Skip to main content

Plant-Microbe Communication: New Facets for Sustainable Agriculture

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Nowadays, sustainable agriculture is the need of the hour as it necessitates increasing plant productivity without causing much disturbance in the environment. In principle, regression in crop production has been attributed to several environmental vagaries including water deficit conditions, saline stress, and heavy metal (HM) stress. Sustainability of any agroecosystems depends on plant-microbe communications that operate in the rhizosphere where microbial biota including both saprophytes and mutualistic symbionts exist. Among them, plant growth-promoting rhizobacteria (PGPRs) and arbuscular mycorrhizal (AM) fungi are designated as biofertilizers due to their multifunctional traits including soil stabilization, nitrogen fixation, nutrient recycling, phytohormone synthesis, and upregulation of defense responses in plants when subjected to stress conditions. At the rhizospheric level, such microorganisms interact intensely with host roots as well as among themselves, thus leading to the successful establishment of the microcosm environment of mutable activities. This chapter documents and highlights (1) the physical and chemical communication that assists in the functioning of root microbiota and (2) the potential role of multifaceted microbes (PGPRs and AM fungi) in stimulating plant growth and development under stressed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WDM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1–10

    Article  CAS  Google Scholar 

  • Abdel Latef AAH, Miransari M (2014) The role of arbuscular mycorrhizal Fungi in alleviation of salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York

    Chapter  Google Scholar 

  • Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Akhgar M, Arzanlou R, Bakker PAHM, Hamidpour M (2014) Characterization of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24:461–468

    Article  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alamgir M (2016) The effects of soil properties to the extent of soil contamination with metals. In: Environmental remediation technologies for metal-contaminated soils. Springer, Tokyo, pp 1–19

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236

    Article  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. Containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-La-Peña C, Jasinaski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146(2):762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagyaraj DJ, Rangaswami G (2005) Microorganisms in soil. In: Agricultural microbiology, 2nd edn. Prentice Hall of India Private Limited, New Delhi, p 254

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). Following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin/Heidelberg, pp 195–212

    Chapter  Google Scholar 

  • Barea JM, Pozo MJ, López-Ráez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón R, Azcón-Aguilar C (2014) Arbuscular mycorrhizas and their significance in promoting soil-plant system sustainability against environmental stresses. In: Rodelas MB, González-López J (eds) Beneficial plant-microbial interactions ecology and applications. CRC Press/Taylor & Francis, Boca Raton, pp 353–387

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2017) Mycorrhizosphere interactions to improve a sustainable production of legumes. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 199–225

    Chapter  Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894

    Article  CAS  PubMed  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant – fungal symbioses. Trends Plant Sci 19:734–740

    Article  CAS  PubMed  Google Scholar 

  • Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res Int 25(30):29953–29970

    Article  PubMed  Google Scholar 

  • Bhandari P, Garg N (2017) Dynamics of arbuscular mycorrhizal symbiosis and its role in nutrient acquisition: an overview. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza – nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 21–43

    Chapter  Google Scholar 

  • Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225

    Article  Google Scholar 

  • Bitla UM, Sorty AM, Meena KK, Singh NP (2017) Rhizosphere signaling cascades: fundamentals and determinants. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 211–226

    Chapter  Google Scholar 

  • Bonfante P, Desiró A (2015) Arbuscular mycorrhizas: the lives of beneficial fungi and their plant host. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 235–245

    Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodeling in the rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316

    Article  CAS  Google Scholar 

  • Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci U S A 109:13859–13864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonnel S, Gutjahr C (2014) Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci 5:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlos MH, Stefani PV, Janette AM, Melani MS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 189:53–61

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Chakraborty B, Sarkar J (2018) Amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms. In: Kashyap PK, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 105–148

    Google Scholar 

  • Chandra P, Singh E (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62

    Chapter  Google Scholar 

  • Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):fiw083

    Article  PubMed  CAS  Google Scholar 

  • Choudhary D (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:368. https://doi.org/10.3389/fmicb.2014.00368

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M, D’Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994) Enod40, a gene expressed during nodule organogenesis, codes for a nontranslatable RNA involved in plant growth. EMBO J 13:5099–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signalling in plants. Biotechnol Adv 24(4):410–419

    Article  CAS  PubMed  Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses and perception during initiation of nodule development. Glycobiology 12:79–105

