Skip to main content

Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction

  • Chapter
  • First Online:
Carbon and Nitrogen Cycling in Soil

Abstract

In the last decades, many studies were addressed to focus the interplay between plant and microbial community into the soil and especially in the small soil zone in contact to plant root, called rhizosphere, which can be considered as a hotspot for interactions and therefore is a major target for improving nutrient use efficiency in crops. In this regard, unraveling the microbial activities that can be used to improve nutrient use efficiency may be the major challenge considering a sustainable agricultural contest. However, although using different approaches (metabolomics and transcriptomic) it has made it possible to characterize many interaction mechanisms, more remains largely unknown. Here, we summarize and discuss the abiotic and biotic factors that may manage plant-microbe interactions in the rhizosphere as well as in those parts of the soil furthest from the root, focusing on root architecture and nitrate as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Arbuscular mycorrhizal

ECM:

Ectomycorrhizae

GS:

Glutamine synthetase

HMW:

High molecular weight

JA:

Jasmonic acid

LMW:

Low molecular weight

N:

Nitrogen

NiR:

Nitrite reductase

NR:

Nitrate reductase

NUE:

Nutrient use efficiency

P:

Phosphorus

PGPR:

Plant growth-promoting rhizobacteria

PLFA:

Phospholipid fatty acid analysis

SOM:

Soil organic matter

T-DNA:

Transmission of DNA

UpE:

Uptake efficiency

UtE:

Utilization efficiency

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press Inc., New York

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  Google Scholar 

  • Allen MF, Morris SJ, Edwards F, Allen EB (1995) Microbe– plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean-type ecosystems. Springer, New York, pp 287–305

    Chapter  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Heidelberg, pp 239–258

    Chapter  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G et al (1995) In situ localization of Azospirillum brasiliense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    CAS  Google Scholar 

  • Bacilio JM, Aguilar FS, Ventura ZE, Perez CE, Bouquelet S, Zenteno E (2002) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  Google Scholar 

  • Bais HP, Wier TL, Perry LG, Vivanco JM (2006) The role of root exudates in rhizosphere interaction with plants and other microorganisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological fixation research in graminaceous plants: special reference on the Brazilian experience. An Acad Bras Cienc 77:549–579

    Article  CAS  Google Scholar 

  • Baraniya D, Puglisi E, Ceccherini MT, Pietramellara G, Giagnoni L, Arenella MR, Nannipieri P, Renella G (2016) Protease encoding microbial communities and protease activity of the rhizosphere and bulk soils of two maize lines with different N uptake efficiency. Soil Biol Biochem 96:176–179

    Article  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  Google Scholar 

  • Barman J, Samanta A, Saha B, Datta S (2016) Mycorrhiza: the oldest association between plant and fungi. Resonance, General article 21: 1093–1103

    Article  CAS  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA 110:E1621–E1630

    Article  CAS  Google Scholar 

  • Beckman CH (1987) The nature of wilt diseases of plants. American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Behm JE, Geurts R, Kiers ET (2014) Parasponia: a novel system for studying mutualism stability. Trends in Plant Sci 19:757–763

    Article  CAS  Google Scholar 

  • Bekkara F, Jay M, Viricel MR, Rome S (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba varieties differing in their seed tannin content and study of their seed and root phenolic exudations. Plant Soil 203:27–36

    Article  Google Scholar 

  • Bellegarde F, Gojon A, Martin A (2017) Signals and players in the transcriptional regulation of root responses by local and systemic N signaling in Arabidopsis thaliana. J Exp Bot 68:2553–2565

    Article  CAS  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  Google Scholar 

  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizer function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:1–10

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Boddey RM, Uruquiaga S, Alves BJR et al (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Boulter D, Jeremy JJ, Wilding M (1966) Amino acids liberated into the culture medium by pea seedling roots. Plant Soil 24:121–127

    Article  CAS  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    Article  Google Scholar 

  • Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R et al (eds) The rhizosphere biochemistry and organic substances at the soil–plant interface. CRC Press, Boca Raton, pp 73–109

