Skip to main content

Drug Resistance in Cancer and Role of Nanomedicine-Based Natural Products

  • Chapter
  • First Online:
Book cover Bioactive Natural Products for the Management of Cancer: from Bench to Bedside

Abstract

Cancer is an age-old malady that has claimed millions of lives across the globe and the death toll is ever increasing. Despite intensive research for over a decade, contemporary anticancer treatment regimens still suffer from certain shortcomings, with drug resistance posing as a major hurdle. In this aspect, natural anticancer products have attracted attention as suitable chemopreventive agents over other synthetic compounds. However, the potential application of such natural compounds has been restricted due to their low bioavailability, poor efficacy amongst other limitations. An exciting advancement in the field of medicine has been the advent of nanoparticles that have reformed the usage of natural products as innovative anticancer therapeutics. This chapter elaborates the role of nanoparticle based natural products as potent and efficacious therapeutic agents for treatment and management of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad J, Akhter S, Greig NH, Kamal MA, Midoux P, Pichon C (2016) Engineered nanoparticles against MDR in cancer: the state of the art and its prospective. Curr Pharm Des 22(28):4360–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA (2008) Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact 171(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Fernández-Pérez F, Pedreño MA (2015) Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20(2):2973–3000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andre MP (2014) Combination chemoradiotherapy in early Hodgkin lymphoma. Hematol Oncol Clin North Am 28(1):33–47

    Article  PubMed  Google Scholar 

  • Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 12(10):1244–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awada A, Garcia AA, Chan S, Jerusalem GH, Coleman RE, Huizing MT et al (2013) Two schedules of etirinotecan pegol (NKTR-102) in patients with previously treated metastatic breast cancer: a randomised phase 2 study. Lancet Oncol 14(12):1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Awada A, Bondarenko I, Bonneterre J, Nowara E, Ferrero J, Bakshi A et al (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25(4):824–831

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian J, Narayanan N, Pragadeesh K (2014) Biodegradable PEG nanoparticles for colorectal cancer using irinotecan as anticancer agent. Int J Pharm Pharm Sci 6(4):49–54

    Google Scholar 

  • Barenholz YC (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  • Basmadjian C, Zhao Q, Bentouhami E, Djehal A, Nebigil CG, Johnson RA et al (2014) Cancer wars: natural products strike back. Front Chem 2:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batist G, Gelmon KA, Chi KN, Miller WH, Chia SK, Mayer LD et al (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15(2):692–700

    Article  CAS  PubMed  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  • Bedikian A, DeConti R, Conry R, Agarwala S, Papadopoulos N, Kim K et al (2010) Phase 3 study of docosahexaenoic acid–paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann Oncol 22(4):787–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, pp 33–93

    Google Scholar 

  • Bhatnagar P, Patnaik S, Srivastava AK, Mudiam MK, Shukla Y, Panda AK et al (2014) Anti-cancer activity of bromelain nanoparticles by oral administration. J Biomed Nanotechnol 10(12):3558–3575

    Article  CAS  PubMed  Google Scholar 

  • Bissett D, Cassidy J, De Bono J, Muirhead F, Main M, Robson L et al (2004) Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br J Cancer 91(1):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez AG, Fernandez-Dolon M, Sanchez-Vicente L, Maestre AD, Gomez-San Miguel AB, Alvarez M et al (2013) Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg Med Chem 21(14):4432–4441

    Article  CAS  PubMed  Google Scholar 

  • Borska S, Chmielewska M, Wysocka T, Drag-Zalesinska M, Zabel M, Dziegiel P (2012) In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem Toxicol 50(9):3375–3383

    Article  CAS  PubMed  Google Scholar 

  • Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine 12(1):81–103

    Article  CAS  PubMed  Google Scholar 

  • Calvo E, Hoch U, Maslyar D, Tolcher A (2010) Dose-escalation phase I study of NKTR-105, a novel pegylated form of docetaxel. J Clin Oncol 28(Suppl 15):TPS160

