Skip to main content

Plant Death: Short and Long Life Span to Immortality

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

Death is a universal physiological process that occurs in all living beings and results in termination of normal cellular activities required for life. In animals, loss of function of vital organs such as the liver, heart, or brain becomes a cause of death; however, in plants, death of a whole plant body is a cumulative effect of activities of all the cells associated with different organs such as stem, leaves, and roots. Therefore, in the case of plants, it becomes important to understand the plant cell death that will help to understand plant death. Cells of a plant tend toward death by two modes: controlled mode which is called programmed cell death (PCD) and uncontrolled mode called necrosis mediated by external factors such as infection and injury. PCD is generally mediated through apoptosis and autophagy. Programmed cell death (PCD) is a genetically regulated phenomenon of selective elimination of target cells that are either under pathological conditions or unwanted for the organism’s normal growth and development. PCD renders some hallmarks like blebs in the cell membrane, lobe formation in the nuclear membrane, DNA nicks resulting to DNA ladder of 200 bp, and downstream activation of caspases. Here, we described importance of programmed cell death and other modes of death adopted by plants during their developmental process and to cope with the unfavorable changing environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambastha V, Tripathy BC, Tiwari BS (2015) Programmed cell death in plants: A chloroplastic connection. Plant Signal Behav 10:e989752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ambastha V, Sopory SK, Tiwari BS, Tripathy BC (2017) Photo-modulation of programmed cell death in rice leaves triggered by salinity. Apoptosis 22:41–56

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Arnaud C, Bonnot C, Desnos T, Nussaume L (2010) The root cap at the fore front. C R Biol 333:335–343

    Article  CAS  PubMed  Google Scholar 

  • Barlow PW (2003) The root cap: cell dynamics, cell differentiation and cap function. J Plant Growth Regul 21:261–286

    Article  CAS  Google Scholar 

  • Beers EP (1997) Programmed cell death during plant growth and development. Cell Death Differ 4:649–661

    Article  CAS  PubMed  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  CAS  PubMed  Google Scholar 

  • Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70:231–239

    Article  CAS  Google Scholar 

  • Brodersen P, Malinovsky FG, Hématy K, Newman MA, Mundy J (2005) The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol 138:1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buitink J, Leprince O (2008) Intracellular glasses and seed survival in dry state. CR Rev 331:788–795

    CAS  Google Scholar 

  • Calderon-Urrea A, Dellaporta S (1999) Cell death and cellprotection genes determine the fate of pistils in maize. Development 126:435–441

    CAS  PubMed  Google Scholar 

  • Cheng PC, Greyson RI, Walden DB (1983) Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. Am J Bot 70:450–462

    Article  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JH (2007) Trehalose as a chemical chaperone: fact and fantasy. Adv Exp Med Biol 594:143–158

    Article  PubMed  Google Scholar 

  • Crowe JH, Cooper AF (1971) Cryptobiosis. Sci Am 225:30–36

    Article  Google Scholar 

  • Cruz de Carvalho R, Catala M, Marques da Silva J, Branquinho C, Barreno E (2012) The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss. Ann Bot 110:1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culver CM, Gert B (1982) Philosophy in Medicine: Conceptual and ethical issues in medicine and psychiatry. Oxford University Press, Oxford

    Google Scholar 

  • De Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1994) The sex determination process in maize. Science 266:1501–1505

    Article  CAS  PubMed  Google Scholar 

  • Doyle SM, Diamond M, McCabe PF (2009) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Driouich A, Durand C, Vicré-Gibouin M (2007) Formation and separation of root border cells. Trends Plant Sci 12:14–19

    Article  CAS  PubMed  Google Scholar 

  • Fath A, Bethke PC, Jones RL (2001) Enzymes that scavenge reactive oxygen species are down-regulation prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126:156–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guérin CJ, Krebs M, Schumacher K, Nowack MK (2014) Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr Biol 24:931–940

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144

    Article  CAS  PubMed  Google Scholar 

  • Gaff DF, Oliver M (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol:315–328

    Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. ISBN 978-0-87969-888-1

    Google Scholar 

  • Greenberg J (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A 93:12094–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83–112

    Article  CAS  PubMed  Google Scholar 

  • Halle F (1986) Modular growth in seed plants. Philos Trans R Soc Lond B 313:77–87

