Skip to main content

Application of Microbial Biotechnology in Improving Salt Stress and Crop Productivity

  • Chapter
  • First Online:
Book cover Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches

Abstract

Soil salinity is the principal detrimental abiotic stress that globally impedes crop yield. It affects a wide range of biochemical, morphological, physiological, and molecular changes and is responsible for inducing ion toxicity, hormonal disturbance, water uptake, homeostasis disturbance, and oxidative stress. To evade this abiotic stress, many genes are identified, and their mechanisms have been elucidated in Arabidopsis thaliana through the transgenic approaches and also in other plants like Prunus cerasifera, Brassica juncea, Ipomoea batatas, tobacco, etc. Modern tools revolutionized microbial biotechnology by providing a better choice for plant scientists to select or incorporate genes of interest into preferred species or cultivars. Transgenics may regulate the various metabolic pathways including biosynthesis of chlorophyll and osmolyte, ion exchange homeostasis, antioxidant defense mechanism, and additional frontier defense corridors against salinity stress. Exclusively using such gene manipulations, many genetically modified crop varieties like canola, cotton, maize, rice, and soybean are being developed. Many techniques have been introduced for establishing possible sustainability against soil salinity. Apart from this, it also incorporates some receptor genes in crop plants that may sense or escape any changes in soil salinity under environmental condition. Thus, the aim of this chapter is to enlighten the basic importance and modern application of microbial biotechnology to understand the behavior of transgenic crop plants in saline soil. The study also elaborates understanding of molecular machinery for healthy crop production.

Maneesh Kumar and Mohd Sayeed Akhtar have equally contributed for this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke LJ, Dempewolf H, De Pace C, Edwards D (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14:1095–1098

    Article  PubMed  Google Scholar 

  • Abrol IP, Yadav JS, Massoud FI (1988) Salt-affected soils and their management. FAO, Rome

    Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P (2017) Plant responses to environmental stresses-from gene to biotechnology. AoB Plants 9:plx025. https://doi.org/10.1093/aobpla/plx025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Azooz MM, Prasad MN (2012) Ecophysiology and responses of plants under salt stress. Springer, Berlin

    Google Scholar 

  • Akpınar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J 2013:361921. https://doi.org/10.1155/2013/361921

    Article  Google Scholar 

  • Al-Harrasi I, Al-Yahyai R, Yaish MW (2018) Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLoS One 13:e0191492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559

    Article  CAS  PubMed  Google Scholar 

  • Alptekin B, Langridge P, Budak H (2017) Abiotic stress miRNomes in the Triticeae. Funct Integr Genom 17:145–170

    Article  CAS  Google Scholar 

  • Andreu P, Arbeloa A, Lorente P, Marín JA (2011) Early detection of salt stress tolerance of Prunus rootstocks by excised root culture. HortScience 46(1):80–85

    Article  CAS  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ashraf M, Bashir A (2003) Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora-Morphol Distribut Funct Ecol Plants 198:486–498

    Article  Google Scholar 

  • Baloglu MC, Kavas M, Gürel S, Gürel E (2018) The use of microorganisms for gene transfer and crop improvement. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356

    Article  CAS  PubMed  Google Scholar 

  • Bednarek PT, Orłowska R, Niedziela A (2017) A relative quantitative methylation-sensitive amplified polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biol 17:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  PubMed  Google Scholar 

  • Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196:149–161

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms–getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5:e9514

    Article  PubMed  PubMed Central  Google Scholar 

  • Brozynska M, Omar ES, Furtado A, Crayn D, Simon B, Ishikawa R, Henry RJ (2014) Chloroplast genome of novel rice germplasm identified in northern Australia. Trop Plant Biol 7:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budak H, Kantar M, Yucebilgili Kurtoglu K (2013) Drought tolerance in modern and wild wheat. Sci World J 2013:548246. https://doi.org/10.1155/2013/548246

    Article  Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Chan RL (2012) The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnol J 10:815–825

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Arce AL, Chan RL (2012) The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J 69:141–153

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99:S16491–S16498

    Article  CAS  Google Scholar 

  • Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13:2212–2217

    Article  CAS  PubMed  Google Scholar 

  • Cao DH, Gao X, Liu J, Kimatu JN, Geng SJ, Wang XP, Zhao J, Shi DC (2011) Methylation sensitive amplified polymorphism (MSAP) reveals that alkali stress triggers more DNA hypomethylation levels in cotton (Gossypium hirsutum L.) roots than salt stress. Afr J Biotechnol 10:18971–18980

