Skip to main content

Wetland as a Sustainable Reservoir of Ecosystem Services: Prospects of Threat and Conservation

  • Chapter
  • First Online:
Book cover Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment

Abstract

A wetland is a type of ecosystem saturated with water throughout the year possessing various ecosystem services in the environment. Wetland is composed of abiotic and biotic components and acts naturally as a reservoir of food, shelter, and habitat for biological communities. Increasing human population leads to more industrialization and urbanization which continuously alter the landscape and interfering nutrient cycling. Further, changes in precipitation pattern and global climate leading to hydrological and environmental imbalances cause frequent flood and drought. As a result of rapid development and human interference, wetland ecosystem is degrading day by day which needs to be conserved for environmental sustainability. Microbial communities play an important role in nutrient cycling and conservation of wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JS, Pavri F, Aber S (2012) Wetland environments: a global perspective. Wiley, Chichester

    Book  Google Scholar 

  • Ahmad N (1980) Some aspects of economic resources of Sunderbans mangrove forests of Bangladesh. In: Soepadmo P (ed) Mangrove environment: research and management. University of Malaya, Kuala Lumpur, pp 50–51

    Google Scholar 

  • Anon (1991) World resources 1991–1992. Oxford University Press, New York, p 291

    Google Scholar 

  • Anon (1993) Directory of Indian wetlands. World Wildlife Federation, New Delhi, p 264

    Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Boon PI, Virtue P, Nichols PD (1996) Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microorganisms. Mar Freshw Res 47:27–41

    Article  CAS  Google Scholar 

  • Borga P, Nilsson M, Tunlid A (1994) Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 26:841–848

    Article  CAS  Google Scholar 

  • Chaudhry FN, Malik MF (2017) Factors affecting water pollution: a review. J Ecosyst Ecography 7:2157–7625

    Google Scholar 

  • Chopra R (1985) The state of India’s environment. Ambassador Press, New Delhi

    Google Scholar 

  • Constanza RR, D’Arge R, de Groot S, Farber M et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service Biological Services Program FWS/OBS-79131

    Google Scholar 

  • Davidsson TE, Stepanauskas R, Leonardson L (1997) Vertical patterns in nitrogen transformations during infiltration in two wetland soils. Appl Environ Microbiol 63:3648–3656

    CAS  Google Scholar 

  • Davis JA, Froend R (1999) Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions. Wetl Ecol Manag 7(1–2):13–23

    Article  Google Scholar 

  • Dedysh SN (2002) Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiol Moscow 71:638–650

    Article  CAS  Google Scholar 

  • Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Jizong Z, Tiedje JM (1998) Isolation of acidophilic methane- oxidizing bacteria from northern peat wetlands. Science 282:281–284

    Article  CAS  Google Scholar 

  • Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71:8335–8343

    Article  CAS  Google Scholar 

  • Federal Geographic Data Committee (2013) Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013, 2nd edn. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Foote AL, Pandey S, Krogman NT (1996) Processes of wetland loss in India. Environ Conserv 23:45–54

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature 409:149

    Article  CAS  Google Scholar 

  • Funge-Smith SJ, Briggs MR (1998) Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture 164:117–133

    Article  Google Scholar 

  • Gingerich RT, Panaccione DG, Anderson JT (2015) The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands. Limnol-Ecol Manag Inland Waters 54:23–32

    Article  CAS  Google Scholar 

  • Gopal B (1994) Conservation of inland waters in India: an overview. Verh Internationalen Ver Theorestische Angew Limnol 25:2492–2497

    Google Scholar 

  • Groot R, Brander L, van der PS, Costanza R et al (2012) Ecosyst Serv 1:50–61

    Article  Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci USA 105:17842–17847. 0808254105

    Article  CAS  Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    Article  CAS  Google Scholar 

  • Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Kercher SM, Zedler JB (2004) Multiple disturbances accelerate invasion of reed canary grass (Phalaris arundinacea L.) in a mesocosm study. Oecologia 138:455–464

    Article  Google Scholar 

  • Lamers LPM, Van Diggelen JMH, OpDenCamp HJM, Visser EJW, Lucassen ECHET, Vile MA (2012) Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156

    Article  CAS  Google Scholar 

  • Max Finlayson C (2012) Forty years of wetland conservation and wise use. Aquat Conserv Mar Freshwat Ecosyst 22:139–114

    Article  Google Scholar 

  • McAllister DE (1991) What is the status of the world’s coral reef fishes. Sea Wind 5:14–18

    Google Scholar 

  • Mentzer JL, Goodman R, Balser TC (2006) Microbial seasonal response to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil 284:85–100