    Article  Google Scholar 

  • Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):R209–RR25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casals E, Gusta MF, Cobaleda-Siles M, Garcia-Sanz A, Puntes VF (2017) Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol 8(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavalli R, Leone F, Minelli R, Fantozzi R, Dianzani C (2014) New chitosan nanospheres for the delivery of 5-fluorouracil: preparation, characterization and in vitro studies. Curr Drug Deliv 11(2):270–278

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Yang C-S, Huang D-M (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5(8):6156–6163

    Article  CAS  PubMed  Google Scholar 

  • Chen QH (2015) Curcumin-based anti-prostate cancer agents. Anti Cancer Agents Med Chem 15(2):138–156

    Article  CAS  Google Scholar 

  • Chen G, Teicher BA, Frei E 3rd. (1996) Differential interactions of Pgp inhibitor thaliblastine with adriamycin, etoposide, taxol and anthrapyrazole CI941 in sensitive and multidrug-resistant human MCF-7 breast cancer cells. Anticancer Res 16(6B):3499–3505

    CAS  PubMed  Google Scholar 

  • Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T et al (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug- resistant cancer cells. Small 5(23):2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang W, Gu J, Ren Q, Fan Z, Zhong W et al (2013) Enhanced antitumor efficacy by methotrexate conjugated pluronic mixed micelles against KBv multidrug resistant cancer. Int J Pharm 452(1–2):421–433

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zhao Y, Pan Y, Xue X, Zhang X, Kumar A et al (2015) Synergistically enhanced therapeutic effect of a carrier-free HCPT/DOX nanodrug on breast cancer cells through improved cellular drug accumulation. Mol Pharm 12(7):2237–2244

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Chen R, Li J, Fu Y, Yang L, Su H et al (2018) Pharmacokinetic/pharmacodynamic modeling of schedule-dependent interaction between docetaxel and cabozantinib in human prostate cancer xenograft models. J Pharmacol Exp Ther 364(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Clegg A, Scott DA, Hewitson P, Sidhu M, Waugh N (2002) Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax 57(1):20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormio G, Loizzi V, Gissi F, Camporeale A, De Mitri P, Leone L et al (2011) Long-term topotecan therapy in recurrent or persistent ovarian cancer. Eur J Gynaecol Oncol 32(2):153–155

    CAS  PubMed  Google Scholar 

  • Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25(Suppl 2):41–59

    Article  PubMed  Google Scholar 

  • Cree IA, Charlton P (2017) Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. Biomed Res Int 2012:247597. 2011

    Google Scholar 

  • Crown J, O’Leary M, Ooi WS (2004) Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 9(Suppl 2):24–32

    Article  CAS  PubMed  Google Scholar 

  • Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. J Nat Prod 67(2):269–272

    Article  CAS  PubMed  Google Scholar 

  • Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13(1):218–228

    Article  CAS  PubMed  Google Scholar 

  • Das M, Sahoo SK (2012) Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS One 7(3):e32920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasiram JD, Ganesan R, Kannan J, Kotteeswaran V, Sivalingam N (2017) Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells. Biomed Pharmacother 86:373–380

    Article  CAS  PubMed  Google Scholar 

  • Davis ME (2009) Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev 61(13):1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771

    Article  CAS  PubMed  Google Scholar 

  • Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J et al (2013) A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 71(3):627–633

    Article  CAS  PubMed  Google Scholar 

  • Deguchi A (2015) Curcumin targets in inflammation and cancer. Endocr Metab Immune Disord Drug Targets 15(2):88–96

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Di Martino RMC, Luppi B, Bisi A, Gobbi S, Rampa A, Abruzzo A et al (2017) Recent progress on curcumin-based therapeutics: a patent review (2012–2016). Part I: curcumin. Expert Opin Ther Pat 27(5):579–590

