Skip to main content

The Dual Role of Oxidative Stress in Lung Cancer

  • Chapter
  • First Online:

Abstract

Reactive oxygen species (ROS) are produced by several endogenous and exogenous sources, and their levels are controlled by several antioxidants. Oxidative stress results from an imbalance between ROS production and removal by antioxidant mechanisms. The risk factors which are commonly associated with chronic diseases (e.g., cancer) interact with the cells through the formation of ROS. These factors include stress, cigarette smoking, air pollutants, radiation, and infection. The lung is considered a target organ continuously affected by exogenous and endogenous ROS. There is now increasing evidence that there is association between oxidative stress and lung cancer. Interestingly, it was found that ROS could not only promote tumorigenesis, but also they have anti-tumorigenic effect. This dual role of ROS in cancers (e.g., lung cancer) relies on their amount, type, and the site of their production. For example, moderate amount of ROS was associated with tumor cell survival, proliferation, angiogenesis, and metastasis. On the contrary, excessive amount of ROS could induce tumor cell death. Thus, it is essential to investigate the dual role of ROS in cancers, for the development of novel therapeutic approaches targeting redox regulatory mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARE:

Antioxidant response element

CAT:

Catalase

EGFR:

Epidermal growth factor receptor

GPx:

glutathione peroxidase

KEAP1:

Kelch-like ECH-Associated Protein 1

MAPK:

Mitogen-activated protein kinase

MPO:

Myeloperoxidases

NOX:

NADPH oxidase

NRF2:

NFE2-related factor 2

NSCLC:

Non-small cell lung cancer

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Trx:

Thioredoxin

References

  • Alexandrova AY, Kopnin PB, Vasiliev JM, Kopnin BP (2006) ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp Cell Res 312(11):2066–2073. Epub 2006/04/21

    Article  CAS  PubMed  Google Scholar 

  • Altman BJ, Rathmell JC (2009) Autophagy: not good OR bad, but good AND bad. Autophagy 5(4):569–570. Epub 2009/04/29

    Article  PubMed  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):1–15. Epub 2008/01/08

    Article  CAS  PubMed  Google Scholar 

  • Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11(4):777–790. Epub 2008/10/03

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. Epub 2007/01/24

    Article  CAS  PubMed  Google Scholar 

  • Ben Mahdi MH, Andrieu V, Pasquier C (2000) Focal adhesion kinase regulation by oxidative stress in different cell types. IUBMB Life 50(4–5):291–299. Epub 2001/05/01

    Article  CAS  PubMed  Google Scholar 

  • Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK et al (2013) Autophagy: cancer’s friend or foe? Adv Cancer Res 118:61–95. Epub 2013/06/19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19. Epub 2012/12/27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brar SS, Corbin Z, Kennedy TP, Hemendinger R, Thornton L, Bommarius B et al (2003) NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol 285(2):C353–C369. Epub 2003/04/11

    Article  CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. Epub 2018/09/13

    Article  PubMed  Google Scholar 

  • Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116(3):531–549. Epub 2015/01/31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang T-C, Huang C-J, Tam K, Chen S-F, Tan KT, Tsai M-S et al (2005) Stabilization of hypoxia-inducible factor-1α by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. J Biol Chem 280(44):36567–36574

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182. Epub 2007/10/06

    Article  CAS  PubMed  Google Scholar 

  • Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G et al (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161(5):933–944. Epub 2003/06/11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC (2001) Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res 61(23):8578–8585. Epub 2001/12/04

    CAS  PubMed  Google Scholar 

  • Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468. quiz 469–470. Epub 2008/09/09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper WA, Lam DCL, O’Toole SA, Minna JD (2013) Molecular biology of lung cancer. J Thorac Dis 5(Suppl 5):S479–S490

    PubMed  PubMed Central  Google Scholar 

  • Deshpande SS, Angkeow P, Huang J, Ozaki M, Irani K (2000) Rac1 inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J 14(12):1705–1714. Epub 2000/09/07

    Article  CAS  PubMed  Google Scholar 

  • Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA (2009) Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2(88):ra53. Epub 2009/09/17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. Epub 2007/06/15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012:762825. Epub 2012/06/06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filaire E, Dupuis C, Galvaing G, Aubreton S, Laurent H, Richard R et al (2013) Lung cancer: what are the links with oxidative stress, physical activity and nutrition. Lung Cancer 82(3):383–389. Epub 2013/10/29