    Article  Google Scholar 

  • Dey RK, Pal KM, Thomas DN, Sherathia VB, Mandaliya RA, Bhadania MB, Patel P, Maida DH, Mehta BD, Nawade S, Patel V (2018) Endophytic microorganisms: future tools for climate resilient agriculture. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 235–253

    Google Scholar 

  • Diédhiou I, Diouf D (2018) Transcription factors network in root endosymbiosis establishment and development. World J Microbiol Biotechnol 34(3):37

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stresses conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationships to those of other nodulating bacteria. Mol Plant-Microbe Interact 7:564–572

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Downie JA, Rossen L, Knight CD, Robertson JG, Wells B, Johnston AW (1985) Rhizobium leguminosarum genes involved in early stages of nodulation. J Cell Sci Suppl 2:347–354

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderás J, Warnke R (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell 85:673–681

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA (2016a) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:15. https://doi.org/10.1016/j.rhisph.2016.09.003

    Article  Google Scholar 

  • Etesami H, Alikhani HA (2016b) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biol Control 94:11–24

    Article  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200

    Chapter  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp 183–258

    Chapter  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/ahll/spush

  • Feddermann N, Reinhardt D (2011) Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfaces. Plant Signal Behav 6:680–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 109(7):2666–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1996) Rapid alkalization of root hairs in response to rhizobial lipochitooligosaccharide signals. Plant J 10:295–301

    Article  CAS  Google Scholar 

  • Filho JAC, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 129–164

    Chapter  Google Scholar 

  • Floss DS, Levy JG, Lévesque-Tremblay V et al (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 110:E5025–E5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Baher N (2013) Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L. (chickpea) genotypes under salt stress. J Plant Growth Regul 32:767–778

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremediation 14(1):62–74

    Article  PubMed  Google Scholar 

  • Garg N, Bhandari P (2016a) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2016b) Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma 253(5):1325–1345

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–591

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2011) The effects of salinity on nitrogen fixation and trehalose metabolism in mycorrhizal Cajanus cajan (L.) millsp. plants. J Plant Growth Regul 30(4):490–503

    Article  CAS  Google Scholar 

  • Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68

    Article  CAS  Google Scholar 

  • Garg N, Kashyap L (2017) Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes. Environ Sci Pollut Res 24:18520–18535

    Article  CAS  Google Scholar 

  • Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199(2):118–133

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27(2):115

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25(3):165–180

    Article  PubMed  Google Scholar 

  • Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67

    Article  Google Scholar 

  • Garg N, Singh S (2017) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2015) Naringenin-and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. J Plant Growth Regul 34(3):595–610

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80(1):5–22

    Article  CAS  Google Scholar 

  • Genre A (2012) Signalling and the re-structuring of plant cell architecture in am symbiosis. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis, signaling and communication in plants, vol 11. Springer, Berlin, pp 51–71

    Chapter  Google Scholar 

  • Genre A, Chabaud M, Timmers T et al (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadovsky M (2007) Legume symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC Deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gonzalez-Guerrero M, Benabdellah K, Valderas A, Azcon-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transprter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of the arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Radovanovic D, Geoffroy J et al (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MA, MNV P (eds) Salt stress in plants: signalling, omics and adaptations. Springer Science+Business Media, New York, pp 301–354

    Chapter  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Haldar S, Sengupta S (2016) Microbial ecology at rhizosphere: bioengineering and future prospective. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 63–96

    Chapter  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Lü X, Bai J, Qiao Y, Paré PW, Wang S, Zhang J, Wu Y, Pang X, Xu W, Wang Z (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:1–8

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312(1–2):7–14

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Mubin M, Ali S, Arif MS, Hussain S, Riaz M, Abbas F (2016) Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 23:220–233

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3 J Agric Res Dev 5:108–119

    Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jones KM (2012) Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J Bacteriol 194:4322–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junghans U, Polee A, Duchting P, Weiler E, Kuhlman B, Grubber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Article  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science+Business Media, New York, pp 359–401

    Chapter  Google Scholar 

  • Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Microbial-mediated amelioration of plants under abiotic stress: an emphasis on arid and semiarid climate. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 155–163

    Chapter  Google Scholar 

  • Kaur S, Kaur G (2018) Morphological and physiological aspects of symbiotic plant–microbe interactions and their significance. In: Giri B, Prasad R, Varma A (eds) Root biology. Soil biology, vol 52. Springer, Cham, pp 367–407

    Chapter  Google Scholar 

  • Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszynski A (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312