    Article  Google Scholar 

  • He SY, Bauer DW, Collmer A, Beer SV (1994) Hypersensitive response elicited by Erwinia amylovora harpin requires active plant methabolism. Mol Plant Microbe Interact 7:289–292

    Article  CAS  Google Scholar 

  • Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MB, Fenning TM, Drew MC, Saker LR (1985) Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta 165:486–492

    Article  CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  CAS  PubMed  Google Scholar 

  • Kuo A, Cappelluti S, Cervantes-Cervantes M, Rodriguez M, Bush DS (1996) Okadaic acid, a protein phosphataseinhibitor, blocks calcium changes, gene expression, and celldeath induced by gibberellin in wheat aleurone cells. Plant Cell 8:259–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Zhang Y (2012) Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci 17:487–494

    Article  CAS  PubMed  Google Scholar 

  • Laux T, Jürgens G (1997) Embryogenesis: A new start in life. Plant Cell 9:989–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol (4):427–437

    Article  CAS  PubMed  Google Scholar 

  • Lord CE, Gunawardena AH (2012) Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 91:603–613

    Article  CAS  PubMed  Google Scholar 

  • Marshall RS, Vierestra RD (2018) Autophagy: the master of bulk and selective recycling. Ann Rev Plant Biol 69:173–208

    Article  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenge sand perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Simon L, Lam E (1997) Pathogen-induced programmed cell death in tobacco. J Cell Sci 110(Pt 11):1333–1344

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S (2014) Perennial roots to immortality. Plant Physiol 166:720–725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munné-Bosch S (2018) Limits to tree growth and longevity. Trends Plant Sci. pii: S1360-1385 (18):30167–30165

    Google Scholar 

  • Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nie Z, Norton MR (2005) Stress tolerance and persistence of perennial grasses: the role of the summer dormancy trait in temperate Australia. Crop Sci 49:2405–2411

    Article  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JS, Chin C (2005) Evidence for cytochrome f involvement in eggplant cell death induced by palmitoleic acid. Cell Death Differ 12:405–407

    Article  CAS  PubMed  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione pathway in chloroplasts by metabolic modeling: computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Martín R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sánchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Samuilov VD, Lagunova EM, Kiselevsky DB, Dzyubinskaya EV, Makarova YV, Gusev MV (2003) Participation of chloroplasts in plant apoptosis. Biosci Rep 23:103–117

    Article  CAS  PubMed  Google Scholar 

  • Schiefelbein JW, Masucci JD, Wang H (1997) Building a root: The control of patterning and morphogenesis during root development. Plant Cell 9:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Ambastha V, Levine A, Sopory SK, Yadava PK, Tripathy BC, Tiwari BS (2015) Anhydrobiosis and programmed cell death in plants: Commonalities and Differences. Curr Plant Biol 2:12–20

    Article  Google Scholar 

  • Thomas H, Donnison I (2000) Back from the brink: plant senescence and its reversibility. In: Bryant J, Hughes SG, Garland JM (eds) Programmed cell death in animals and plants. Bios, Oxford, pp 149–162

    Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BS, Tripathi SN (1998) Effect of hydration and dehydration on initiation and dynamics of some physiological reactions in desiccation tolerant cyanobacterium Scytonema geitleri. Indian J Biochem Biophys 35:172–178

    CAS  PubMed  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6:57–62

    Article  PubMed  Google Scholar 

  • Uren AG, O’rourke KO, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit MV (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  • Van Breusegem F, Datt JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vercammen D, Belenghi B, Van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inze D, Harris JL, Van Breusegem F (2006) Serpin 1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364:625–636

    Article  CAS  PubMed  Google Scholar 

  • Vercammen D, Declercq W, Vandenabeele P, Van Breusegem F (2007) Are metacaspases caspases? Cell Biol 179:375–380

    Article  CAS  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151

    Article  CAS  Google Scholar 

  • Wang H, Zhu X, Li H, Cui J, Liu C, Chen X, Zhang W (2014) Induction of caspase- 3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin-proteasome system. Sci Rep 4:5989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteineproteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J (2018) Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 28:448–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuppini A, Gerotto C, Moscatiello R, Bergantino E, Baldan B (2009) Chlorella saccharophila cytochrome f and its involvement in the heat shock response. J Exp Bot 60:4189–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budhi Sagar Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, S.S., Bhatt, R., Tiwari, B.S. (2019). Plant Death: Short and Long Life Span to Immortality. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_22

Download citation

Publish with us

Policies and ethics