    Article  PubMed  Google Scholar 

  • Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports Med 36(4):327–358. Epub 2006/04/01

    Article  PubMed  Google Scholar 

  • Gibbons DL, Byers LA, Kurie JM (2014) Smoking, p53 mutation, and lung cancer. Mol Cancer Res 12(1):3–13. Epub 2014/01/21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SB (2010) A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy 6(7):835–837. Epub 2010/09/08

    Article  CAS  PubMed  Google Scholar 

  • Gill JG, Piskounova E, Morrison SJ (2016) Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol 81:163–175. Epub 2017/01/14

    Article  PubMed  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947. Epub 2013/11/30

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Ye SS, Cao N, Huang J, Gao J, Chen QY (2010) ROS-mediated autophagy was involved in cancer cell death induced by novel copper(II) complex. Exp Toxicol Pathol 62(5):577–582. Epub 2009/09/18

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16(11):1295–1322. Epub 2011/11/26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11. Epub 2006/12/08

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt S, Buchler N, Wahn H (2002) Tissue lipid peroxidation and reduced glutathione depletion in hypochlorite-induced lung injury. Chest 121(2):573–581. Epub 2002/02/09

    Article  CAS  PubMed  Google Scholar 

  • Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414(3):552–556. Epub 1997/10/10

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. Epub 2011/03/08

    Article  CAS  PubMed  Google Scholar 

  • Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257. Epub 2006/11/23

    Article  CAS  PubMed  Google Scholar 

  • Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66(19):9349–9351. Epub 2006/10/05

    Article  CAS  PubMed  Google Scholar 

  • Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 7:193. Epub 2017/09/13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishdorj G, Li L, Gibson SB (2012) Regulation of autophagy in hematological malignancies: role of reactive oxygen species. Leuk Lymphoma 53(1):26–33. Epub 2011/07/14

    Article  CAS  PubMed  Google Scholar 

  • Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Phys 271(4 Pt 2):H1626–H1634. Epub 1996/10/01

    CAS  Google Scholar 

  • Kelley EE, Hock T, Khoo NK, Richardson GR, Johnson KK, Powell PC et al (2006) Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. Free Radic Biol Med 40(6):952–959. Epub 2006/03/17

    Article  CAS  PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. Epub 2006/09/14

    Article  CAS  PubMed  Google Scholar 

  • Kinnula VL, Everitt JI, Whorton AR, Crapo JD (1991) Hydrogen peroxide production by alveolar type II cells, alveolar macrophages, and endothelial cells. Am J Phys 261(2 Pt 1):L84–L91. Epub 1991/08/01

    CAS  Google Scholar 

  • Kometani T, Yoshino I, Miura N, Okazaki H, Ohba T, Takenaka T et al (2009) Benzo[a]pyrene promotes proliferation of human lung cancer cells by accelerating the epidermal growth factor receptor signaling pathway. Cancer Lett 278(1):27–33. Epub 2009/02/03

    Article  CAS  PubMed  Google Scholar 

  • Kopfstein L, Christofori G (2006) Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci 63(4):449–468. Epub 2006/01/18

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Hwang SJ, Choi JH, Jeong HG (2008) Saponins derived from the roots of Platycodon grandiflorum inhibit HT-1080 cell invasion and MMPs activities: regulation of NF-kappaB activation via ROS signal pathway. Cancer Lett 268(2):233–243. Epub 2008/05/24

    Article  CAS  PubMed  Google Scholar 

  • Leone A, Roca MS, Ciardiello C, Terranova-Barberio M, Vitagliano C, Ciliberto G et al (2015) Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radic Biol Med 89:287–299. Epub 2015/09/28

    Article  CAS  PubMed  Google Scholar 

  • Leone A, Roca MS, Ciardiello C, Costantini S, Budillon A (2017) Oxidative stress gene expression profile correlates with cancer patient poor prognosis: Identification of crucial pathways might select novel therapeutic approaches. Oxidative Med Cell Longev 2017:1

    Article  CAS  Google Scholar 

  • Lerena C, Calligaris SD, Colombo MI (2008) Autophagy: for better or for worse, in good times or in bad times. Curr Mol Med 8(2):92–101. Epub 2008/03/14

