Skip to main content

Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms

  • Chapter
  • First Online:
Nutrient Dynamics for Sustainable Crop Production

Abstract

Phosphorus (P) is an essential nutrient in plant development and growth, and its deficiency is one of the major factors limiting crop yields worldwide. Although soils generally possess a large amount of total P (400–1000 mg kg−1), only a small ratio (1.00–2.50%) is immediately available for uptake of plants since 75–90% of added P is precipitated by metal–cation (calcium, iron, and aluminum) complexes and quickly becomes fixed in soils. The nature of calcareous soils in the arid and semiarid regions of the world has made P use efficiency (PUE) low (10–25%) in this land. For this reason, farmers have added a significant amount of these chemical fertilizers to the cultivated land to achieve the desired result every year. Low-use efficiency of the P fertilizers and their continuous long-term use have led to environmental pollution. The use of chemical P fertilizers cannot be omitted at this time without intensely diminishing food production. However, it is known that the compound use of phosphate-solubilizing microorganisms (PSMs) and chemical P fertilizers can reduce the negative impacts of overuse of these fertilizers and improve PUE in an efficient and environmentally prudent manner. Among the PSMs, it can be mentioned arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR). AMF increase the growth, yield, and absorption of nutrients in the plant mostly by increasing the effective absorptive area of the roots by formation of an extensive extraradical hyphal network, and PGPR also contribute directly to increasing the solubilization of insoluble P compounds in the soil and thereby plant growth through mechanisms like producing organic and inorganic acids, increasing root surface area, and improving beneficial symbiosis with host plants at different stages of plant growth. In addition, it is known that the plants inoculated with a combination of PGPR and AMF can express synergistic effect to augment plant growth indices while maintaining safe natural resources such as P stocks. This chapter is a critical summary of the efforts in using phosphate-solubilizing bacteria (PSB) and phosphate- solubilizing-AMF for augmenting the use efficiency of P fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

AMF:

Arbuscular mycorrhizal fungi

CK:

Cytokinins

GAs:

Gibberellins

IAA:

Indole-3-acetic acid

NFR:

N2-fixing rhizobia

N:

Nitrogen

P:

Phosphorus

PGP:

Plant growth promoting

PGPEB:

Plant growth-promoting endophytic bacteria

PGPR:

Plant growth-promoting rhizobacteria

PSB:

Phosphate-solubilizing bacteria

PSF:

Phosphorus-solubilizing fungi

PSMs:

Phosphate-solubilizing microorganisms

PUE:

P use efficiency

RP:

Rock phosphate

TCP:

Tricalcium phosphate

References

  • Abbasi MK, Mansha S, Rahim N, Ali A (2013) Agronomic effectiveness and phosphorus utilization efficiency of rock phosphate applied to winter wheat. Agron J 105:1606–1612

    Article  CAS  Google Scholar 

  • Abbasi MK, Musa N, Manzoor M (2015) Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences 12:4607–4619

    Article  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Article  Google Scholar 

  • Adnan M et al (2017) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 7:16131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Abboud MA, Ghany TMA, Alawlaqi MM (2014) Role of biofertilizers in agriculture: a brief review. Mycopathologia 11:95–101

    Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Al-Rohily KM, Ghoneim AM, Modaihsh AS, Mahjoub MO (2013) Phosphorus availability in calcareous soil amend with chemical phosphorus fertilizer, cattle manure compost and sludge manure. Int J Soil Sci 8:17–24

    Article  Google Scholar 

  • Alzoubi MM, Gaibore M (2012) The effect of phosphate solubilizing bacteria and organic fertilization on availability of Syrian rock phosphate and increase of triple superphosphate efficiency. World J Agric Sci 8:473–478

    CAS  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70:794–801

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Attia M, Ahmed MA, El-Sonbaty MR (2009) Use of biotechnologies to increase growth, productivity and fruit quality of Maghrabi banana under different rates of phosphorus. World J Agric Sci 5:211–220

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic (32 P and 15 N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatal Agric Biotechnol 3:97–110

    Article  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand I, Holloway RE, Armstrong RD, McLaughlin MJ (2003) Chemical characteristics of phosphorus in alkaline soils from southern Australia. Soil Res 41:61–76

    Article  CAS  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bona E et al (2016) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bona E et al (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bouhraoua D, Aarab S, Laglaoui A, Bakkali M, Arakrak A (2015) Phosphate solubilizing bacteria efficiency on mycorrhization and growth of peanut in the northwest of Morocco. Am J Microbiol Res 3:176–180