    CAS  Google Scholar 

  • Cao HX, Schmutzer T, Scholz U, Pecinka A, Schubert I, Vu GT (2015) Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Front Microbiol 6:526

    PubMed  PubMed Central  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PC, Gu ZM (2015) Regulation of ion homeostasis under salt stress. J Anhui Agric Sci 20:006

    Google Scholar 

  • Chinnusamy V, Zhu JK (2009a) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK (2009b) RNA-directed DNA methylation and demethylation in plants. Sci China Ser C 52:331–343

    Article  CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Ciobanu I, Sumalan R (2009) The effects of the salinity stress on the growing rates and physiological characteristics to the Lycopersicum esculentum specie. Bull UASVM Hortic 66:616–620

    Google Scholar 

  • Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Daffonchio D, Hirt H, Berg G (2015) Plant-microbe interactions and water management in arid and saline soils. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 265–276

    Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Security 2:15

    Article  Google Scholar 

  • De Fátima Rosas-Cárdenas F, de Folter S (2017) Conservation, divergence, and abundance of miRNAs and their effect in plants. In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant epigenetics. Springer, Cham, pp 1–22

    Google Scholar 

  • Dehghan G, Amjad L, Nosrati H (2013) Enzymatic and non-enzymatic antioxidant responses of alfalfa leaves and roots under different salinity levels. Acta Biol Hungar 64:207–217

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikilitas M, Karakas S (2014) Crop plants under saline-adapted fungal pathogens: an overview. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Elsevier, London, pp 173–192

    Chapter  Google Scholar 

  • Ditta A (2013) Salt tolerance in cereals: molecular mechanisms and applications. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, New Delhi, pp 133–154

    Chapter  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamens A, Curtin SJ, Waterhouse PM (2010) RNA silencing in plants. In: Chong PE, Davey MR (eds) Plant developmental biology-biotechnological perspectives. Springer, Berlin/Heidelberg, pp 277–294

    Chapter  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179

    Article  CAS  PubMed  Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A 93:8449–8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles. BMC Genet 15:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N, Gewin V, Tollefson J, Sachs J, Potrykus I (2010) How to feed a hungry world. Nature 466:531–532

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Indust Crops Prod 76:41–48

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 18:701596. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Gursanscky NR, Carroll BJ (2012) Mechanism of small RNA movement. In: Kragler F, Hülskamp M (eds) Short and long distance signaling. Springer, New York, pp 99–130

    Chapter  Google Scholar 

  • Hakeem KR, Akhtar J, Sabir M (2016) Soil science: agricultural and environmental prospectives. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:15051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MN, Ozturk M (2013) Enhancing plant productivity under salt stress: relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants. Springer, New York, pp 113–156

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Al Mahmud J, Hossain S, Alam K, Oku H, Fujita M (2017) Actions of biological trace elements in plant abiotic stress tolerance. In: Naeem M, Ansari AA, Gill SS (eds) Essential plant nutrients: uptake, use efficiency, and management. Springer, Cham, pp 213–274

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hsieh PH (2016) Maintenance and inheritance of DNA methylation in Arabidopsis. Ph.D. Thesis, UC Berkeley

    Google Scholar 

  • Huang SS, Ecker JR (2018) Piecing together cis-regulatory networks: insights from epigenomics studies in plants. Syst Biol Med 10:e1411

    Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8:e62085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Imadi SR, Shah SW, Kazi AG, Azooz MM, Ahmad P (2016) Phytoremediation of saline soils for sustainable agricultural productivity. In: Ahmad P (ed) Plant metal interaction. Elsevier, Amsterdam/Boston, pp 455–468

    Chapter  Google Scholar 

  • Jha A, Shankar R (2011) Employing machine learning for reliable miRNA target identification in plants. BMC Genomics 12:636. https://doi.org/10.1186/1471-2164-12-636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Martin C (1999) Multi-functionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Berger F (2014) Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 15:613

    Article  CAS  PubMed  Google Scholar 

  • Kayikcioglu HH (2012) Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions. J Environ Manag 102:108–114

    Article  CAS  Google Scholar 

  • Kolodyazhnaya YS, Kutsokon NK, Levenko BA, Syutikova OS, Rakhmetov DB, Kochetov AV (2009) Transgenic plants tolerant to abiotic stresses. Cytol Genet 43:132–149