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S221–S226. Epub 2003/07/23

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang XL, Fang YC, Wang CY (2010) Tephrosin-induced autophagic cell death in A549 non-small cell lung cancer cells. J Asian Nat Prod Res 12(11):992–1000. Epub 2010/11/10

    Article  CAS  PubMed  Google Scholar 

  • Lim YP, Lim TT, Chan YL, Song AC, Yeo BH, Vojtesek B et al (2007) The p53 knowledgebase: an integrated information resource for p53 research. Oncogene 26(11):1517–1521. Epub 2006/09/06

    Article  CAS  PubMed  Google Scholar 

  • Liu PL, Chen YL, Chen YH, Lin SJ, Kou YR (2005) Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG. Am J Physiol Lung Cell Mol Physiol 289(5):L739–L749. Epub 2005/06/21

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44(8):1529–1535. Epub 2008/02/16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Shen S-M, Zhao X-Y, Chen G-Q (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3(2):165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L et al (2010) Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 285(50):38832–38840. Epub 2010/10/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15. Epub 2002/07/13

    Article  CAS  PubMed  Google Scholar 

  • Marx J (2006) Autophagy: is it cancer’s friend or foe? Science 312(5777):1160–1161. Epub 2006/05/27

    Article  CAS  PubMed  Google Scholar 

  • Misthos P, Katsaragakis S, Milingos N, Kakaris S, Sepsas E, Athanassiadi K et al (2005) Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg 27(3):379–382. discussion 382-373. Epub 2005/03/03

    Article  CAS  PubMed  Google Scholar 

  • Moon DO, Kim MO, Choi YH, Hyun JW, Chang WY, Kim GY (2010) Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett 288(2):204–213. Epub 2009/08/01

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. Epub 2008/12/09

    Article  CAS  PubMed  Google Scholar 

  • Nagata M (2005) Inflammatory cells and oxygen radicals. Curr Drug Targets Inflamm Allergy 4(4):503–504. Epub 2005/08/17

    Article  CAS  PubMed  Google Scholar 

  • Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784. Epub 2004/08/12

    Article  CAS  PubMed  Google Scholar 

  • Nohl H, Kozlov AV, Gille L, Staniek K (2003) Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans 31(Pt 6):1308–1311. Epub 2003/12/04

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303–1309. Epub 2008/03/05

    Article  CAS  PubMed  Google Scholar 

  • Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7(6):e2253. Epub 2016/06/10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park WH (2018a) Hydrogen peroxide inhibits the growth of lung cancer cells via the induction of cell death and G1phase arrest. Oncol Rep 40(3):1787–1794. Epub 2018/06/30

    CAS  PubMed  Google Scholar 

  • Park WH (2018b) MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion. Oncol Rep 39(2):860–870. Epub 2017/12/06

    CAS  PubMed  Google Scholar 

  • Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14(1):27–38. Epub 2009/01/16

    Article  PubMed  Google Scholar 

  • Park EJ, Choi KS, Kwon TK (2011) beta-Lapachone-induced reactive oxygen species (ROS) generation mediates autophagic cell death in glioma U87 MG cells. Chem Biol Interact 189(1–2):37–44. Epub 2010/11/03

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski WJ, Marczak J (2000) Cellular sources of oxidants in the lung. Int J Occup Med Environ Health 13(4):369–385. Epub 2001/03/30

    CAS  PubMed  Google Scholar 

  • Price M, Terlecky SR, Kessel D (2009) A role for hydrogen peroxide in the pro-apoptotic effects of photodynamic therapy. Photochem Photobiol 85(6):1491–1496. Epub 2009/08/08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in cancer. Ann Rev Cancer Biol 1(1):79–98

    Article  Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992. Epub 2016/11/05

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T (2015) Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol 6:344–352. Epub 2015/09/04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JM (2008) Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol 130(2):281–297. Epub 2008/07/04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167. Epub 2012/10/30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiels MS, Pfeiffer RM, Hildesheim A, Engels EA, Kemp TJ, Park JH et al (2013) Circulating inflammation markers and prospective risk for lung cancer. J Natl Cancer Inst 105(24):1871–1880. Epub 2013/11/20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A (2011) Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol Cancer Ther 10(7):1161–1172. Epub 2011/05/14

