Skip to main content

Physiological, Biochemical, and Molecular Aspects of Seed Priming

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Seed priming is a low-cost and effective strategy to enhance seed germination, vigor index, and yield in many field crops mainly under adverse environmental conditions. Seed priming is known to trigger the normal metabolic developments during early stage of germination, before the radicle protrusion. Higher, faster, and synchronized germination of primed seeds largely occurs due to enzyme activation, reduced imbibition time, metabolic reparation during imbibition, buildup of germination-promoting metabolites, and osmotic adjustment. Moreover, plants emerging from primed seeds exhibit faster activation of cellular defense systems, which trigger tolerance against consequent exposure to environmental stresses in the field. Several seed priming approaches including hydropriming, nutrient priming, hormonal priming, chemical priming, osmopriming, and redox priming can be effectively used under different environmental conditions. The present chapter provides an overview of the physiological, biochemical, and molecular changes modulated by seed priming, which enhance seed germination and plant growth. Moreover, it discusses the possible mechanisms associated with seed priming-induced abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQP:

Aquaporin

AsA:

Ascorbic acid

ATP:

Adenosine triphosphate

BER:

Base excision repair

CAT:

Catalase

DEPs:

Differentially expressed proteins

DHN:

Dehydrins

GA:

Gibberellin

GR:

Glutathione reductase

H2O2:

Hydrogen peroxide

HR:

Homologous recombination

LEA:

Late embryogenesis abundant

MT:

Metallothionein

NaCl:

Sodium chloride

NER:

Nucleotide excision repair

OA:

Osmotic adjustment

OP:

Osmotic potential

PAs:

Polyamines

PEG:

Polyethylene glycol

POD:

Peroxidases

Pro:

Proline

ROS:

Reactive oxygen species

RWC:

Relative water contents

SOD:

Superoxide dismutase

References

  • Anaytullah, Bose B (2007) Nitrate-hardened seeds increase germination, amylase activity and proline content in wheat seedlings at low temperature. Physiol Mol Biol Plants 13:199–207

    CAS  Google Scholar 

  • Anaytullah, Srivastava AK, Bose B (2012) Impact of seed hardening treatment with nitrate salts on nitrogen and antioxidant defense metabolisms in Triticum aestivum L under different sowing conditions. Vegetos 25:292–299

    Google Scholar 

  • Anderson AJ, McLean JE, Jacobson AR, Britt DW (2017) CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem 66(26):6513–6524

    Article  PubMed  CAS  Google Scholar 

  • Ashraf MFMR, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidant in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Côme D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant 97:104–110

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Come D (2000) Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci Res 10:35–42

    Article  CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    Article  CAS  PubMed  Google Scholar 

  • Baker EH, Bradford KJ, Bryant JA, Rost TL (1995) A comparison of desiccation related proteins (dehydrin and QP47) in peas (Pisum sativum). Seed Sci Res 5:185–193

    Article  CAS  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2011a) Seed imbibition in Medicago truncatula Gaertn. Expression profiles of DNA repair genes in relation to PEG-mediated stress. J Plant Physiol 168:706–713

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Dona` M, Carbonera D (2011b) Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30:287–295

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Dona` M, Carbonera D (2012) Genotoxic stress, DNA repair, and crop productivity. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, Berlin, pp 153–169

    Google Scholar 

  • Basra AS, Singh B, Malik CP (1994) Priming-induced changes in polyamine levels in relation to vigor of aged onion seeds. Bot Bull Acad Sinica 35:19–23

    CAS  Google Scholar 

  • Basu RN, Chattopadhyay K, Pal P (1973) Maintenance of seed viability in rice (Oryza sativa L.) and Jute (Corchorus capsularis L. and C. olitorius L.). Indian Agric 18:76–79

    Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effects of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolkhina O, Virolainen E, Fagerstedt K (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Borges AA, Dobon A, Expósito-Rodríguez M, Jiménez-Árias D, Borges-Pérez A, CasañasSánchez V, Pérez JA, Luis JC, Tornero P (2009) Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol J 7:744–762