    Article  PubMed  CAS  Google Scholar 

  • Di Pietro A, Dayan G, Conseil G, Steinfels E, Krell T, Trompier D et al (1999) P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships. Braz J Med Biol Res 32(8):925–939

    Article  PubMed  Google Scholar 

  • Dong X, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine 5(4):597–615

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Wang W, Qu H, Han D, Zheng J, Sun G (2016) Targeted delivery of doxorubicin and vincristine to lymph cancer: evaluation of novel nanostructured lipid carriers in vitro and in vivo. Drug Deliv 23(4):1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Du G-J, Zhang Z, Wen X-D, Yu C, Calway T, Yuan C-S et al (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4(11):1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkhodiry MA, Momah CC, Suwaidi SR, Gadalla D, Martins AM, Vitor RF et al (2016) Synergistic nanomedicine: passive, active, and ultrasound-triggered drug delivery in cancer treatment. J Nanosci Nanotechnol 16(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on small medicine: the state of nanomedicine products approved for use or in clinical trials. Nanomedicine 9(1):1

    Article  CAS  PubMed  Google Scholar 

  • Evans AE, Farber S, Brunet S, Mariano PJ (1963) Vincristine in the treatment of acute leukemia in children. Cancer 16(10):1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Fornaguera C, García-Celma MJ (2017) Personalized nanomedicine: a revolution at the nanoscale. J Personalized Med 7(4):12

    Article  Google Scholar 

  • Fossa SD, Droz JP, Pavone-Macaluso MM, Debruyne FJ, Vermeylen K, Sylvester R (1992) Vinblastine in metastatic renal cell carcinoma: EORTC phase II trial 30882. The EORTC Genitourinary Group. Eur J Cancer 28A(4–5):878–880

    Article  CAS  PubMed  Google Scholar 

  • Frei E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J et al (1965) The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 26(5):642–656

    PubMed  Google Scholar 

  • Fuchs C, Mitchell EP, Hoff PM (2006) Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev 32(7):491–503

    Article  CAS  PubMed  Google Scholar 

  • Fumoleau P, Delgado F, Delozier T, Monnier A, Gil Delgado M, Kerbrat P et al (1993) Phase II trial of weekly intravenous vinorelbine in first-line advanced breast cancer chemotherapy. J Clin Oncol 11(7):1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N (2015) Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 20(12):1531–1562

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z et al (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Chan JY, Wei WI, Wong TS (2012) Anti-cancer effects of curcumin on head and neck cancers. Anti Cancer Agents Med Chem 12(9):1110–1116

    Article  CAS  Google Scholar 

  • Gao Z, Li Z, Yan J, Wang P (2017) Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther 11:2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatzemeier U, von Pawel J, Laumen R, Hossfeld DK, Neuhauss R, Reck M et al (1992) Carboplatin/etoposide/vincristine therapy in small cell lung cancer. Oncology 49(Suppl 1):25–33

    Article  PubMed  Google Scholar 

  • Gaur S, Wang Y, Kretzner L, Chen L, Yen T, Wu X et al (2014) Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine: Nanotechnol, Biol Med 10(7):1477–1486

    Article  CAS  Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1): 1–9

    Article  CAS  PubMed  Google Scholar 

  • Giaccone G, Pinedo HM (1996) Drug resistance. Oncologist 1(1 & 2):82–87

    CAS  PubMed  Google Scholar 

  • Gokhale P, Radhakrishnan B, Husain S, Abernethy D, Sacher R, Dritschilo A et al (1996) An improved method of encapsulation of doxorubicin in liposomes: pharmacological, toxicological and therapeutic evaluation. Br J Cancer 74(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  • Greenwell M, Rahman PK (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6(10):4103–4112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grem JL, Hoth DF, Leyland-Jones B, King S, Ungerleider R, Wittes R (1988) Teniposide in the treatment of leukemia: a case study of conflicting priorities in the development of drugs for fatal diseases. J Clin Oncol 6(2):351–379

    Article  CAS  PubMed  Google Scholar 

  • Group ELCVIS (1999) Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 91(1):66–72

