Skip to main content

Overcoming the Physiopathologic Barriers: Nanoprobes-Mediated Intracranial Glioma Imaging

  • Chapter
  • First Online:
Book cover Nanomedicine in Brain Diseases
  • 503 Accesses

Abstract

Malignant glioma is characterized by active angiogenesis, high invasiveness and infiltration, and extremely rapid growth. Accurate visualization of glioma is crucial to the early diagnosis, preoperative localization, intraoperative guidance, and therapeutic evaluation and thus facilitates the clinical decision-making and improves the clinical outcomes of patients. However, conventional contrast agents directed toward intracranial glioma remain challenging, largely attributed to the existence of physiopathologic barriers unique to brain tumors. Remarkable advancements in nanotechnology and nanomedicine open a multidisciplinary field to design various nanoprobes for overcoming the physiopathologic barriers and for improved glioma imaging. This chapter starts with the critical biological challenges facing intracranial glioma. The innovative approaches for enhancing blood-brain barrier permeability and improved glioma targeting ability are presented. It then provides an overview of the unique advantages of nanomaterials for glioma imaging. The advanced applications of nanoprobes in intracranial glioma imaging are reviewed in detail, including magnetic resonance imaging, photoacoustic imaging, fluorescence imaging, multimodality imaging, and intraoperative glioma margin delineation. Finally, the current challenges and perspectives of this field are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nano R, Lascialfari A, Corti M, Paolini A, Pasi F, Corbella F, et al. New frontiers for astrocytic tumours. Anticancer Res. 2012;32(7):2755–8.

    PubMed  Google Scholar 

  2. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.

    Article  CAS  PubMed  Google Scholar 

  3. Linz U. Commentary on effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial (Lancet Oncol. 2009;10:459–466). Cancer. 2010;116(8):1844–6.

    Article  PubMed  Google Scholar 

  4. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology. 2002;59(6):947–9.

    Article  CAS  PubMed  Google Scholar 

  5. Prince MR, Zhang H, Morris M, MacGregor JL, Grossman ME, Silberzweig J, et al. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology. 2008;248(3):807–16.

    Article  PubMed  Google Scholar 

  6. Quattrocchi CC, van der Molen AJ. Gadolinium retention in the body and brain: is it time for an international joint research effort? Radiology. 2017;282(1):12–6.

    Article  PubMed  Google Scholar 

  7. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64(2):328–63.

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, et al. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale. 2016;8(15):7808–26.

    Article  CAS  PubMed  Google Scholar 

  10. Lesniak MS, Brem H. Targeted therapy for brain tumours. Nat Rev Drug Discov. 2004;3(6):499–508.

    Article  CAS  PubMed  Google Scholar 

  11. Pardridge WM. Crossing the blood-brain barrier: are we getting it right? Drug Discov Today. 2001;6(1):1–2.

    Article  PubMed  Google Scholar 

  12. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002;36(4):555–8.

    Article  CAS  PubMed  Google Scholar 

  13. Koo YE, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–77.

    Article  CAS  PubMed  Google Scholar 

  14. Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neuro-Oncol. 2000;50(1–2):99–108.

    Article  CAS  Google Scholar 

  15. Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv. 2012;9(6):671–86.

    Article  CAS  PubMed  Google Scholar 

  16. Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med. 2008;6:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018:e1801362.

    Google Scholar 

  18. Liu H, Chen X, Xue W, Chu C, Liu Y, Tong H, et al. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging. Int J Nanomedicine. 2016;11:5099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu H, Chu C, Liu Y, Pang X, Wu Y, Zhou Z, et al. Novel Intrapolymerization doped manganese-eumelanin coordination nanocomposites with ultrahigh relaxivity and their application in tumor theranostics. Adv Sci. 2018; https://doi.org/10.1002/advs.201800032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cao C, Wang X, Cai Y, Sun L, Tian L, Wu H, et al. Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers. Adv Mater. 2014;26(16):2566–71.

    Article  CAS  PubMed  Google Scholar 

  21. Chen N, Shao C, Qu Y, Li S, Gu W, Zheng T, et al. Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. ACS Appl Mater Interfaces. 2014;6(22):19850–7.

    Article  CAS  PubMed  Google Scholar 

  22. Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, et al. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano. 2012;6(1):410–20.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, et al. Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci. 2016;469:86–92.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F, et al. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One. 2012;7(5):e37376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo B, Wang S, Rao R, Liu X, Xu H, Wu Y, et al. Conjugation magnetic PAEEP-PLLA nanoparticles with Lactoferrin as a specific targeting MRI contrast agent for detection of brain Glioma in rats. Nanoscale Res Lett. 2016;11(1):227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xie H, Zhu Y, Jiang W, Zhou Q, Yang H, Gu N, et al. Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo. Biomaterials. 2011;32(2):495–502.