    Article  CAS  PubMed  Google Scholar 

  • Bose B, Kumar M, Singhal RK, Mondal S (2018) Impact of seed priming on the modulation of Physico-chemical and molecular processes during germination, growth, and development of crops. In: Advances in seed priming. Springer, Singapore, pp 23–40

    Chapter  Google Scholar 

  • Bourgne S, Job C, Job D (2000) Sugar beet seed priming: solubilization of the basic subunit of 11-S globulin in individual seeds. Seed Sci Res 10:153–156

    Article  CAS  Google Scholar 

  • Bray CM (1995) Biochemical processes during the osmopriming of seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  CAS  PubMed  Google Scholar 

  • Bray CM, Davison PA, Ashraf M, Taylor MR (1989) Biochemical events during osmopriming of leek seed. Ann Appl Biol 102:185–193

    Google Scholar 

  • Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26:114

    Article  CAS  Google Scholar 

  • Cantliffe DJ, Sung Y, Nascimento WM (2000) Lettuce seed germination. Hortic Rev 24:229–275

    CAS  Google Scholar 

  • Capron I, Corbineau F, Dacher F, Job C, Côme D, Job D (2000) Sugar beet seed priming: effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci Res 10:243–254

    Article  CAS  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub J, Fischer U, Pestsova E, West-Hoff P, Van Dorsselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124(3):1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127(3):928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Nonogaki H, Bradford KJ (2002) A gibberellin-regulated xyloglucanendotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. J Exp Bot 53:215–223

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012a) Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot 63(11):4107–4121

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012b) Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2013) Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biol Plantarum 57(1):193–198

    Article  CAS  Google Scholar 

  • Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vankova R, Amir R, Miller G (2014) ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chojnowski M, Corbineau F, Côme D (1997) Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Sci Res 7:323–331

    Article  Google Scholar 

  • Corbineau F, Ozbingol N, Vineland D, Come D (2000) Improvement of tomato seed germination by osmopriming as related to energy metabolism. In: Black M, Bradford KJ, Vasquez-Ramos J (eds) Seed biology advances and applications: proceedings of the sixth international workshop on seeds. CABI Cambridge, Merida, pp 467–474

    Google Scholar 

  • Cordoba-Canero D, Rolda n´-Arjona T, Ariza RR (2014) Arabidopsis ZDP DNA 30-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. Plant J 79:824–834

    Article  CAS  PubMed  Google Scholar 

  • Dahal P, Bradford KJ, Jones RA (1990) Effects of priming and endosperm integrity on seed germination rates of tomato genotypes II. J Exp Bot 41:1441–1453

    Article  Google Scholar 

  • De Castro R, Zheng X, Bergervoet JHW, De Vos CHR, Bino RJ (1995) β -tubulin accumulation and DNA replication in imbibing tomato seeds. Plant Physiol 109:499–504

    Article  PubMed  PubMed Central  Google Scholar 

  • De Tullio MC, Arrigoni O (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13:249–260

    Article  CAS  Google Scholar 

  • El-Araby MM, Moustafa SMA, Ismail AI, Hegazi AZA (2006) Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein patterns and anatomical seed features. Acta Agronomica Hungarica 54(4):441–457

    Article  CAS  Google Scholar 

  • Elkoca E, Haliloglu K, Esitken A, Ercisli S (2007) Hydro-and osmopriming improve chickpea germination. Acta Agric Scand Sect B Soil Plant Sci 57(3):193–200

    Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Elouaer MA, Hannachi C (2012) Seed priming to improve germination and seedling growth of safflower (Carthamustinctorius) under salt stress. Eur J Biosci 6:76–84

    Article  CAS  Google Scholar 

  • Farhoudi R, Saeedipour S, Mohammadreza D (2011) The effect of NaCl seed priming on salt tolerance, antioxidant enzyme activity, proline and carbohydrate accumulation of Muskmelon (Cucumismelo L.) under saline conditions. Afr J Agric Res 6:136–370

    Google Scholar 

  • Fashui H (2002) Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biol Trace Elem Res 87:191–200