    Google Scholar 

  • Briones AM, Okabe S, Umemiya Y et al (2003) Ammonia – oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250:335–248

    Article  CAS  Google Scholar 

  • Brown DJF, Robertson WM, Trudgill DL (1995) Transmission of viruses by plant nematodes. Annu Rev Phytopathol 33:223–249

    Article  CAS  Google Scholar 

  • Bruehl GW (1987) Soilborne Plant Pathogens. Macmillan Publishing Company, New York

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    Article  CAS  Google Scholar 

  • Bulgarelli D et al (2013a) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013b) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7:plv030

    Article  CAS  Google Scholar 

  • Cakmak I, Erenoglu B, Gülüt KY, Derici R, Römheld V (1998) Light-mediated release of phytosiderophores in wheat and barley under iron or zinc deficiency. Plant Soil 202:309–315

    Article  CAS  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    Article  CAS  Google Scholar 

  • Cárdenas L, Domínguez J, Quinto C, López-Lara IM, Lugtenberg BJJ, Spaink HP, Rademaker GJ, Haverkamp J, Thomas-Oates JE (1995) Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol Biol 29(453):464

    Google Scholar 

  • Carminati A, Zarebanadkouki M, Kroener E, Ahmed MA, Holz M (2016) Biophysical rhizosphere processes affecting root water uptake. Ann Bot 118:561–571. https://doi.org/10.1093/aob/mcw113

    Article  Google Scholar 

  • Cavaglieri L, Orlando J, Etcheverry M (2009) Rhizosphere microbial community structure at different stages and root locations. Microbial Res 164:391–399

    Article  Google Scholar 

  • Chen XP, Cui ZL, Vitousek PM et al (2011) Integrated soil–crop system management for food security. PNAS 108:6399–6404

    Article  CAS  Google Scholar 

  • Cheng L, Tang X, Vance CP, White PJ, Zhang F, Shen J (2014) Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot 65:2995–3003

    Article  CAS  Google Scholar 

  • Cichy KA, Blair MW, Mendoza CHG, Snapp SS, Kelly JD (2009) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68

    Article  CAS  Google Scholar 

  • Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter. The unbutton model. Soil Biol Biochem 84:168–176

    Article  CAS  Google Scholar 

  • Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227–234

    Article  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    CAS  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in Response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Dai X, Wang Y, Yang A, Zhang WH (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphatestarvation responses and root architecture in rice. Plant Physiol 159:169–183

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9(7):1163; 1–18

    Article  CAS  Google Scholar 

  • De Angelis KM, Lindow SE, Firestone MK (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbial Ecol 66:197–207

    Article  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61(1):401–422

    Article  CAS  Google Scholar 

  • Döbereiner J (1992) History and new perspective of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2014) Evolution of bacterial communities in wheat crop rhizosphere. Environ Microbiol 17:610–621

    Article  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Drogue B, Dore H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163:500–510

    Article  Google Scholar 

  • Edwards J et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–E920

    Article  CAS  Google Scholar 

  • Elmerich C, Newton WE (2007) Associative and endophytic Nitrogen fixing Bacteria and Cyanobacterial Associations – introduction. Springer, Dordrecht

    Book  Google Scholar 

  • FAO (2009) The state of food and agriculture, Rome

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Fries N (1987) Ecological and evolutionary aspects of spore germination in the higher Basidiomycetes. Trans Br Mycol Soc 88:1–7

    Article  Google Scholar 

  • Friskop A, Marker S, Gulya T (2009) Downy mildew of sunflower. State Agricultural Experiment Station, New York

    Google Scholar 

  • Garcia K, Delaux P, Cope KR, Ané J (2015) Molecular signals require for the establishment and maintenance of ectomycorrhizal symbiosis. New Phytol 208:79–87

    Article  Google Scholar 

  • Genin S, Boucher C (2004) Lessons learned from the genomeanalysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107–134

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    Article  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140

    Article  CAS  Google Scholar 

  • Giles E.D. Oldroyd, J. Allan Downie, (2008) Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology 59 (1):519-546

    Article  CAS  Google Scholar 

  • Giles E.D. Oldroyd, Jeremy D. Murray, Philip S. Poole, J. Allan Downie, (2011) The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annual Review of Genetics 45 (1):119-144