    Article  Google Scholar 

  • Gu YJ, Cheng J, Man CW, Wong WT, Cheng SH (2012) Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine 8(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Guilbaud N, Leonce S, Tillequin F, Koch M, Hickman JA, Pierre A (2002) Acronycine derivatives as promising antitumor agents. Anti-Cancer Drugs 13(5):445–449

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Peng Y, Yao J, Sui L, Gu A, Wang J (2010) Anticancer activity and molecular mechanism of resveratrol–Bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in Nude mice. Cancer Biother Radiopharm 25(4):471–477

    Article  CAS  PubMed  Google Scholar 

  • Haris P, Mary V, Aparna P, Dileep K, Sudarsanakumar C (2017) A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochim Acta A Mol Biomol Spectrosc 175:155–163

    Article  CAS  PubMed  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885

    Article  CAS  PubMed  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  • Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori AA et al (2007) Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 13(19):5855–5861

    Article  CAS  PubMed  Google Scholar 

  • Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M et al (2017) Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol 35(35):3924–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N et al (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6(3):1769–1792

    Article  CAS  Google Scholar 

  • Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39–128ra39

    Article  PubMed  Google Scholar 

  • Jahan ST, Sadat SMA, Walliser M, Haddadi A (2017) Targeted therapeutic nanoparticles: an immense promise to fight against cancer. J Drug Deliv 2017:9090325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain KK (2006) Nanoparticles as targeting ligands. Trends Biotechnol 24(4):143–145

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Pi J, Zhao Y, Jiang J, Li T, Zeng X et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42):16365–16374

    Article  CAS  PubMed  Google Scholar 

  • Juarez P (2014) Plant-derived anticancer agents: a promising treatment for bone metastasis. Bonekey Rep 3:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, Park S-J, Chung HK, Kang H-W, Lee S-W, Seo MH et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84(1):e77–e83

    Article  CAS  PubMed  Google Scholar 

  • Kang KW, Chun M-K, Kim O, Subedi RK, Ahn S-G, Yoon J-H et al (2010) Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine 6(2):210–213

    Article  CAS  PubMed  Google Scholar 

  • Kapse-Mistry S, Govender T, Srivastava R, Yergeri M (2014) Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol 5:159

    PubMed  PubMed Central  Google Scholar 

  • Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E (2013) Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 3(1):64–73

    Article  Google Scholar 

  • Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T et al (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs 30(4):1621–1627

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

  • Kipps E, Young K, Starling N (2017) Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: efficacy, safety and place in therapy. Ther Adv Med Oncol 9(3):159–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluza J, Lansiaux A, Wattez N, Hildebrand MP, Leonce S, Pierre A et al (2002) Induction of apoptosis in HL-60 leukemia and B16 melanoma cells by the acronycine derivative S23906-1. Biochem Pharmacol 63(8):1443–1452

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Lee CH (2015) Inhibition against growth of Glioblastoma multiforme in vitro using etoposide- loaded solid lipid nanoparticles with p-Aminophenyl-α-d-Manno-Pyranoside and folic acid. J Pharm Sci 104(5):1804–1814

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta (BBA)-Biomembr 1233(2):134–144

    Article  Google Scholar 

  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250

    Article  CAS  PubMed  Google Scholar 

  • Leung HW, Leung J-H, Chan AL (2018) Efficacy and safety of a combination of HER2-targeted agents as first-line treatment for metastatic HER2-positive breast cancer: a network meta-analysis. Expert Opin Drug Saf 17(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen Y-C, Tseng Y-C, Mozumdar S, Huang L (2010) Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142(3):416–421

    Article  CAS  PubMed  Google Scholar 

  • Li B, Xu H, Li Z, Yao M, Xie M, Shen H et al (2012) Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine 7:187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64(9):826–835