    Article  Google Scholar 

  • Kumar A, Verma JP (2017) Does plant—Microbe interaction confer stress tolerance in plants: a review. Microbiol Res 207:41–52

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kumar M, Sharma S, Prasad R (2017) Probiotics and plant health. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Kumar H, Kumar M, Kumar J, Topno RK, Kumar P, Rana S, Sahoo GS (2018a) Biological impact of the host plants metabolites of Aspergillus flavus on its growth and its biosynthesis. Int J Curr Res Life Sci 7:1351–1357

    Google Scholar 

  • Kumar K, Aggarwal C, Singh I, Yadava P (2018b) Microbial genes in crop improvement. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 39–56

    Chapter  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Lim U, Song MA (2012) Dietary and lifestyle factors of DNA methylation. In: Cancer epigenetics. Humana Press, Totowa, pp 359–376

    Chapter  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wang L, Liu C, Song X, He S, Zhai H, Liu Q (2014) An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance. PLoS One 9:e93935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y (2013) Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8:e54002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM (2010) RNA-directed DNA methylation: mechanisms and functions. Plant Signal Behav 5:806–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31

    Article  CAS  PubMed  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulture 3:52

    Article  Google Scholar 

  • Marks RA, Smith JJ, Cronk Q, McLetchie DN (2018) Variation in the bacteriome of the tropical liverwort, Marchantia inflexa, between the sexes and across habitats. Symbiosis 75:93–101

    Article  Google Scholar 

  • Mateos JL, Bologna NG, Palatnik JF (2011) Biogenesis of plant microRNAs. In: Erdmann, Volker A, Barciszewski J (eds) Non coding RNAs in plants, Springer, Berlin/Heidelberg, pp 251–268

    Google Scholar 

  • Mathieu O, Bender J (2004) RNA-directed DNA methylation. J Cell Sci 117:4881–4888

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394

    Article  CAS  PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343

    Article  CAS  PubMed  Google Scholar 

  • Miller GA, Suzuki N, Ciftci-Yilmaz SU, Mittler RO (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2014) Use of microbes for the alleviation of soil stresses. Springer, Berlin

    Book  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Miura A, Nakamura M, Inagaki S, Kobayashi A, Saze H, Kakutani T (2009) An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. The EMBO J 28:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Moeller L, Wang K (2008) Engineering with precision: tools for the new generation of transgenic crops. AIBS Bull 58:391–401

    Google Scholar 

  • Morinaga T (1934) Interspecific hybridization in Brassica. Cytologia 6:62–67

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Ahmed AH (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    Article  CAS  PubMed  Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7

    Google Scholar 

  • Pasquinelli AE, Ruvkun G (2002) Control of developmental timing by microRNAs and their targets. Annu Rev Cell Devel Biol 18:495–513

    Article  CAS  Google Scholar 

  • Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12

    Article  CAS  PubMed  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Popova OV, Dinh HQ, Aufsatz W, Jonak C (2013) The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant 6:396–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajewsky N, Jurga S, Barciszewski J (2017) Plant epigenetics. Springer, Cham

    Book  Google Scholar 

  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127:2525–2543

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Reddy MP, Sanish S, Iyengar ER (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata under saline conditions. Photosynthetica Praha 26:173–179

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rodriguez-Uribe L, Higbie SM, Stewart JM, Wilkins T, Lindemann W, Sengupta-Gopalan C, Zhang J (2011) Identification of salt responsive genes using comparative microarray analysis in Upland cotton (Gossypium hirsutum L.). Plant Sci 180:461–469

    Article  CAS  PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti Cei F (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnol 10:1–22

    Article  CAS  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sabir P, Ashraf MU, Hussain M, Jamil AM (2009) Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. Pak J Bot 41:2957–2964

    CAS  Google Scholar 

  • Sadhana B (2014) Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol Appl Sci 3:384–400

    Google Scholar 

  • Saeed Akram M, Ashraf M, Shahbaz M, Aisha Akram N (2009) Growth and photosynthesis of salt-stressed sunflower (Helianthus annuus) plants as affected by foliar-applied different potassium salts. J Plant Nutri Soil Sci 172:884–893

    Article  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83:265–277

    Article  CAS  PubMed  Google Scholar 

  • Sevillano L, Sanchez-Ballesta MT, Romojaro F, Flores FB (2009) Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J Sci Food Agric 89:555–573