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bac-terium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, Pizarro-Tobías P, Roca A, Duque E, Ramos JL (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 6(1):36–44

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh S (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospective for development of sustainable agriculture. J Microbial Biochem Technol 7:2

    Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hale MG, Moore LD (1979) Factors affecting root exudation. Adv Agron 31:93–124

    Article  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–24

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hennery A, Doucette W, Norton J, Bugbee B (2007) Changes in crested wheat grass root exudation caused by flood, drought and nutrient stress. J Environ Qual 36:904–912

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache. Arb Deut Landw Gesell 98:59–78

    Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Husain SS, Mckeen WE (1963) Interactions between strawberry roots and Rhizoctonia fragariae. Phytopathology 53:541–545

    Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphatesolubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Ivanov VP (1962) Mutual effect through the root system of a mixed crop of corn and broad beans. Fiziol Rast 9:179–188

    CAS  Google Scholar 

  • Javed MT, Stoltz E, Lindberg S, Greger M (2012) Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-012-1413-z

    Article  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL et al (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kardol P, Cornips NJ, van Kempen MML, Bakx-Schotman JMT, van der Putten WH (2007) Microbe-mediated plant–soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr 77:147–162

    Article  Google Scholar 

  • Katznelson H, Rouatt JW, Payne TMB (1954) Liberation of amino acids by plant roots in relation to Desiccation. Nature 174:1110–1111

    Article  CAS  Google Scholar 

  • Kawasaki A et al (2016a) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533

    Article  CAS  Google Scholar 

  • Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A et al (2016b) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for Wheat. PLoS One 11(10):e0164533

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) In Proceedings of the 4th international conference on plant pathogenic bacteria vol. 2 (ed. Station de Pathologie Végétale et Phytobactériologie) 879–882 (Gibert-Clarey, Tours)

    Google Scholar 

  • Kretzschmar T et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signaling and branching. Nature 483:341–344

    Article  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay Y-F (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13(3):265–272

    Article  CAS  Google Scholar 

  • Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182

    Article  CAS  Google Scholar 

  • Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 149:349–355

    Article  CAS  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular genetics of nitrogen assimilation into amino acids in high plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  Google Scholar 

  • Lancelle SA, Torrey JG (1985) Early development of rhizobium induced root nodules of Parasponia rigida. I infection and early nodulation. Protoplasm 123:26–37

    Article  Google Scholar 

  • Lannucci A, Fragasso M, Beleggia R, Nigro F, Papa R (2017) Evolution of crop rhizosphere: impact of domestication on root exudates in Tetraploid wheat (Triticum turdigum L.). Front Plant Sci 8:2124

    Article  Google Scholar 

  • Lavola A, Julkunen-Tiitto R, Roininen H, Aphalo P (1998) Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites. Biochem Syst Ecol 26:1e12

    Article  Google Scholar 

  • Li JZ, Xie Y, Dai AY, Liu LF, Li ZC (2009) Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics 36:173–183

    Article  CAS  Google Scholar 

  • Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Yannarell AC, Mackie RI (2014) Functional Potential of Soil Microbial Communities in the Maize Rhizosphere. PLoS One 9(11):e112609

    Article  CAS  Google Scholar 

  • Li PC, Chen FJ, Cai HG, Liu JC, Pan QC, Liu ZG, Gu RL, Mi GH, Zhang FS, Yuan LX (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66:3175–3188

    Article  CAS  Google Scholar 

  • Liu JQ, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  CAS  Google Scholar 

  • Liu H, Carvalhais LC, Schenk PM, Dennis PG (2016) Effect of Jasmonic acid signalling on wheat micorbiome differ between body sites. Sci Rep 7:41766

    Article  CAS  Google Scholar 

  • Lu H, Murase J, Watanabe A, Sugimoto A, Kimura M (2014) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–186

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Lundberg DS et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  Google Scholar 

  • Lupini A, Princi MP, Araniti F, Miller AJ, Sunseri F, Abenavoli MR (2017) Physiological and molecular responses in tomato under different forms of N nutrition. J Plant Physiol 216:17–25