    Article  CAS  PubMed  Google Scholar 

  • Kawaharada Y, Nielsen MW, Kelly S, James EK, Andersen KR, Rasmussen SR (2017) Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 8:14534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly SJ, Muszŷnski A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N (2013) Conditional requirement for exopolysaccharide in the Mesorhizobium–Lotus symbiosis. Mol Plant-Microbe Interact 26:319–329

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis/CRC Press, Boca Raton, pp 207–220

    Chapter  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2):245–252

    Article  CAS  Google Scholar 

  • Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452

    Article  CAS  Google Scholar 

  • Lee GW, Lee K, Chae J (2016a) Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis. Protoplasma 253:655–661

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yap M, Behringer G, Hung R (2016b) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerouge P, Roche P, Faucher C (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu Y, Hao Z, Li H, Wang Y, Chen B (2013) First cloning and characterization of two functional aquaporin genes from an Arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Li L, Nagai K, Yin F (2016) Progress in cold roll bonding of metals. Sci Technol Adv Mater 9:023001 (11pp). https://doi.org/10.1088/1468-6996/9/2/023001

    Article  CAS  Google Scholar 

  • Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243(6):1375–1385

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J (2004) From auxin homeostasis to understanding plant pathogen and plant symbiont interaction: editor’s research interests. J Plant Growth Regul 23:1–8

    Article  CAS  Google Scholar 

  • Maheswari TU, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136

    Google Scholar 

  • Manaf HH, Zayed MS (2015) Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Ann Agric Sci 60(2):219–226

    Article  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 1–32

    Chapter  Google Scholar 

  • Meena H, Ahmed MA, Prakash P (2015) Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotech Res Commun 8:171–174

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, De Santis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332(6033):1097–1100. https://doi.org/10.1126/science.1203980. PMID: 21551032

    Article  CAS  PubMed  Google Scholar 

  • Miliute I, Buzaite O, Stanys V (2015) Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture 102(4):465–478

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Muni RRD, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah KK (2016) Rhizosphere interactions: life below ground. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 3–23

    Chapter  Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora N (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 1–36

    Google Scholar 

  • Naveed M, Aziz MZ, Yaseen M (2017) Perspectives of using endophytic microbes for legume improvement. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 277–299

    Chapter  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891

    Article  PubMed  CAS  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–715

    Article  CAS  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Ovchinnikova E, Journet E-P, Chabaud M (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant-Microbe Interact 24:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan M, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Parniske M, Schmidt P, Kosch K, Muller P (1994) Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. Mol Plant-Microbe Interact 7:631–638

    Article  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54(3):89–99

    Article  CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS root software. Arch Phytopathol Plant Protect 39:311–314

    Article  CAS  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Pellegrino E, Opik M, Bonari E, Ercoli L (2015) Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem 84:210–217

    Article  CAS  Google Scholar 

  • Pellock BJ, Cheng H-P, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684

    Article  CAS  PubMed  Google Scholar 

  • Prasad MP, Dagar S (2014) Identification and characterization of endophytic bacteria from fruits like avocado and black grapes. Int J Curr Microbiol App Sci 3(8):937–947

    Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7

    Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219

    Article  CAS  PubMed  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  CAS  PubMed  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rech SS, Heidt S, Requena N (2013) A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula. Plant J 75:711–725

    Article  CAS  PubMed  Google Scholar 

  • Reddy S, Schorderet M, Feller U, Reinhardt D (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J 51:739–750

    Article  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Plant-Microbe Interact 5:238

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer Science +Business Media BV, Dordrecht, pp 239–256

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012a) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Bárzana G, Azcón C, Aroca R (2012b) Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art. In: Aroca R (ed) Plant responses to drought stress, from morphological to molecular features. Springer, Heidelberg, pp 335–362

    Chapter  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Saif S, Zaidi A, Khan MS, Rizvi A (2017) Metal-legume-microbe interactions: toxicity and remediation. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham, pp 367–385

    Chapter  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Saxena S, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, pp 197–232

    Chapter  Google Scholar 

  • Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2):296–303

    Article  PubMed  Google Scholar 

  • Selim SM, Zayed MS (2017) Role of biofertilizers in sustainable agriculture under abiotic stresses. In: Panpatte D, Jhala Y, Vyas R, Shelat H (eds) Microorganisms for green revolution. Microorganisms for sustainability, vol 6. Springer, Singapore, pp 281–301