    CAS  Google Scholar 

  • Buée M, Boer W, Martin F, Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212. https://doi.org/10.1007/s11104-009-9991-3

    Article  CAS  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and riceyield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Castagno LN, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 110:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen Z, Ma S, Liu LL (2008) Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, McConkey BJ, Glick BR (2010) Proteomic studies of plant–bacterial interactions. Soil Biol Biochem 42:1673–1684. https://doi.org/10.1016/j.soilbio.2010.05.033

    Article  CAS  Google Scholar 

  • Cockefair EA (1931) The role of phosphorus in the metabolism of plants. Am J Bot 18:582–597

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in Response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J App Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017a) Multi-function role as nutrient and scavenger off reeradical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 1163(9):1–18. https://doi.org/10.3390/su9071163

    Article  CAS  Google Scholar 

  • Desai S, Kumar GP, Amalraj LD, Bagyaraj DJ, Ashwin R (2016) Exploiting PGPR and AMF biodiversity for plant health management. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 145–160

    Chapter  Google Scholar 

  • Dey KB (1988) Phosphate solubilizing organisms in improving fertility status. In, 1988, pp 237–248

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Ditta A, Muhammad J, Imtiaz M, Mehmood S, Qian Z, Tu S (2018) Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int J Recycl Organic Waste Agric 7:33–40

    Article  Google Scholar 

  • Duarah I, Deka M, Saikia N, Boruah HPD (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 1:227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H (2018a) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  • Etesami H (2018b) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112. https://doi.org/10.1016/j.agee.2017.11.007

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA (2016a) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:5–12. https://doi.org/10.1016/j.rhisph.2016.09.003

    Article  Google Scholar 

  • Etesami H, Alikhani HA (2016b) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biol Control 94:11–24

    Article  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, Singapore, pp 163–200

    Chapter  Google Scholar 

  • Etesami H, Beattie G (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148. https://doi.org/10.3389/fmicb.2018.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA (2014a) Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol Mol Biol Plants 20:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA, Mohammadi L (2014b) Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33:654–670

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani H, Mirseyed Hosseini H (2015a) Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem, vol 12. Sustainable development and biodiversity. Springer International Publishing, Cham, pp 183–258. https://doi.org/10.1007/978-3-319-24654-3_8

    Chapter  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015b) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015c) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: Bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp 183–258

    Chapter  Google Scholar 

  • Fallah Nosratabad AR, Etesami H, Shariati S (2017) Integrated use of organic fertilizer and bacterial inoculant improves phosphorus use efficiency in wheat (Triticum aestivum L.) fertilized with triple superphosphate. Rhizosphere 3:109–111. https://doi.org/10.1016/j.rhisph.2017.03.001

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric Ecosyst Environ 258:59–70

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2006) At the root of the wood wide web: self recognition and nonself incompatibility in mycorrhizal networks. Plant Signal Behav 1:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gogoi N, Baruah KK, Meena RS (2018) Grain legumes: impact on soil health and agroecosystem. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_16

    Chapter  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Article  Google Scholar 

  • Güneş A, Ataoğlu N, Turan M, Eşitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    Article  CAS  Google Scholar 

  • Guo Y, Ni Y, Huang J (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grassl 44:109–114

    Google Scholar 

  • Gupta RP, Vyas MK, Pandher MS (1998) Role of phosphorus solubilizing microorganisms in P-economy and crop yield Soil–Plant–Microbe Interaction in Relation to Nutrient Management, pp 95-101

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 133–143

    Chapter  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, JDv E (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Islam MT, Hossain MM (2012) Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In: Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 325–363

    Chapter  Google Scholar 

  • Islam MT, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara S (2007) Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Z Naturforsch C 62:103–110

    Article  CAS  Google Scholar 

  • Jang S, Negalur CB, Narayan M, Lakshman HC (2016) Effect of phosphate solubilizing bacteria and arbuscular mycorrhizal fungi with and without rock phosphate on four forest tree seedlings. Int J Bioassays 6:5204–5207

    Article  Google Scholar 

  • Jangandi S, Negalur CB, Narayan M, Lakshman HC (2016) Effect of phosphate solubilizing bacteria and arbuscular mycorrhizal fungi with and without rock phosphate on four forest tree seedlings. Int J Bioassays 6:5204–5207

    Article  Google Scholar 

  • Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018) Nitrogen and legumes: a meta-analysis. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_9

