW, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63:543–549

    CAS  PubMed  Google Scholar 

  11. Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272

    CAS  PubMed  Google Scholar 

  12. Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abravaya K, Phillips B, Morimoto RI (1991) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 5:2117–2127

    CAS  PubMed  Google Scholar 

  14. Satyal SH, Chen D, Fox SG et al (1998) Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 12:1962–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein Hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153–1164

    CAS  PubMed  Google Scholar 

  16. Amici C, Sistonen L, Santoro MG, Morimoto RI (1992) Antiproliferative prostaglandins activate heat shock transcription factor. Proc Natl Acad Sci 89:6227–6231

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld H-J, Schirra C, Bujard H, Bukau B (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor s32. EMBO J 15:607–617

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mosser DD, Duchaine J, Massie B (1993) The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by Hsp70. Mol Cell Biol 13:5427–5438

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein Hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5532

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Life Sci 86(11–12):377–384

    CAS  PubMed  Google Scholar 

  21. Boston RS, Viitanen PV, Vierling E (1996) Complexity of the heat stress response in plants. Plant Mol Biol 32(1–2):191–222

    CAS  PubMed  Google Scholar 

  22. Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14(1):45–51

    CAS  PubMed  Google Scholar 

  23. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    CAS  PubMed  Google Scholar 

  24. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162(6):3212–3219

    CAS  PubMed  Google Scholar 

  25. Williams JH, Ireland HE (2008) Sensing danger--Hsp72 and HMGB1 as candidate signals. J Leukoc Biol 83(3):489–492

    CAS  PubMed  Google Scholar 

  26. Veinger L et al (1998) The small heat-shock protein IbpB from E. coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    CAS  PubMed  Google Scholar 

  27. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mogk A et al (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042

    CAS  PubMed  Google Scholar 

  29. Mogk A et al (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585–595

    CAS  PubMed  Google Scholar 

  30. Tiefenbrunn AJ, Sobel BE (1992) Timing of coronary recanalization: paradigms, paradoxes, and pertinence. Circulation 85:2311–2315

    CAS  PubMed  Google Scholar 

  31. Rogers WJ, Bowlby LJ, Chandra NC, French WJ, Gore JM, Lambrew CT, Rubison RM, Tiefenbrunn AJ, Weaver WD (1994) Treatment of myocardial infarction in the United States (1990 to 1993): observations from the National Registry of Myocardial Infarction. Circulation 90:2103–2114.7

    CAS  PubMed  Google Scholar 

  32. Denis M, Gustafsson J (1989) The Mr approximately 90,000 heat shock protein: an important modulator of ligand and DNA-binding properties of the glucocorticoid receptor. Cancer Res 49:2275s–2281s

    CAS  PubMed  Google Scholar 

  33. Pratt W (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 268:21455–21458

    CAS  PubMed  Google Scholar 

  34. Wu C, Clos J, Giorgi G, Haroun RI, Kim S-J, Rabindran SK, Westwood JT, Wisniewski J, Yim G (1994) Structure and regulation of heat shock transcription factor. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 395–416

    Google Scholar 

  35. Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu BJ, Kingston RE, Morimoto RI (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci 83:629–633

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morimoto RI, Jurivich DA, Kroeger PE, Mathur SK, Murphy SP, Nakai A, Sarge K, Abravaya K, Sistonen LT (1994) Regulation of heat shock gene transcription by a family of heat shock factors. In: Morimo RI (ed) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  38. Plumier JC, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95:1854–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Over expression of the rat inducible 70-kD heat stress protein in atransgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavva S, Wiethoff A, Sherry AD, Malloy CR, Williams RS (1996) Cardio protective effects of 70-kDa heat shock protein transgenic mice. Proc Natl Acad Sci U S A 93:2339–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams RS, Thomas JA, Fina M, German Z, Benjamin IJ (1993) Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest 92:503–508

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mestril R, Chi SH, Sayen MR, O’Reilly K, Dillmann WH (1994) Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 93:759–767