    Article  CAS  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Andres Martinez E, Driguez H, Cecard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhizal. Nature 469:58–64

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic, London

    Google Scholar 

  • Martin BC, Statton J, Siebers AR, Grierson PF, Ryan MH, Kendrick GA (2018a) Colonizing tropical seagrasses increase root exudation under fluctuating and continuous low light. Limnol Oceanogr 63:S381–S391

    Article  CAS  Google Scholar 

  • Martin BC, Glesson D, Statton J, Siebers AR, Grierson PF, Ryan MH, Kendrick GA (2018b) Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front Microbiol 8:2667

    Article  Google Scholar 

  • Massalha H et al (2017) Live imaging of root–bacteria inter-actions in a microfluidics setup. PNAS 114:4549–4554

    Article  CAS  Google Scholar 

  • McKenzie RH, Roberts TL (1990) Soil, and fertilizers phosphorus update. In: Proceedings of Alberta soil science workshop proceedings, February, 20–22, Edmonton, pp 84–104

    Google Scholar 

  • McNear DH Jr (2013) The Rhizosphere- roots, soil and everything in between. Nat Educ Knowl 4:1

    Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    Article  CAS  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agric 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecol 51:326–335

    Article  Google Scholar 

  • Mlodzinska E, Klobus G, Christensen MD, Fuglsang AT (2015) The plasma membrane H+-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Plant Physiol 154:270–282

    Article  CAS  Google Scholar 

  • Mus F, Crook MB, Garcia A, Garcia-Costas MK, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GE, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW (2016) Symbiotic nitrogen fixation and challenges to extending it to non-legumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658

    Article  CAS  Google Scholar 

  • Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Rosse T, Sinclair I, Koebernick N, Cooper L, Hackett CA, Hallett PD (2017) Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur J Soil Sci 68:806–816

    Article  CAS  Google Scholar 

  • Nester EW, Gordon MP, Kerr A (2005) Agrobacterium Tumefaciens: from plant pathology to biotechnology. APS Press, St. Paul

    Google Scholar 

  • Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere-the plant science toolbox. Plant Soil 321:431–456

    Article  CAS  Google Scholar 

  • Newman EI (1985) The rhizosphere: carbon sources and microbial populations. In: Fitter AH (ed) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, p 107

    Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with Rhizobial infection in legumes. Annu Rev Plant Biol 59(1):519–546

    Article  CAS  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-Rhizobial Symbiosis. Annu Rev Genet 45(1):119–144

    Article  CAS  Google Scholar 

  • Parkin TB, Kaspar TC, Cambardella C (2002) Oat plant effects on net nitrogen mineralization. Plant Soil 243:187–195

    Article  CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Pietramellara G, Puschenreiter M, Giagnoni L, Arenella M, Varanini Z, Nannipieri P, Renella G (2015a) Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 387:413–424

    Article  CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Hansen MA, Giagnoni L, Ascher J, Arenella M, Sørensen SJ, Pietramellara G, Nannipieri P, Renella G (2015b) Maize lines with different Nitrogen Use Efficiency (NUE) also differ for molecular diversity of bacterial β-glucosidase gene and glucosidase activity in their rhizosphere. Biol Fertil Soils 51:995–1004

    Article  CAS  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–6553

    Article  CAS  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, Ramírez CA, Mendes R, Raaijmakers JM (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 10:2244–2257

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated Bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Pugnaire FI, Armas C, Valladares F (2004) Soil as a mediator in plant-plant interactions in a semi-arid community. J Veg Sci 15:85–92

    Article  Google Scholar 

  • Qian JH, Doran JW, Walters DT (1997) Maize plant contributions to the root zone available carbon and microbial transformations of nitrogen. Soil Biol Biochem 29:1451–1462

    Article  CAS  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phyto-microbiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battel filed for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  Google Scholar 

  • Rovira AD (1956) Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate from oats and peas. Plant Soil 7:178–194

    Article  Google Scholar 

  • Rovira A (1969) Plant root exudates. Bot Rev 35:35–57

    Article  CAS  Google Scholar 

  • Rudrappa T et al (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  Google Scholar 