    Article  PubMed  Google Scholar 

  • Galhaut L, Lespinay A, Walker DJ, Bernal MP, Correal E, Lutts S (2014) Seed priming of Trifoliumrepens L. improved germination and early seedling growth on heavy metal contaminated soil. Water Air Soil Pollut 225:1–15

    Article  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerekhove J et al (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerekhove J, Job D (2004) Proteomics of Arabidopsis seed germination and priming. In: Nicholas G (ed) The biology of seeds: recent advances. CABI, Cambridge, pp 199–209

    Google Scholar 

  • Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms. Protoplasma 250:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Groot SPC, Karrssen CM (1987) Gibberellins regulate seed germination in tomato by weakening: a study with gibberellin-deficient mutants. Planta 171:525–531

    Article  CAS  PubMed  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumilevskaya NA, Azarkovich MI (2010) Identification and characterization of dehydrins in horse chestnut recalcitrant seeds. Russ J Plant Physiol 57:859–864

    Article  CAS  Google Scholar 

  • Habdas H, Szafirowska A, Sokolowska A, Grzesik M (1998) Cytological and physiological effects of matriconditioning on low viable cucumber seed germination. In: XXV IntHort congress, part 7: quality of horticultural products, pp 113–120

    Google Scholar 

  • Hinckley TM, Durhme F, Hinckley AR, Richter H (1980) Water relations of drought hardy shrubs: osmotic potential and stomatal reactivity. Plant Cell Environ 3:131–140

    Google Scholar 

  • Hsu CC, Chen CL, Chen JJ, Sung JM (2003) Accelerated agingenhanced lipid peroxidation in bitter gourd seeds and effects of priming and hot water soaking treatments. Sci Hortic 98:201–212

    Article  CAS  Google Scholar 

  • Hu J, Zhu ZY, Song WJ, Wang JC, Hu WM (2005) Effects of sand priming on germination and field performance in direct-sown rice (Oryza sativa L.). Seed Sci andTech 33(1):243–248

    Article  Google Scholar 

  • Huang Z, Boubriak I, Osborne DJ, Dong M, Gutterman Y (2007) Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. Ann Bot 101:277–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S et al (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101. https://doi.org/10.1038/srep08101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016a) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in Rice cultivars. Front Plant Sci 7:116. https://doi.org/10.3389/fpls.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016b) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439. https://doi.org/10.3389/fpls.2016.00439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018a) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA (2018b) Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant 40(4):68

    Article  CAS  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198(1):38–45

    Article  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35(5):1381–1396

    Article  Google Scholar 

  • Job C, Kersulec A, Ravasio L, Chareyre S, Pépin R, Job D (1997) The solubilization of the basic subunit of sugar beet seed 11-S globulin during priming and early germination. Seed Sci Res 7:225–243

    Article  CAS  Google Scholar 

  • Kaya MD, Okcu G, Atak M, Cikili Y, Kolsarici O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kermode AR (1990) Regulatory mechanisms involved in transition from seed development to germination Crit. Rev Plant Sci 9:155–195

    Article  CAS  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, ur Rehman H (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166(2):236–244

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28:81–87

    CAS  Google Scholar 

  • Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 181:309–315

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Beckett RP, Minibayeva FV, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Zmienk´o A et al (2015a) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015b) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Plant Sci 183:1–12

    CAS  Google Scholar 

  • Kumar M, Pant B, Mondal S, Bose B (2016) Hydro and halo priming: influenced germination responses in wheat Var-HUW-468 under heavy metal stress. Acta Physiol Plant 38:217

    Article  CAS  Google Scholar 

  • Lanteri S, Saracco F, Kraak HL, Bino RJ (1994) The effects of priming on nuclear replication activity and germination of pepper (Capsicum annuum) and tomato (Lycopersicon esculentum) seeds. Seed Sci Res 4:81–87

    Article  Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yun SH, Park EH (1998) Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J Crop Sci 43:194–198