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    CAS  PubMed  Google Scholar 

  44. Benjamin IJ, Kroger B, Williams RS (1990) Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci U S A 87:6263–6267

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Graham Pockley A (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105:1012–1017. https://doi.org/10.1161/hc0802.103729

    Article  CAS  PubMed  Google Scholar 

  46. Kuo CC, Shor A, Campbell LA et al (1993) Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167:841–849

    CAS  PubMed  Google Scholar 

  47. Jackson LA, Campbell LA, Kuo CC et al (1997) Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen. J Infect Dis 176:292–295

    CAS  PubMed  Google Scholar 

  48. Laitinen K, Laurila A, Pyhala L et al (1997) Chlamydia pneumoniae infection induces inflammatory changes in the aortas of rabbits. Infect Immun 65:4832–4835

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Muhlestein JB, Anderson JL, Hammond EH et al (1998) Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation 97:633–636

    CAS  PubMed  Google Scholar 

  50. Caligiuri G, Rottenberg M, Nicoletti A et al (2001) Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 103:2834–2838

    CAS  PubMed  Google Scholar 

  51. Strickland E, Qu BH, Millen L, Thomas PJ (1997) The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis trans membrane conductance regulator. J Biol Chem 272:25421–25424

    CAS  PubMed  Google Scholar 

  52. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ (2000) Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71:1554–1560

    CAS  PubMed  Google Scholar 

  53. Herzberg M, Brintzenhofe K, Clawson C (1983) Aggregation of human platelets and adhesion of Streptococcus sanguis. Infect Immun 39:1457–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Herzberg MC, Meyer MW (1996) Effects of oral flora on platelets: possible consequences in cardiovascular disease. J Periodontol 67(supplement 10):1138–1142

    CAS  PubMed  Google Scholar 

  55. Castell JV, Andus T, Kunz D, Heinrich P (1989) Interleukin-6: the major regulator of acute-phase protein synthesis in man and rat. Ann N Y Acad Sci 557:87–99

    CAS  PubMed  Google Scholar 

  56. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T (1995) Hypoxic stress induces cardiac myocyte-derivedinterleukin-6. Circulation 91:1520–1524

    CAS  PubMed  Google Scholar 

  57. McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, Young PR (1996) Identification of mitogen-activated protein (MAP) kinase activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271:8488–8492

    CAS  PubMed  Google Scholar 

  58. Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J (1995) Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 227:416–427

    CAS  PubMed  Google Scholar 

  59. Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:93–101

    Google Scholar 

  60. Zu YL, Wu F, Gilchrist A, Ai Y, Labadia ME, Wang CK (1994) The primary structure of a human MAP kinase activated protein kinase 2. Biochem Biophys Res Commun 200:1118–1124

    CAS  PubMed  Google Scholar 

  61. Harman D (1957) Aging: a theory based on free radical and radiation chemistry. J Gerontol 2:298–300

    Google Scholar 

  62. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuperin (hemocuperin). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  63. Ku HH, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627

    CAS  PubMed  Google Scholar 

  64. Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    CAS  PubMed  Google Scholar 

  65. Nishikawa T et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  66. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) A role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Suh YA et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    CAS  PubMed  Google Scholar 

  68. Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of Renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97:8010–8014

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lakshmi SVV (2009) Oxidative stress and cardiovascular disease. Indian J Biochem Biophys 46:421–440

    CAS  PubMed  Google Scholar 

  71. Vidal-Puig AJ et al (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    CAS  PubMed  Google Scholar 

  72. Vanhoutte PM (1989) Endothelium and control of vascular function: state of the art lecture. Hypertension 13:658–667

    CAS  PubMed  Google Scholar 

  73. Raij L (1993) Nitric oxide and the kidney. Circulation 87(Suppl V):V-26–V-29

    CAS  Google Scholar 

  74. Higashi Y, Oshima T, Ozono R, Watanabe M, Matsuura H, Kajiyama G (1995) Effects of L-arginine infusion on renal hemodynamics in patients with mild essential hypertension. Hypertension 25:898–902