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhao G, Xu Y, He X, Li X, Chen H et al (2017) Multicenter phase 2 study of Peri-irradiation chemotherapy plus intensity modulated radiation therapy with concurrent weekly docetaxel for inoperable or medically Unresectable nonmetastatic gastric cancer. Int J Radiat Oncol Biol Phys 98(5):1096–1105

    Article  PubMed  Google Scholar 

  • Lu HL, Syu WJ, Nishiyama N, Kataoka K, Lai PS (2011) Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J Control Release 155(3):458–464

    Article  CAS  PubMed  Google Scholar 

  • Madaan A, Singh P, Awasthi A, Verma R, Singh AT, Jaggi M et al (2013) Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel TM. Clin Transl Oncol 15(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahalingam D, Nemunaitis JJ, Malik L, Sarantopoulos J, Weitman S, Sankhala K et al (2014) Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother Pharmacol 74(6):1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Mahapatro A, Singh DK (2011) Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 9:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick A, More P, Ghosh S, Chippalkatti R, Chopade BA, Lahiri M et al (2015) Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl Mater Interfaces 7(14):7584–7598

    Article  CAS  PubMed  Google Scholar 

  • Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65(13–14):1866–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki T, Takagi A, Furuta T, Ueno S, Kurita A, Nohara G et al (2012) Antitumor activity of IHL-305, a novel pegylated liposome containing irinotecan, in human xenograft models. Oncol Rep 27(1):189–197

    CAS  PubMed  Google Scholar 

  • Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D et al (2009) A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett 4(12):1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Guo F, Xu H, Liang W, Wang C, Yang X-D (2016) Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 6:22390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis M, Kleinschmidt MC, Barth S, Rothweiler F, Geiler J, Breitling R et al (2010) Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79(2):130–136

    Article  CAS  PubMed  Google Scholar 

  • Miglietta A, Cavalli R, Bocca C, Gabriel L, Gasco MR (2000) Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 210(1–2):61–67

    Article  CAS  PubMed  Google Scholar 

  • Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG et al (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127(3):208–218

    Article  CAS  PubMed  Google Scholar 

  • Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46(10):4769–4807

    Article  CAS  PubMed  Google Scholar 

  • Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. EXCLI J 14:95

    PubMed  PubMed Central  Google Scholar 

  • Muggia FM (1994) Teniposide: overview of its therapeutic potential in adult cancers. Cancer Chemother Pharmacol 34(1):S127–SS33

    Article  PubMed  Google Scholar 

  • Muggia FM, Kelley SL (eds) (1992) Teniposide in adult solid tumors: a historical perspective. Semin Oncol 19:43–50. Elsevier

    Google Scholar 

  • Mughees M, Samim M, Wajid S. (2018) 83P Artemisia absinthium extract loaded polymeric nanoparticles as the therapeutic remedy for breast cancer. Ann Oncol 29(Suppl_3):mdy047. 32

    Google Scholar 

  • Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29(10):3867–3875

    CAS  PubMed  Google Scholar 

  • Munir I, Ajmal S, Shah MR, Ahmad A, Hameed A, Ali SA (2017) Protein–drug nanoconjugates: finding the alternative proteins as drug carrier. Int J Biol Macromol 101:131–145

    Article  CAS  PubMed  Google Scholar 

  • Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Natesan S, Ponnusamy C, Sugumaran A, Chelladurai S, Palaniappan SS, Palanichamy R (2017) Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int J Biol Macromol 104:1853–1859

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Zhang S, Morris ME (2003) Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci 92(2):250–257

    Article  CAS  PubMed  Google Scholar 

  • Ozaki Y, Miura Y, Koganemaru S, Suyama K, Inoshita N, Fujii T et al (2015) Ewing sarcoma of the liver with multilocular cystic mass formation: a case report. BMC Cancer 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R et al (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67(17):8156–8163

    Article  CAS  PubMed  Google Scholar 

  • Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H et al (2010) A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater 22(42):4754–4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY et al (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673

    Article  CAS  PubMed  Google Scholar 

  • Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L et al (2015) Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 10(5):1615–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pianetti S, Guo S, Kavanagh KT, Sonenshein GE (2002) Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res 62(3):652–655