    Google Scholar 

  • Li Z, Xu J, Gao Y, Wang C, Guo G, Luo Y, Huang Y, Hu W, Sheteiwy MS, Guan Y, Hu J (2017) The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front Plant Sci 8:1153

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Xing D, Li L, Zhang L (2007) Rapid deterioration of seed vigour based on the level of superoxide generation during early imbibition. Photochem Photobiol Sci 6:767–774

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32(3):317–328

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) Seed priming: new comprehensive approaches for an old empirical technique. In: New challenges in seed biology-basic and translational research driving seed technology. InTech

    Google Scholar 

  • Lv Y, Zhang S, Wang J, Hu Y (2016) Quantitative proteomic analysis of wheat seeds during artificial ageing and priming using the isobaric tandem mass tag labeling. PLoS One 11(9):0162851

    Article  CAS  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Carbonera D (2010) The Tdp1; 1; (Tyrosyl-DNA phosphodiesterase) gene family in barrel medic (Medicago truncatula Gaertn.): bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 232:393–407

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Buttafava A, Carbonera D (2011a) The TFIIS and TFIIS-like genes from Medicago truncatula are involved in oxidative stress response. Gene 470:20–30

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Fae` M, Carbonera D (2011b) New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol Biochem 49:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Garg B, Raikwar S, Balestrazzi A, Carbonera D, Buttafava A, Bremont JFJ, Gill SS, Tuteja N (2014) Synergistic exposure of rice seeds to different doses of gamma-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. Biomed Res Int 2014:676–934

    Article  CAS  Google Scholar 

  • Matias JR, Ribeiro RC, Aragão CA, AraújoGgl DBF (2015) Physiological changes in osmo and hydroprimed cucumber seeds germinated in biosaline water. J Seed Sci 37:7–15

    Article  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512

    Article  CAS  PubMed  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Vijai P, Bose B (2011) Role of seed hardening in rice variety Swarna (MTU 7029). Res J Seed Sci 4:157–165

    Article  Google Scholar 

  • Naglreiter C, Reichenauer TG, Goodman BA, Bolhàr-Nordenkampf HR (2005) Free radical generation in Pinussylvestris and Larix decidua seeds primed with polyethylene glycol or potassium salt solutions. Plant Physiol Biochem 43(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20(2):55–67

    Article  CAS  Google Scholar 

  • Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123(4):1235–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oge` L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P (2008) Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20:3022–3037

    Article  CAS  Google Scholar 

  • Özbingöl N, Corbineau F, Groot SPC, Bino RJ, Côme D (1999) Activation of the cell cycle in tomato (Lycopersicon esculentum mill) seeds during osmoconditioning as related to temperature and oxygen. Ann Bot 84:245–251

    Article  Google Scholar 

  • Pal M, Gondor OK, Janda T (2013) Role of salicylic acid in acclimation to low temperature. Acta Agron Hung 61:161–172

    Article  CAS  Google Scholar 

  • Pant B, Bose B (2016) Mitigation of the influence of PEG-6000 imposed water stress on germination of halo primed rice seeds. Int J Agric Environ Biotechnol 9:275

    Article  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Corbineau F, Vinel D, Bailly C, Côme D (2001) Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol Plant 111(4):473–482

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Rakshit A, Singh HB (2018) Advances in seed priming. Nature Springer

    Google Scholar 

  • Randhir R, Shetty K (2005) Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Process Biochem 40:1721–1732

    Article  CAS  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  PubMed  CAS  Google Scholar 

  • Roberts DR, Dumbroff EB, Thompson JE (1986) Exogenous polyamines alter membrane fluidity in bean leaves—a basis for their potential misinterpretation of their true physiological role. Planta 167:395–401

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vignaradiata L. Wilczek). Indian J Exp Biol 48:593–560

    CAS  PubMed  Google Scholar 

  • Sananda M, Bose B (2012) Kinetics studies on α-amylase extracted from germinating wheat endosperm of primed and non-primed seeds. Indian J Agric Biochem 25:137–141