    Chapter  Google Scholar 

  • Kalavathi BP, Santhanakrishnan P, Divya MP (2000) Effect of VA-mycorrhizal fungus and phosphorus solubilising bacterium in neem. Indian Forester 126:67–70

    Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Mukatira UT, D’Urzo MP, Damsz B, Raghothama KG (2002) Regulated expression of Arabidopsis phosphate transporters. Plant Physiol 130:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Reddy MS (2015) Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25:428–437

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury A, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997a) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1997b) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  Google Scholar 

  • Kim K et al (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440

    Article  CAS  Google Scholar 

  • Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biol Fertil Soils 42:358–361

    Article  Google Scholar 

  • Kpomblekou-a K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks1. Soil Sci 158:442–453

    Article  CAS  Google Scholar 

  • Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    Article  CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Article  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017a) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microb App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017b) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Kumar S, Meena RS, Lal R, Yadav GS, Mitran T, Meena BL, Dotaniya ML, EL-Sabagh A (2018a) Role of legumes in soil carbon sequestration. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_4

    Chapter  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018b) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Martinoia E, Renton M (2015) Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25:23–31

    Article  CAS  PubMed  Google Scholar 

  • Layek J, Das A, Mitran T, Nath C, Meena RS, Singh GS, Shivakumar BG, Kumar S, Lal R (2018) Cereal+Legume intercropping: an option for improving productivity. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_11

    Chapter  Google Scholar 

  • Lee Y, Krishnamoorthy R, Selvakumar G, Kim K, Sa T (2015) Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol Chem 58:533–540. https://doi.org/10.1007/s13765-015-0072-4

    Article  CAS  Google Scholar 

  • Leifert C, Waites WM, Nicholas JR (1989) Bacterial contaminants of micropropagated plant cultures. J Appl Bacteriol 67:353–361

    Article  Google Scholar 

  • Leytem AB, Mikkelsen RL (2005) The nature of phosphorus in calcareous soils Better Crops, vol 89, pp 11–13

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Lugtenberg B (2015) Life of Microbes in the Rhizosphere. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Cham, pp 7–15. https://doi.org/10.1007/978-3-319-08575-3_3

    Chapter  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Mäder P et al (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Martinez C (2010) Sustainable development and biodiversity. Environ Policy Law 40:273

    Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • McLaughlin M (2012) Technical Bulletin: phosphorus fertilizer use efficiency in soils. Fertiliser Technology Research Centre, pp 1–4

    Google Scholar 

  • Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_1

    Chapter  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Botany 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J App Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L.) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agri 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agri 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. The J Crop and Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018a) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018b) Legume green manuring: an option for soil sustainability. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_12

    Chapter  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018c) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Leg Res 41(4):563–571

    Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Mitran T, Meena RS, Lal R, Layek J, Kumar S, Datta R (2018) Role of soil phosphorus on legume production. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_15

    Chapter  Google Scholar 

  • Miyasaka SC, Habte M (2001) Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Commun Soil Sci Plant Anal 32:1101–1147

    Article  CAS  Google Scholar 

  • Mohamed HM (2015) Impact of inoculation with arbuscular mycorrhizal, phosphate solubilizing bacteria and soil yeast on growth, yield and phosphorous content of onion plants. Int J Soil Sci 10:93

    Article  CAS  Google Scholar 

  • Mohamed AA, Eweda WEE, Heggo AM, Hassan EA (2014) Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Ann Agric Sci 59:109–118. https://doi.org/10.1016/j.aoas.2014.06.015

    Article  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    Article  CAS  PubMed  Google Scholar 

  • Munyanziza E, Kehri HK, Bagyaraj DJ (1997) Agricultural intensification, soil biodiversity and agro-ecosystem function in the tropics: the role of mycorrhiza in crops and trees. Appl Soil Ecol 6:77–85

    Article  Google Scholar 

  • Nadagouda MG, Lakshman HC (2010) Microbial solubilization of P and Arbuscular mycorrhizal fungi use for yield and phosphate uptake in improvement of nodulation and yield of [Vicia faba L.]. Int J Agric Sci 6:319–321

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nahas E (2007) Phosphate solubilizing microorganisms: effect of carbon, nitrogen, and phosphorus sources. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer Netherlands, Dordrecht, pp 111–115. https://doi.org/10.1007/978-1-4020-5765-6_15

    Chapter  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nations U (2015) World population prospects: the 2015 revision United Nations. Econ Soc Aff 33:1–66

    Google Scholar 

  • Nazir R, Warmink JA, Boersma H, Van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  CAS  PubMed  Google Scholar 