    Article  CAS  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418. Epub 2001/03/21

    Article  CAS  PubMed  Google Scholar 

  • Souza HP, Laurindo FR, Ziegelstein RC, Berlowitz CO, Zweier JL (2001) Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. Am J Physiol Heart Circ Physiol 280(2):H658–H667. Epub 2001/02/13

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman BM (2007) Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 287:60–63. discussion 63–69. Epub 2007/12/14

    CAS  PubMed  Google Scholar 

  • Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, Caro J (2001) Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem 276(25):21995–21998

    Article  CAS  PubMed  Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267(5203):1445–1449. Epub 1995/03/10

    Article  CAS  PubMed  Google Scholar 

  • Svineng G, Ravuri C, Rikardsen O, Huseby NE, Winberg JO (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49(3):197–202. Epub 2008/07/29

    Article  CAS  PubMed  Google Scholar 

  • Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M et al (2016) The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxidative Med Cell Longev 2016:3907147. Epub 2016/01/23

    Article  CAS  Google Scholar 

  • Thabut G, El-Benna J, Samb A, Corda S, Megret J, Leseche G et al (2002) Tumor necrosis factor-alpha increases airway smooth muscle oxidants production through a NADPH oxidase-like system to enhance myosin light chain phosphorylation and contractility. J Biol Chem 277(25):22814–22821. Epub 2002/04/10

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028. Epub 2000/11/15

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Day RM, Klinz SG, Bastien MC, Larios JM, FANBURG BL (2000) Ras-dependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-β1. FASEB J 14(12):1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Tkaczyk J, Vizek M (2007) Oxidative stress in the lung tissue–sources of reactive oxygen species and antioxidant defence. Prague Med Rep 108(2):105–114. Epub 2008/01/30

    CAS  PubMed  Google Scholar 

  • Tobar N, Caceres M, Santibanez JF, Smith PC, Martinez J (2008) RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NFkappaB-dependent mechanism. Cancer Lett 267(1):125–132. Epub 2008/04/25

    Article  CAS  PubMed  Google Scholar 

  • Tochhawng L, Deng S, Pervaiz S, Yap CT (2013) Redox regulation of cancer cell migration and invasion. Mitochondrion 13(3):246–253. Epub 2012/09/11

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. Epub 2009/05/30

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52. Epub 2008/04/15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdameri G, Trombetta-Lima M, Worfel PR, Pires AR, Martinez GR, Noleto GR et al (2011) Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem Biol Interact 193(2):180–189. Epub 2011/07/16

    Article  CAS  PubMed  Google Scholar 

  • Wang R, An J, Ji F, Jiao H, Sun H, Zhou D (2008) Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun 373(1):151–154. Epub 2008/06/17

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ma J, Tan Y, Wang Z, Sheng C, Chen S et al (2010) Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. J Alzheimers Dis 21(2):597–610. Epub 2010/06/24

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D et al (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106(3):526–535. Epub 2009/12/19

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107(19):8788–8793. Epub 2010/04/28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wochna A, Niemczyk E, Kurono C, Masaoka M, Kedzior J, Slominska E et al (2007) A possible role of oxidative stress in the switch mechanism of the cell death mode from apoptosis to necrosis–tudies on rho0 cells. Mitochondrion 7(1–2):119–124. Epub 2007/02/16

    Article  CAS  PubMed  Google Scholar 

  • Wright RM, Ginger LA, Kosila N, Elkins ND, Essary B, McManaman JL et al (2004) Mononuclear phagocyte xanthine oxidoreductase contributes to cytokine-induced acute lung injury. Am J Respir Cell Mol Biol 30(4):479–490. Epub 2003/09/27

    Article  CAS  PubMed  Google Scholar 

  • Wu XJ, Hua X (2007) Targeting ROS: selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound. Cancer Biol Ther 6(5):646–647. Epub 2007/03/28

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no conflict of interest.

Funding Sources

Not required.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, A.M. (2019). The Dual Role of Oxidative Stress in Lung Cancer. In: Chakraborti, S., Chakraborti, T., Das, S., Chattopadhyay, D. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8413-4_5

Download citation

Publish with us

Policies and ethics