    Google Scholar 

  • Sharma MK, Bose B (2006) Effect of seed hardening with nitrate salts on seedling emergence, plant growth and nitrate assimilation of wheat (Triticum aestivum L.). Physiol Mol Biol Plants 12:173–176

    CAS  Google Scholar 

  • Sharma SN, Maheshwari A (2015) Expression patterns of DNA repair genes associated with priming small and large chickpea (Cicer arietinum) seeds. Seed Sci Technol 43:250–261

    Article  Google Scholar 

  • Singh A, Gupta R, Pandey R (2016) Rice seed priming with picomolarrutin enhances rhiospheric Bacillus subtilis CIM colonization and plant growth. PLoS One 11(1):e0146013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siriwitayawan G, Geneve RL, Downie AB (2003) Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci Res 13:303–314

    Article  CAS  Google Scholar 

  • Sisodia A, Padhi M, Pal AK, Barman K, Singh AK (2018) Seed priming on germination, growth and flowering in flowers and ornamental trees. Springer Nature

    Google Scholar 

  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Preface. Blackwell Publishing, Ltd., Oxford. https://doi.org/10.1002/9780470988565

    Google Scholar 

  • Srivastava AK, Bose B (2012) Effect of nitrate seed priming on phenology, crop growth rate and yield attributes in rice (Oryza sativa L.). Vegetos 25:174–181

    Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32:1135–1144

    Article  Google Scholar 

  • Sung FJM, Chang YH (1993) Biochemical activities associated with priming of sweet corn seeds to improve vigor. Seed Sci Technol 21:97–105

    Google Scholar 

  • Sung Y, Cantliffe DJ, Nagata RT, Nascimento WM (2008) Structural changes in lettuce seed during germination at high temperature altered by genotype, seed maturation temperature, and seed priming. J Am Soc Hort Sci 133(2):300–311

    Article  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 5:89–97

    Article  CAS  Google Scholar 

  • Van der Geest AHM (2002) Seed genomics: germinating opportunities. Seed Sci Res 12:145–153

    Article  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The sub cellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Ventura L, Dona` M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A (2012) Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem 60:196–206

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Villiers TA, Edgcumbe DJ (1975) On the cause of seed determination in dry storage. Seed Sci Technol 3:761–774

    Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S, Huang L, Cui K, Nie L (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep. https://doi.org/10.1038/srep19637

  • Waterworth WM, Drury GE, Bray CM, West CE (2011) Repairing breaks in the plant genome: the importance of keeping it together. New Phytol 192:805–822

    Article  CAS  PubMed  Google Scholar 

  • Wechsberg GE, Probert RJ, Bray CM (1994) The relationship between ‘dehydrin like’ protein sand seed longevity in Ranunculus sceleratus L. J Exp Bot 45:1027–1030

    Article  CAS  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144(3):1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62(10):3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. J Plant Physiol 203:116–126

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290

    Article  CAS  Google Scholar 

  • Yang S-H, Lan S-S, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Liu L, Gao F, Rampitsch C, Reinecke DM, Ozga JA, Ayele BT (2012) Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. J Plant Physiol 15:1477–1488

    Article  CAS  Google Scholar 

  • Yeh YM, Chiu KY, Chen CL, Sung JM (2005) Partial vacuum extends the longevity of primed bitter gourd seeds by enhancing their anti-oxidative activities during storage. Sci Hortic 104:101–112

    Article  CAS  Google Scholar 

  • Zhang S, Hu J, Liu N, Zhu Z (2006) Pre-sowing seed hydration treatment enhances the cold tolerance of direct-sown rice. Seed Sci Technol 34(3):593–601

    Article  CAS  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J et al (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178

    Article  CAS  Google Scholar 

  • Zhuo J, Wang W, Lu Y, Sen W, Wang X (2009) Osmopriming-regulated changes of plasma membrane composition and function were inhibited by phenylarsin oxide in soybean seeds. J Integr Plant Biol 9:858–867

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S., Hussain, S., Khaliq, A., Ali, S., Khan, I. (2019). Physiological, Biochemical, and Molecular Aspects of Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_3

Download citation

Publish with us

Policies and ethics