    CAS  PubMed  Google Scholar 

  • Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 1(2):13. Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of development

    Google Scholar 

  • Pooja D, Kulhari H, Tunki L, Chinde S, Kuncha M, Grover P et al (2015) Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Adv 5(61):49122–49131

    Article  CAS  Google Scholar 

  • Prakash O, Kumar A, Pawan Kumar A (2013) Anticancer potential of plants and natural products: a. Am J Pharmacol Sci 1(6):104–115

    Google Scholar 

  • Pramanik D, Campbell NR, Das S, Gupta S, Chenna V, Bisht S et al (2012) A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 3(6):640

    Article  PubMed  PubMed Central  Google Scholar 

  • Qanungo S, Das M, Haldar S, Basu A (2005) Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26(5):958–967

    Article  CAS  PubMed  Google Scholar 

  • Qi R, Wang Y, Bruno PM, Xiao H, Yingjie Y, Li T et al (2017) Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat Commun 8(1):2166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranjan AP, Mukerjee A, Gdowski A, Helson L, Bouchard A, Majeed M et al (2016) Curcumin-ER prolonged subcutaneous delivery for the treatment of non-small cell lung cancer. J Biomed Nanotechnol 12(4):679–688

    Article  CAS  PubMed  Google Scholar 

  • Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS (2018) Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr 58(9):1428–1447

    Article  PubMed  Google Scholar 

  • Ricci J, Kim M, Chung WY, Park KK, Jung M (2011) Discovery of artemisinin-glycolipid hybrids as anti-oral cancer agents. Chem Pharm Bull (Tokyo) 59(12):1471–1475

    Article  CAS  Google Scholar 

  • Rodriguez M, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B et al (2009) Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma. Cancer 115(15):3475–3482

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Hebart H, Hjalgrim LL, Kabickova E, Lang P, Steinbach D et al (2018) CNS progression during vinblastine or targeted therapies for high-risk relapsed ALK-positive anaplastic large cell lymphoma: a case series. Pediatr Blood Cancer 65:e27003. 7

    Article  PubMed  Google Scholar 

  • Ryu HJ, Seong N-w, So BJ, Seo H-s, Kim J-h, Hong J-S et al (2014) Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. Int J Nanomedicine 9(Suppl 2):127

    PubMed  PubMed Central  Google Scholar 

  • Saad MZH, Jahan R, Bagul U (2012) Nanopharmaceuticals: a new perspective of drug delivery system. Asian J Biomed Pharm Sci 2(14):11

    CAS  Google Scholar 

  • Sabbatini P, Aghajanian C, Dizon D, Anderson S, Dupont J, Brown JV et al (2004) Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J Clin Oncol 22(22):4523–4531

    Article  CAS  PubMed  Google Scholar 

  • Sameer R, Nidhi S, Tarun V, Charan S, Jyoti G (2016) A review on naturally derived compounds for potential anticancer activity. Indian J Drugs 4(3):75–86

    Google Scholar 

  • Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013) Resveratrol-loaded nanoparticles based on poly (epsilon-caprolactone) and poly (d, l-lactic-co-glycolic acid)–poly (ethylene glycol) blend for prostate cancer treatment. Mol Pharm 10(10):3871–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3–4):265–280

    Article  CAS  PubMed  Google Scholar 

  • Sarris A, Hagemeister F, Romaguera J, Rodriguez M, McLaughlin P, Tsimberidou A et al (2000) Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann Oncol 11(1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008) Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130(31):10258–10262

    Article  CAS  PubMed  Google Scholar 

  • Schwertheim S, Wein F, Lennartz K, Worm K, Schmid KW, Sheu-Grabellus S-Y (2017) Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells. J Cancer Res Clin Oncol 143(7):1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Scott L, Yao J, Benson A, Thomas A, Falk S, Mena R et al (2009) A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma. Cancer Chemother Pharmacol 63(2):363–370