    CAS  PubMed  Google Scholar 

  75. Currie RW, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63(3):543–549

    CAS  PubMed  Google Scholar 

  76. Mizushima Y, Wang P, Jarrar D et al (2000) Preinduction of heat shock proteins protects cardiac and hepatic functions following trauma and hemorrhage. Am J Physiol Regulatory Integrative Comp Physiol 278:R352–R359

    CAS  Google Scholar 

  77. Dillmann WH, Mehta HB, Barrieux A, Guth BD, Neeley WE, Ross J (1986) Ischemia of the dog heart induces the appearance of a cardiac mRNA coding for a protein with migration characteristics similar to heatshock/stress protein 71. Circ Res 59(1):110–114

    CAS  PubMed  Google Scholar 

  78. Latchman D (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51(4):637–646

    CAS  PubMed  Google Scholar 

  79. Bellmann K, Burkart V, Bruckhoff J, Kolb H, Landry J (2000) p38-dependent enhancement of cytokine-induced nitric-oxide synthase gene expression by heat shock protein 70. J Biol Chem 275(24):18172–18179

    CAS  PubMed  Google Scholar 

  80. Rokutan K, Hirakawa T, Teshima S et al (1998) Implications of heat shock/stress proteins for medicine and disease. J Med Investig 44:137–147

    CAS  Google Scholar 

  81. Rammos K (2002) Low preoperative HSP70 atrial myocardial levels correlate significantly with high incidence of postoperative atrial fibrillation after cardiac surgery. Cardiovasc Surg 10(3):228–232

    Google Scholar 

  82. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins. Circ Res 83(2):117–132

    CAS  PubMed  Google Scholar 

  83. Giannessi D (2003) A possible cardioprotective effect of heat shock proteins during cardiac surgery in pediatric patients. Pharmacol Res 48(5):519–529

    CAS  PubMed  Google Scholar 

  84. Xu Q, Wick G (1996) The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today 2(9):372–379

    CAS  PubMed  Google Scholar 

  85. Laude K (2002) Endothelial protective effects of preconditioning. Cardiovasc Res 55(3):466–473

    CAS  PubMed  Google Scholar 

  86. Amrani M, Latif N, Morrison K, Gray CC, Jayakumar J, Corbett J, Goodwin A, Dunn M, Yacoub M (1998) Relative induction of heat shock protein in coronary endothelial cells and cardiomyocytes: implications for myocardial protection. J Thorac Cardiovasc Surg 115(1):200–209

    CAS  PubMed  Google Scholar 

  87. Gromadzka G, Zielińska J, Ryglewicz D, Fiszer U, Członkowska A (2001) Elevated levels of anti-heat shock protein antibodies in patients with cerebral ischemia. Cerebrovasc Dis 12(3):235–239

    CAS  PubMed  Google Scholar 

  88. Cruse I, Maines MD (1988) Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 263:3348–3353

    CAS  PubMed  Google Scholar 

  89. Ewing JF, Maines MD (1991) Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein. Proc Natl Acad Sci 88(12):5364–5368

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mccoubrey WK, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes Hemoprotein Heme Oxygenase-3. Eur J Biochem 247(2):725–732

    CAS  PubMed  Google Scholar 

  91. Dohke T, Wada A, Isono T, Fujii M, Yamamoto T, Tsutamoto T, Horie M (2006) Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure. J Card Fail 12(1):77–84

    CAS  PubMed  Google Scholar 

  92. Scheler C, Müller E-C, Stahl J, Müller-Werdan U, Salnikow J, Jungblut P (1997) Identification and characterization of heat shock protein 27 protein species in human myocardial two-dimensional electrophoresis patterns. Electrophoresis 18(15):2823–2831

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, S., Dasgupta, R., Bagchi, A. (2019). Heat Shock Proteins and Their Associated Oxidative Stress-Induced Heart Disease. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_9

Download citation

Publish with us

Policies and ethics