    Article  CAS  PubMed  Google Scholar 

  27. Abakumov MA, Shein SA, Vishvasrao H, Nukolova NV, Sokol’ski-Papkov M, Sandalova TO, et al. Visualization of experimental glioma C6 by MRI with magnetic nanoparticles conjugated with monoclonal antibodies to vascular endothelial growth factor. Bull Exp Biol Med. 2012;154(2):274–7.

    Article  CAS  PubMed  Google Scholar 

  28. Towner RA, Smith N, Asano Y, He T, Doblas S, Saunders D, et al. Molecular magnetic resonance imaging approaches used to aid in the understanding of angiogenesis in vivo: implications for tissue engineering. Tissue Eng Part A. 2010;16(2):357–64.

    Article  CAS  PubMed  Google Scholar 

  29. de Oliveira EA, Lazovic J, Guo L, Soto H, Faintuch BL, Akhtari M, et al. Evaluation of Magnetonanoparticles conjugated with new angiogenesis peptides in intracranial Glioma tumors by MRI. Appl Biochem Biotechnol. 2017;183(1):265–79.

    Article  PubMed  CAS  Google Scholar 

  30. Richard S, Boucher M, Lalatonne Y, Meriaux S, Motte L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochim Biophys Acta Gen Subj. 2017;1861(6):1515–20.

    Article  CAS  PubMed  Google Scholar 

  31. Tomanek B, Iqbal U, Blasiak B, Abulrob A, Albaghdadi H, Matyas JR, et al. Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging. Neuro-Oncology. 2012;14(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  32. Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomedicine. 2014;9:273–87.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mu K, Zhang S, Ai T, Jiang J, Yao Y, Jiang L, et al. Monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas. Mol Imaging. 2015;14

    Article  CAS  Google Scholar 

  34. Shevtsov MA, Yakovleva LY, Nikolaev BP, Marchenko YY, Dobrodumov AV, Onokhin KV, et al. Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Neuro-Oncology. 2014;16(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  35. Shevtsov MA, Nikolaev BP, Yakovleva LY, Dobrodumov AV, Zhakhov AV, Mikhrina AL, et al. Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma. Neoplasia. 2015;17(1):32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perera VS, Covarrubias G, Lorkowski M, Atukorale P, Rao A, Raghunathan S, et al. One-pot synthesis of nanochain particles for targeting brain tumors. Nanoscale. 2017;9(27):9659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu LH, Zhang JW, Li SP, Xie C, Yao ZW, Feng XY. Molecular imaging of angiogenesis to delineate the tumor margins in glioma rat model with endoglin-targeted paramagnetic liposomes using 3T MRI. J Magn Reson Imaging: JMRI. 2015;41(4):1056–64.

    Article  PubMed  Google Scholar 

  38. Liu X, Madhankumar AB, Miller PA, Duck KA, Hafenstein S, Rizk E, et al. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro-Oncology. 2016;18(5):691–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011;71(19):6116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Liu C, Hu D, Wang F, Wu H, Gong X, et al. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv Funct Mater. 2016; https://doi.org/10.1002/adfm.201603758.

    Article  CAS  Google Scholar 

  41. Liu C, Chen J, Zhu Y, Gong X, Zheng R, Chen N, et al. Highly sensitive MoS2-Indocyanine green hybrid for Photoacoustic imaging of Orthotopic brain Glioma at deep site. Nano-Micro Lett. 2018;10(3):48.

    Article  CAS  Google Scholar 

  42. Fan Q, Cheng K, Yang Z, Zhang R, Yang M, Hu X, et al. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater. 2015;27(5):843–7.

    Article  CAS  PubMed  Google Scholar 

  43. Guo B, Sheng Z, Hu D, Liu C, Zheng H, Liu B. Through scalp and skull NIR-II photothermal therapy of deep Orthotopic brain tumors with precise photoacoustic imaging guidance. Adv Mater. 2018;30(35):e1802591.

    Article  PubMed  CAS  Google Scholar 

  44. Nurmikko A. What future for quantum dot-based light emitters? Nat Nanotechnol. 2015;10(12):1001–4.

    Article  CAS  PubMed  Google Scholar 

  45. Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, et al. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine. 2017;12:3899–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang N, Cheng S, Zhang X, Tian Q, Pi J, Tang J, et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine. 2017;13(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Meng Y, Wang S, Li C, Shi W, Chen J, et al. Direct solvent-derived polymer-coated nitrogen-doped carbon Nanodots with high water solubility for targeted fluorescence imaging of Glioma. Small. 2015;11(29):3575–81.

    Article  CAS  PubMed  Google Scholar 

  48. Zheng M, Ruan S, Liu S, Sun T, Qu D, Zhao H, et al. Self-targeting fluorescent carbon dots for diagnosis of brain Cancer cells. ACS Nano. 2015;9(11):11455–61.