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Li X, Lu X, Jiang C, Hu Y, Li Q et al (2009) Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf B: Biointerfaces 72(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Yin Q, Chen L, Zhang Z, Li Y (2012) Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33(33):8613–8624

    Article  CAS  PubMed  Google Scholar 

  • Shenoi MM, Iltis I, Choi J, Koonce NA, Metzger GJ, Griffin RJ et al (2013) Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol Pharm 10(5):1683–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20

    Article  CAS  PubMed  Google Scholar 

  • Shin YS, Kang SU, Park JK, Kim YE, Kim YS, Baek SJ et al (2016) Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of β-catenin. Phytomedicine 23(12):1344–1355

    Article  CAS  PubMed  Google Scholar 

  • Shutava TG, Balkundi SS, Vangala P, Steffan JJ, Bigelow RL, Cardelli JA et al (2009) Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3(7):1877–1885

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI et al (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69(5):1712–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Bhatnagar P, Mishra S, Kumar P, Shukla Y, Gupta KC (2015) PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int J Nanomedicine 10:6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha N, Yeow JT (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience 4(2):180–195

    Article  PubMed  Google Scholar 

  • Slavin YN, Asnis J, Hafeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65

    Article  CAS  Google Scholar 

  • Slezakova S, Ruda-Kucerova J (2017) Anticancer activity of artemisinin and its derivatives. Anticancer Res 37(11):5995–6003

    CAS  PubMed  Google Scholar 

  • Slingerland M, Guchelaar H-J, Rosing H, Scheulen ME, van Warmerdam LJ, Beijnen JH et al (2013) Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther 35(12):1946–1954

    Article  CAS  PubMed  Google Scholar 

  • Stevigny C, Bailly C, Quetin-Leclercq J (2005) Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr Med Chem Anticancer Agents 5(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Kiang C-H (2005) DNA-based artificial nanostructures: fabrication, properties, and applications. arXiv preprint physics/0503114

    Google Scholar 

  • Sun H, Meng X, Han J, Zhang Z, Wang B, Bai X et al (2013) Anti-cancer activity of DHA on gastric cancer – an in vitro and in vivo study. Tumour Biol 34(6):3791–3800

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Yu B, Gao L, Cong H, Song N, Lu C (2018) Stimuli responsive nanoparticles for controlled anti-cancer drug release. Curr Med Chem 25:1837–1866

    Article  CAS  PubMed  Google Scholar 

  • Tardi P, Choice E, Masin D, Redelmeier T, Bally M, Madden TD (2000) Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res 60(13):3389–3393

    CAS  PubMed  Google Scholar 

  • Tas F, Sen F, Keskin S, Kilic L (2013) Oral etoposide as first-line therapy in the treatment of patients with advanced classic Kaposi’s sarcoma (CKS): a single-arm trial (oral etoposide in CKS). J Eur Acad Dermatol Venereol 27(6):789–792

    Article  CAS  PubMed  Google Scholar 

  • Terwogt JMM, ten Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG et al (2001) Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs 12(4):315–323

    Article  CAS  Google Scholar 

  • Tomalia DA, Reyna L, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Portland Press Limited, London

    Book  Google Scholar 

  • Tu Y, Cheng S, Zhang S, Sun H, Xu Z (2013) Vincristine induces cell cycle arrest and apoptosis in SH-SY5Y human neuroblastoma cells. Int J Mol Med 31(1):113–119

    Article  CAS  PubMed  Google Scholar 

  • Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, Schiffelers RM (2017) Clinical application of polymeric micelles for the treatment of cancer. Mater Chem Front 1(8):1485–1501

    Article  CAS  Google Scholar 

  • Vergara D, Simeone P, Toraldo D, Del Boccio P, Vergaro V, Leporatti S et al (2012) Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol BioSyst 8(4):1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Vergote I, Brize A, Lisyanskaya AS, Lichinitser M (2015) Randomized phase III study comparing paclical-carboplatin with paclitaxel-carboplatin in patients with recurrent platinum-sensitive epithelial ovarian cancer. Am Soc Clin Oncol. https://doi.org/10.1016/j.arabjc.2017.05.011