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Al-Qurainy F, Harris PJ (2012) Salt tolerance in selected vegetable crops. Crit Rev Plant Sci 31:303–320

    Article  CAS  Google Scholar 

  • Sharma R, Singh RM, Malik G, Deveshwar P, Tyagi AK, Kapoor S, Kapoor M (2009) Rice cytosine DNA methyltransferases–gene expression profiling during reproductive development and abiotic stress. FEBS J 276:6301–6311

    Article  CAS  PubMed  Google Scholar 

  • Shokri-Gharelo R, Noparvar PM (2018) Molecular response of canola to salt stress: insights on tolerance mechanisms. Peer J 6:e4822. https://doi.org/10.7717/peerj.4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B (2017) Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 10(1):051

    Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Singh CP, Chaudhary NS, Kannan B, Karan R (2018) Targeted genome editing for crop improvement in post genome-sequencing era. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 373–390

    Chapter  Google Scholar 

  • Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, Risueño MC, Testillano PS (2012) DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot 63:6431–6444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Yang JJ, Shi KH (2015) Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Exp Opin Therap Targe 19:707–716

    Article  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao NP, Tran VL (2016) Enhancement of plant productivity in the post-genomics era. Curr Genomics 17:295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Burritt DJ, Bhattacharjee S, Wani SH, Hossain MA (2016) Drought stress tolerance in plants. Springer, Cham

    Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • Van Der Heijden MG, De Bruin S, Luckerhoff L, Van Logtestijn RS, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Pandey MK, Puppala N (2017) Future prospects for Peanut improvement. In: The Peanut genome. Springer, Cham, pp 165–169

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FrontPlant Sci 6:873

    Google Scholar 

  • Wang LJ, He SZ, Zhai H, Liu DG, Wang YN, Liu QC (2013a) Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweet potato. J Integr Agric 12:27–35

    Article  Google Scholar 

  • Wang L, Liang W, Xing J, Tan F, Chen Y, Huang L, Cheng CL, Chen W (2013b) Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J Proteome Res 12:5124–5136

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Sun YF, Song N, Wei JP, Wang XJ, Feng H, Yin ZY, Kang ZS (2014) MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Plant Mol Biol 52(4):873–891

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13:e0196408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waśkiewicz A, Gładysz O, Goliński P (2016) Participation of phytohormones in adaptation to salt stress. In: Ahammed G, Yu JQ (eds) Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 75–115

    Google Scholar 

  • Wu YH, Wang T, Wang K, Liang QY, Bai ZY, Liu QL, Pan YZ, Jiang BB, Zhang L (2016) Comparative analysis of the chrysanthemum leaf transcript profiling in response to salt stress. PLoS One 11:e0159721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 over expression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Khanna K, Ruan S (2010) Expression of microRNAs and its regulation in plants. Semin Cell Devel Biol 21:790–797

    Article  CAS  Google Scholar 

  • Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Kikuchi S, Neumann P, Zhang W, Wu Y, Chen F, Jiang J (2010) Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant J 63:353–365

    Article  CAS  PubMed  Google Scholar 

  • Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC (2012) Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 48:521–531

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Zhang L, Hao H, Zhang P, Zhu H, Cheng W, Wang Y, Wang X, Wang C (2015) Nuclear-localized at HSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis. Plant J 84:1274–1294

    Article  CAS  PubMed  Google Scholar 

  • Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2009) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA-and osmotic stress-independent manner. J Exp Bot 61:563–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2011) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lii Y, Wu Z, Polishko A, Zhang H, Chinnusamy V, Lonardi S, Zhu JK, Liu R, Jin H (2013) Mechanisms of small RNA generation from cis-NATs in response to environmental and developmental cues. Mol Plant 6:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YL, Yu SX, Ye WW, Wang HM, Wang JJ, Fang BX (2010) Study on DNA cytosine methylation of cotton (Gossypium hirsutum L.) genome and its implication for salt tolerance. Agric Sci China 9:783–791

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK, Bressan RA, Hasegawa PM, Pardo JM, Bohnert HJ (2005) Salt and crops: salinity tolerance. Success Stories in Agriculture. Council for Agricultural Science and Technology, Autumn/Winter 32:13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Akhtar, M.S. (2019). Application of Microbial Biotechnology in Improving Salt Stress and Crop Productivity. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Springer, Singapore. https://doi.org/10.1007/978-981-13-8805-7_7

Download citation

Publish with us

Policies and ethics