    Article  CAS  Google Scholar 

  • Mitchell S, Gopal B (1990) Invasion of tropical freshwater by alien species. In: Ramakrishnan PS (ed) Ecology of biological invasion in the tropics. International Scientific Publications, New Delhi, pp 139–154

    Google Scholar 

  • Mitsch WJ, Cronk JK, Wu X, Nairn RW, Hey DL (1995) Phosphorus retention in constructed freshwater riparian marshes. Ecol Appl 5:830–845

    Article  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Moore DR, Keddy PA, Gaudet CL, Wisheu IC (1989) Conservation of wetlands: do infertile wetlands deserve a higher priority? Biol Conserv 47:203–217

    Article  Google Scholar 

  • NAEI (2006) Wetland of India. http://wgbis.ces.iisc.ernet.in/energy/water/paper/wetlands/index.htm

  • National Research Council (1999) New strategies for America’s watersheds. National Academies Press, Washington, DC

    Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MC, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017

    Article  CAS  Google Scholar 

  • Nel JL, Roux DJ, Abell R, Ashton PJ, Cowling RM et al (2009) Progress and challenges in freshwater conservation planning. Aquat Conserv Mar Fresh Water Ecosyst 19:474–485

    Article  Google Scholar 

  • Prasad SN, Ramachandra TV, Ahalya N, Sengupta T, Kumar A, Tiwari AK, Vijayan VS, Vijayan L (2002) Conservation of wetlands of India-a review. Trop Ecol 43:173–186

    Google Scholar 

  • Quental N, Lourenço JM, Da Silva FN (2011) Sustainable development policy: goals, targets and political cycles. Sustain Dev 19:15–29

    Article  Google Scholar 

  • Rai UN, Tripathi RD, Singh NK, Upadhyay AK, Dwivedi S, Shukla MK, Mallick S, Singh SN, Nautiyal CS (2013) Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresour Technol 148:535–541

    Article  CAS  Google Scholar 

  • Rai UN, Upadhyay AK, Singh NK (2015) Constructed wetland: an ecotechnology for wastewater treatment and conservation of Ganga water quality. In: Environmental sustainability. Springer, New Delhi, pp 251–264

    Google Scholar 

  • Saber M, Hussain FA, Hoballah EM, Haggag WM, Zaghloul Alaa El-Din M (2016) Sewage farming: benefits and adverse effects. Res J Pharm Biol Chem Sci 7:297

    Google Scholar 

  • Samant S (1999) Prioritization of biological conservation sites in India wetland. In: Singh S, Sastry ARK, Mehta R, Uppal V (eds) Setting biodiversity conservation priorities for India. World Wide Fund for Nature, India, New Delhi, pp 155–167

    Google Scholar 

  • Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6:7477

    Article  CAS  Google Scholar 

  • Singh R, Upadhyay AK, Singh DP (2018) Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicol Environ Saf 148:105–113

    Article  CAS  Google Scholar 

  • Spalding MD, Grenfell AM (1997) New estimates of global and regional coral reef areas. Coral Reefs 16:225–230

    Article  Google Scholar 

  • Sundh I, Nilsson M, Borga P (1997) Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipids fatty acid profiles. Appl Environ Microbiol 63:1476–1482

    CAS  Google Scholar 

  • Talukdar S, Pal S (2017) Impact of dam on inundation regime of flood plain wetland of Punarbhaba river basin of Barind tract of Indo-Bangladesh. Int Soil Water Conserv Res 5:109–121

    Article  Google Scholar 

  • Upadhyay AK, Singh NK, Bankoti NS, Rai UN (2017) Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environ Technol 38:2691–2699

    Article  CAS  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555

    Article  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69

    Article  CAS  Google Scholar 

  • Whigham DF (1999) Ecological issues related to wetland preservation, restoration, creation and assessment. Sci Total Environ 240:31–40

    Article  CAS  Google Scholar 

  • Yamamoto T, Takaki K, Koyama T, Furukawa K (2008) Long-term stability of partial nitrification of swine wastewater digester liquor and its subsequent treatment by anammox. Bioresour Technol 99:6419–6425

    Article  CAS  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Article  Google Scholar 

  • Zhang K, Yu Z, Li X, Zhou W, Zhang D (2007) Land use change and land degradation in China from 1991 to 2001. Land Degrad Dev 18:209–219

    Article  Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 554–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, G., Khan, J., Upadhyay, A.K., Singh, N.K. (2020). Wetland as a Sustainable Reservoir of Ecosystem Services: Prospects of Threat and Conservation. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_3

Download citation

Publish with us

Policies and ethics