  • Safari SAA, Rashidi T (2012) The relationship between available P and selected biological properties in the rhizosphere of ten crop species under glasshouse conditions. Span J Soil Sci 2:74–89

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Saleem M, Law AD, Moe LA (2016) Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecol 71:469–472

    Article  CAS  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  CAS  Google Scholar 

  • Selosse MA, Richard F, He X, Simard S (2006) Mycorrhizal networks: les liaisons dangerousness. Trends Ecol Evol 11:621–628

    Article  Google Scholar 

  • Shen J, Li C, Mi G, Ki L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    Article  CAS  Google Scholar 

  • Shenton M, Iwamato C, Kureta N, Ikeo K (2016) Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition. Rice 9:42

    Article  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere– microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot R, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  Google Scholar 

  • Song F, Han X, Zhu X, Herbert S (2012) Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can J Soil Sci 92:501–507

    Article  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Cotton grass effects of trace elements in submersed mine tailings. J Environ Qual 31:1477–1483

    Article  CAS  Google Scholar 

  • Subbarao GV, Sahrawat KL, Nakahara K, Rao IM, Ishitani M, Hash CT, Kishii M, Bonnett DG, Berry WL, Lata JC (2013) A paradigm shifts towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot 112:297–316

    Article  CAS  Google Scholar 

  • Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am J Bot 89:1531–1546

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 33–52

    Google Scholar 

  • Thomas Danhorn, Clay Fuqua, (2007) Biofilm Formation by Plant-Associated Bacteria. Annual Review of Microbiology 61 (1):401-422

    Article  CAS  Google Scholar 

  • Tharayil N, Triebwasser DJ (2010) Elucidation of a diurnal pattern of catechin exudation by Centaurea stoebe. J Chem Ecol 36:200–204

    Article  CAS  Google Scholar 

  • Ueno D, Rombola AD, Iwashita T, Nomoto K, Ma JF (2007) Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol 174:304–310

    Article  CAS  Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Vaartaja O (1975) Pythium sylvaticum in Canadian forest nurseries. Can Plant Dis Surv 55:101–102

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vidal EA, Gutiérrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    Article  CAS  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanism and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  • Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M, Coruzzi GM, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    Article  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    Article  CAS  Google Scholar 

  • Wang XR, Pan QA, Chen FX, Yan XL, Liao H (2011) Effects of coinoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  CAS  Google Scholar 

  • Wang ZH, Fang H, Chen M (2017) Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region. China Peer J 5:e3029

    Article  CAS  Google Scholar 

  • Weiland J, Littke W, Haase D (2013) Forest nurseries face critical choices with the loss of methyl bromide fumigation. Calif Agric 67:153–161

    Article  Google Scholar 

  • Wu P, Wang X (2008) Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice (Oryza sativa L.). Plant Signal Behav 3:674–675

    Article  Google Scholar 

  • Wu QS, Zou YN, Liu CY, Lu T (2012) Interacted effect of arbuscular mycorrhizal fungi and polyamines on root system architecture of citrus seedlings. J Integr Agric 11:1675–1681

    Article  CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yang L (2016) Root exudation pattern of sugar beet (Beta vulgaris L.) as influenced by light intensity and P deficiency. PhD dissertation, University Göttingen

    Google Scholar 

  • Young IM (1995) Variation in moisture contents between bulk soil and the rhizosheath of Triticum aestivum L. cv. New Phytol 130:135–139

    Article  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  Google Scholar 

  • Zhang FS, Shen JB, Zhang JL, Zuo YM, Li L, Chen XP (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. In: Sparks DL (ed) Advances in agronomy, vol 107. Academic, San Diego, pp 1–32

    Google Scholar 

  • Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphere root-soil-microbe interaction for crop production. Curr Opin Microbiol 37:8–14

    Article  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lupini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathan, S.I., Ceccherini, M.T., Sunseri, F., Lupini, A. (2020). Rhizosphere as Hotspot for Plant-Soil-Microbe Interaction. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_2

Download citation

Publish with us

Policies and ethics