    Article  CAS  PubMed  Google Scholar 

  49. Prodi L, Rampazzo E, Rastrelli F, Speghini A, Zaccheroni N. Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev. 2015;44(14):4922–52.

    Article  CAS  PubMed  Google Scholar 

  50. Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, et al. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano. 2014;8(2):1231–42.

    Article  CAS  PubMed  Google Scholar 

  51. Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew WH, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I Photoacoustic imaging of Orthotopic brain tumors. Adv Mater. 2018;30:e1800766.

    Article  CAS  Google Scholar 

  52. Louie A. Multimodality imaging probes: design and challenges. Chem Rev. 2010;110(5):3146–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang L, Zhou Q, Mu K, Xie H, Zhu Y, Zhu W, et al. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials. 2013;34(30):7418–28.

    Article  CAS  PubMed  Google Scholar 

  54. Du Y, Qian M, Li C, Jiang H, Yang Y, Huang R. Facile marriage of Gd(3+) to polymer-coated carbon nanodots with enhanced biocompatibility for targeted MR/fluorescence imaging of glioma. Int J Pharm. 2018;552(1–2):84–90.

    Article  CAS  PubMed  Google Scholar 

  55. Gonawala S, Ali MM. Application of Dendrimer-based nanoparticles in Glioma imaging. J Nanomed Nanotechnol. 2017;8(3):444.

    PubMed  PubMed Central  Google Scholar 

  56. Chen N, Shao C, Li S, Wang Z, Qu Y, Gu W, et al. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J Colloid Interface Sci. 2015;457:27–34.

    Article  CAS  PubMed  Google Scholar 

  57. Sun L, Joh DY, Al-Zaki A, Stangl M, Murty S, Davis JJ, et al. Theranostic application of mixed gold and Superparamagnetic Iron Oxide nanoparticle micelles in glioblastoma Multiforme. J Biomed Nanotechnol. 2016;12(2):347–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Blanco VM, Chu Z, LaSance K, Gray BD, Pak KY, Rider T, et al. Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles. Oncotarget. 2016;7(22):32866–75.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shang W, Zeng C, Du Y, Hui H, Liang X, Chi C, et al. Core-Shell gold Nanorod@Metal-Organic framework nanoprobes for multimodality diagnosis of Glioma. Adv Mater. 2017;29(3). https://doi.org/10.1002/adma.201603917

    Article  CAS  Google Scholar 

  60. Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci. 2014;417:159–65.

    Article  CAS  PubMed  Google Scholar 

  61. Shevtsov M, Nikolaev B, Marchenko Y, Yakovleva L, Skvortsov N, Mazur A, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine. 2018;13:1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu XL, Ng CT, Chandrasekharan P, Yang HT, Zhao LY, Peng E, et al. Synthesis of ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a new class of magnetic Theranostic platform for in vivo T1 -T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthc Mater. 2016;5(16):2092–104.

    Article  CAS  PubMed  Google Scholar 

  63. Ni D, Shen Z, Zhang J, Zhang C, Wu R, Liu J, et al. Integrating anatomic and functional dual-mode magnetic resonance imaging: design and applicability of a bifunctional contrast agent. ACS Nano. 2016;10(3):3783–90.

    Article  CAS  PubMed  Google Scholar 

  64. Yang L, Shao B, Zhang X, Cheng Q, Lin T, Liu E. Multifunctional upconversion nanoparticles for targeted dual-modal imaging in rat glioma xenograft. J Biomater Appl. 2016;31(3):400–10.

    Article  CAS  PubMed  Google Scholar 

  65. Gao X, Yue Q, Liu Z, Ke M, Zhou X, Li S, et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold Nanoprobes with acid-triggered MRI/SERRS signals. Adv Mater. 2017 Jun;29(21). https://doi.org/10.1002/adma.201603917. Epub 2017 Mar 15.

    Article  CAS  Google Scholar 

  66. Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, et al. Dual-modality surface-enhanced resonance Raman scattering and multispectral Optoacoustic tomography nanoparticle approach for brain tumor delineation. Small. 2018;14(23):e1800740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18(5):829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (2017YFA0205201), the National Natural Science Foundation of China (81901872, 81422023, U1705281, and U1505221), the Fundamental Research Funds for the Central Universities (20720160065 and 20720150141), and the Program for New Century Excellent Talents in University, China (NCET-13-0502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Liu, Y., Man, F., Liu, G. (2019). Overcoming the Physiopathologic Barriers: Nanoprobes-Mediated Intracranial Glioma Imaging. In: Xue, X. (eds) Nanomedicine in Brain Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8731-9_5

Download citation

Publish with us

Policies and ethics