  • Vinay Kumar V, Rojarani K, Madhusudana K, Ramakrishna S, Prakash VD (2013) Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine 9(1):111–121

    Google Scholar 

  • von Pawel J (2003) The role of topotecan in treating small cell lung cancer: second-line treatment. Lung Cancer 41(Suppl 4):S3–S8

    Article  Google Scholar 

  • Walsh MD, Hanna SK, Sen J, Rawal S, Cabral CB, Yurkovetskiy AV et al (2012) Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin Cancer Res

    Google Scholar 

  • Wang F, Zhang D, Zhang Q, Chen Y, Zheng D, Hao L et al (2011a) Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials 32(35):9444–9456

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011b) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692

    Article  CAS  PubMed  Google Scholar 

  • Wang X-X, Li Y-B, Yao H-J, Ju R-J, Zhang Y, Li R-J et al (2011c) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32(24):5673–5687

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dou L, He H, Zhang Y, Shen Q (2014) Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol Pharm 11(3):885–894

    Article  CAS  PubMed  Google Scholar 

  • Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 84(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Williamson SK, Johnson GA, Maulhardt HA, Moore KM, McMeekin D, Schulz TK et al (2015) A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother Pharmacol 75(5):1075–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GS, Lu JJ, Guo JJ, Huang MQ, Gan L, Chen XP et al (2013) Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep 65(2):453–459

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z et al (2009) The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30(2):226–232

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Wang L, Xu H-Q, Huang X-E, Qian Y-D, Xiang J (2013) Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14(4):2591–2594

    Article  PubMed  Google Scholar 

  • Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N et al (2014) Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35(30):8635–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori T, Sato S, Chikazawa H, Kadota T (1997) Anti-tumor efficacy of paclitaxel against human lung cancer xenografts. Jpn J Cancer Res 88(12):1205–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Deng W, Fu L, Blanco E, Gao J, Quan D et al (2008) Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res A 86(1):48–60

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Cheng Y, Xu T, Wang X, Wen L-p (2009a) Targeting cancer cells with biotin–dendrimer conjugates. Eur J Med Chem 44(2):862–868

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C et al (2009b) Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 15(14):4722–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Nagai T, Ohmine K, Uesawa M, Sripayap P, Ishida Y et al (2011) Vincristine potentiates the anti-proliferative effect of an aurora kinase inhibitor, VE-465, in myeloid leukemia cells. Biochem Pharmacol 82(12):1884–1890

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Venkatasubramanian R, Hein S, Misra R (2008) A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater 4(4):1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Yurkovetskiy AV, Fram RJ (2009) XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev 61(13):1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Zahreddine H, Borden KL (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, Kumari S et al (2016) Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6:20051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidner JF, Karp JE (2015) Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk Res 39(12):1312–1318

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y et al (2011) Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 32(23):5524–5533

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang Y, Li S (2014a) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS Pharm Sci Tech 15(4):862–871

    Article  CAS  Google Scholar 

  • Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D et al (2014b) Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev 46(2):232–246

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-Q, Lin X, Li Y, Lu S (2015) Irinotecan as a second-line chemotherapy for small cell lung cancer: a systemic analysis. Asian Pac J Cancer Prev APJCP 16(5):1993–1995

    Article  PubMed  Google Scholar 

  • Zhou Y, Kopeček J (2013) Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 21(1):1–26

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Mazurchuk R, Straubinger RM (2002) Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res 62(9):2561–2566

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandi, D., Singal, A., Nag, A. (2019). Drug Resistance in Cancer and Role of Nanomedicine-Based Natural Products. In: Sharma, A. (eds) Bioactive Natural Products for the Management of Cancer: from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-13-7607-8_9

Download citation

Publish with us

Policies and ethics