    Chapter  Google Scholar 

  • Sengupta A, Gunri SK, Biswas T (2017) Microbial interactions and plant health. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 61–84

    Chapter  Google Scholar 

  • Sharma P, Khanna V, Kumari S (2016) Abiotic stress mitigation through plant-growth-promoting rhizobacteria. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 327–342

    Chapter  Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2009) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Mol Plant-Microbe Interact 21:799–807

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simões M, Simões LC, Cleto S, Machado I, Pereira MO, Vieira MJ (2007) Antimicrobial mechanisms ofortho – phthalaldehyde action. J Basic Microbiol 47(3):230–242

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:139–152

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbial. https://doi.org/10.3389/fmicb.2015.00937

  • Singh RK, Singh P, Li HB, Yang LT, Li YR (2017) Soil–plant–microbe interactions: use of nitrogen-fixing bacteria for plant growth and development in sugarcane. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 35–59

    Chapter  Google Scholar 

  • Singh RP, Manchanda G, Anwar MN, Zhang JJ, Li YZ (2018) Mycorrhiza – helping plants to navigate environmental stresses. In: Kashyap PK, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture. Wiley, Hoboken, pp 205–233

    Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing rhizobium–legume symbiosis using signaling factors. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, Vienna, pp 27–54

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20

    Article  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP, Sheeley DM, van Brussel AAN et al (1991) A novel highly unsaturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–130

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3(1):38–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2012) Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. J Plant Pathol Microbiol 3:145. https://doi.org/10.4172/2157-7471.1000145

    Article  Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2017) Microbe-mediated induced abiotic stress tolerance responses in plants. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 101–133

    Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • UN (2016) United Nations proclaims 2016 as “International year of pulses”. Global pulse confederation. Retrieved 24 Jan 2016, (A/RES/68/231)

    Google Scholar 

  • Ullah S, Hussain MB, Khan MY, Asghar HN (2017) Ameliorating salt stress in crops through plant growth-promoting Bacteria. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 549–575

    Chapter  Google Scholar 

  • Upadhyay S, Singh D, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00356

  • Venkadasamy GP, George S, Raina SK, Kumar M, Rane J, Kannepalli A (2018) Plant-associated microbial interactions in the soil environment: role of endophytes in imparting abiotic stress tolerance to crops. In: Bal S, Mukherjee J, Choudhury B, Dhawan A (eds) Advances in crop environment interaction. Springer, Singapore, pp 245–284

    Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Via VD, Zanetti ME, Blanco F (2015) How legumes recognize rhizobia. Plant Signal Behav. https://doi.org/10.1080/15592324.2015.1120396

    Article  CAS  Google Scholar 

  • Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167–170

    Article  CAS  PubMed  Google Scholar 

  • Vimal SR, Singh JS, Arora NK, Singh SK (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA et al (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner D (2008) Signalling in the rhizobia–legumes symbiosis. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin/Heidelberg, pp 99–119

    Chapter  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63(9):3445

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GED, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proceed Nat Acad Sci 109(2):633–638

    Article  Google Scholar 

  • Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci 105:20540–20545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58:255–261

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Raza W, Shen Q (2018) Root exudates dominate the colonization of pathogen and plant growth-promoting rhizobacteria. In: Giri B, Prasad R, Varma A (eds) Root biology. Soil biology, vol 52. Springer, Cham, pp 167–180

    Chapter  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Arshad M (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zarea MJ, Goltapeh EM, Karimi N, Varma A (2013) Sustainable agriculture in saline-arid and semiarid by use potential of AM fungi on mitigates NaCl effects. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Soil biology 32. Springer, Berlin, pp 347–369

    Chapter  Google Scholar 

  • Zhang H, Irving LJ, McGill C, Matthew C, Zhou D, Kemp P (2010a) The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot 106:1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Murzello C, Kim MS, Xie X, Jeter RM, Zak JC et al (2010b) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Miró M, Kolev SD (2015) Hybrid flow system for automatic dynamic fractionation and speciation of inorganic arsenic in environmental solids. Environ Sci Technol 49:2733–2740

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil Bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter. Mol Plant-Microbe Interact 21(6):737–744

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology (DBT), Government of India, for providing financial assistance for undertaking related research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhandari, P., Garg, N. (2019). Plant-Microbe Communication: New Facets for Sustainable Agriculture. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_19

Download citation

Publish with us

Policies and ethics