  • Nosratabad ARF, Etesami H, Shariati S (2017) Integrated use of organic fertilizer and bacterial inoculant improves phosphorus use efficiency in wheat (Triticum aestivum L.) fertilized with triple superphosphate. Rhizosphere 3:109–111

    Article  Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth H-R, Frossard E (2001) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Article  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46:707–715

    Article  CAS  Google Scholar 

  • Oliveira CA et al (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Vélez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Panhwar QA, Radziah O, Rahman AZ, Sariah M, Razi IM, Naher UA (2011a) Contribution of phosphate-solubilizing bacteria in phosphorus bioavailability and growth enhancement of aerobic rice. Span J Agric Res 9:810–820

    Article  Google Scholar 

  • Panhwar QA, Radziah O, Zaharah AR, Sariah M, Razi IM (2011b) Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice

    Google Scholar 

  • Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J 2013:1–10

    Article  CAS  Google Scholar 

  • Pei-Xiang Y et al (2012) Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around Dianchi Lake drainage area of China. Pedosphere 22:707–716

    Article  Google Scholar 

  • Perez-Lopez R, Alvarez-Valero AM, Nieto JM (2007) Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Hazard Mater 148:745–750

    Article  CAS  PubMed  Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Sabannavar SJ, Lakshman HC (2009) Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J Agric Sci 5:470–479

    CAS  Google Scholar 

  • Sandhya A, Vijaya T, Sridevi A, Narasimha G (2013) Influence of vesicular arbuscular mycorrhiza (VAM) and phosphate solubilizing bacteria (PSB) on growth and biochemical constituents of Marsdenia volubilis. Afr J Biotechnol 12:5648–5654

    Google Scholar 

  • Sapsirisopa S, Chookietwattana K, Maneewan K, Khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Ag-Ind 2:S69–S74

    Google Scholar 

  • Saxena J, Jha A (2014) Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants. Clean Soil Air Water 42:1248–1252

    Article  CAS  Google Scholar 

  • Saxena J, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Plant Nutr 13:511–525

    Google Scholar 

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of Phosphate-solubilizing Bacteria and Fungi for Promotion of Growth and Yield of Chickpea (Cicer arietinum). J Crop Improv 29:353–369

    Article  CAS  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1:61–63

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X-K, Ma J-J, Liu L-J (2017) Effects of phosphate-solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi. J Plant Interact 12:137–142

    Article  CAS  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1-2):517–519

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Conservation agriculture. Springer, Singapore, pp 113–134

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, Amsterdam

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Sofi PA, Baba ZA, Hamid B, Meena RS (2018) Harnessing soil Rhizobacteria for improving drought resilience in legumes. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_8

    Chapter  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2008) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol

    Google Scholar 

  • Souchie EL, Saggin-Júnior OJ, Silva EMR, Campello EFC, Azcón R, Barea JM (2006) Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An Acad Bras Cienc 78:183–193

    Article  CAS  PubMed  Google Scholar 

  • Suri VK, Choudhary AK, Chander G, Verma TS, Gupta MK, Dutt N (2011) Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic Alfisol. Commun Soil Sci Plant Anal 42:2265–2273

    Article  CAS  Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci:978–985

    Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro M, Azcon R, Barea J (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing Rhizobacteria to improve rock phosphate bioavailability ((sup32) P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017a) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stu 5(2):384–389

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017b) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015c) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vitousek PM et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid F, Sharif M, Steinkellner S, Khan MA, Marwat K, Khan S (2016) Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak J Bot 48:739–747

    CAS  Google Scholar 

  • Williams CH, Donald CM (1957) Changes in organic matter and pH in a podzolic soil as influenced by subterranean clover and superphosphate. Aust J Agric Res 8:179–189

    Article  CAS  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017b) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017c) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sc. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience 46:932–936

    Article  CAS  Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA, Rejali F, Nadian HA (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15:1310–1318

    CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Saleh-Rastin N, Alikhani HA, Aliasgharzadeh N (2006) Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    Article  CAS  Google Scholar 

  • Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543

    Article  CAS  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China Evidence-Based Complementary and Alternative Medicine 2011

    Google Scholar 

Download references

Acknowledgment

I wish to thank the University of Tehran for providing the necessary facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etesami, H. (2020). Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. In: Meena, R. (eds) Nutrient Dynamics for Sustainable Crop Production. Springer, Singapore. https://doi.org/10.1007/978-981-13-8660-2_8

Download citation

Publish with us

Policies and ethics