Skip to main content

Significance of the Enzymes Associated with Soil C and N Transformation

  • Chapter
  • First Online:
Carbon and Nitrogen Cycling in Soil

Abstract

Soil enzymes play a crucial role in soil organic matter transformation and nutrient cycling. Enzyme productions are the result of soil microbial community expression and their metabolomic requirement. Understanding the presence and activity of the enzymes of C and N cycles in soil may have important implications on ecosystem disturbances and can help to understand the role of C and N cycling in sustainable soil management and sustaining agricultural productivity. Among the biological features, soil enzymes are often used as a reliable index of changes in the soil status as affected by differentiated natural and anthropogenic factors since they are more sensitive to any changes than other soil variables. As was shown in the reviewed literature, interest in the enzyme systems responsible for C and N transformation in soil is currently still high. This chapter presents a brief overview of earlier and recent findings dealing with the most important soil enzymes involved in the soil C and N cycle, such as cellulase, β-glucosidase, urease, invertase, laccase, peroxidase, proteases, and nitrate reductase. The role of these enzymes in soil C and N transformation, as well as possible changes in enzymatic activity as influenced by differentiated factors, was also analyzed. Moreover, still existing limits related to the methodology adopted to assay soil enzyme activities have been discussed. Additionally, one subchapter is devoted to the relationship between gene abundance and enzymatic activity in soil. The contribution of transcriptomics and proteomics in soil enzymology is still poorly developed probably because there are still some methodological problems in soil proteomics. Moreover, the relationship between enzyme activity and the gene expression in soil is an important aim of research. Finally, further research needs and directions concerning the activity of soil C- and N-cycling enzymes are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Ammonification of arginine

Ag2SO4 :

Silver sulfate

amoA and gdh :

Gene coding the enzyme glutamate dehydrogenase

ANR:

Assimilatory nitrate reductase

apr :

Alkaline metallopeptidases gene,

bpr or aprE :

Genes of proteolytic enzymes

C:

Carbon

DNA:

Deoxyribonucleic acid

EEs:

Extracellular enzymes

GlcNAc:

N-acetyl-β-d-glucosaminide

H2SO4 :

Sulfuric acid

KCl:

Potassium chloride

lip A-lip J :

Lignin peroxidase genes

LiP H8:

Extracellular lignin peroxidase isozyme

MgO:

Magnesium oxide

mRNA:

Messenger ribonucleic acid

MUB:

Modified universal buffer

MUF:

4-Methylumbelliferone

N:

Nitrogen

NAG:

N-acetyl d-glucosamine

NAGase:

N-acetyl-β-d-glucosaminidase

NaOH:

Sodium hydroxide

NH3/NH4 + :

Ammonia/ammonium

NO2/NO2 :

Nitrite

NO3/NO3 :

Nitrate

npr :

Neutral metallopeptidase gene

NR:

Nitrate reductase

P:

Phosphorus

PAHs:

Polycyclic aromatic hydrocarbons

pep Aa, pepAb, pep Ac, and pep Ad :

Aspartic protease genes

RT-PCR:

Reverse transcription polymerase chain reaction

SOC:

Soil organic carbon

sub :

Peptidases genes

ureC :

Urease-encoding genes

References

  • Abdelmagid HM, Tabatabai MA (1987) Nitrate reductase activity of soils. Soil Biol Biochem 19:421–427

    Article  CAS  Google Scholar 

  • Acosta-Martinez V, Tabatabai MA (2000) Arylamidase activity of soils. Soil Sci Soc Am J 64:215–221

    Article  CAS  Google Scholar 

  • Acosta-Martinez V, Cruz L, Sotomayor-Ramírez D, Pérez-Algería L (2007) Enzyme activities as affected by soil properties and land use in tropical watershed. Appl Soil Ecol 35:35–45

    Article  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  Google Scholar 

  • Alef K, Kleiner D (1986) Arginine ammonification, a simple method to estimate microbial activity potentials in soil. Soil Biol Biochem 18:233–235

    Article  CAS  Google Scholar 

  • Alef K, Kleiner D (1987) Applicability of arginine ammonification as indicator of microbial activity in different soils. Biol Fertil Soils 5:148–151

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635

    Article  Google Scholar 

  • Allison C, Macfarlane GT (1990) Regulation of protease formation in Clostridium sporogenes. Appl Environ Microbiol 56(11):3485–3490

    CAS  Google Scholar 

  • Allison S, Weintraub M, Gartner T, Waldrop M (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil enzymology, Soil biology, vol 22. Springer, Berlin/Heidelberg, pp 229–243

    Chapter  Google Scholar 

  • Al-Turki AJ, Dick AW (2003) Myrosinase activity in soil. Soil Sci Soc Am J 76:139–145

    Article  Google Scholar 

  • Anand L, Krishnamurthy S, Vithayathil PJ (1990) Purification and properties of xylanase from the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce. Arch Biochem Biophys 276:546–553

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Bakshi M, Varma A (2011) Soil enzymes: state of art. In: Shukla S, Varma A (eds) Soil enzymology, Soil biology, vol 22. Springer, Berlin/Heidelberg, pp 1–23

    Google Scholar 

  • Baldock AJ (2007) Principles of nutrient cycling. In: Marchner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems, Soil biology, vol 10. Springer, Berlin/Heidelberg, pp 2–35

    Chapter  Google Scholar 

  • Balota EL, Dias Chaves JC (2010) Enzymatic activity and mineralization of carbon and nitrogen in soil cultivated with coffee and green manures. R Bras Ci Solo 34:1573–1583

    Article  Google Scholar 

  • Balota E, Kanashiro M, Filho A, Andrade D, Dick R (2004) Soil enzyme activities under long – term tillage and crop rotation systems in subtropical agro – ecosystems. Braz J Microbiol 35:300–306

    Article  CAS  Google Scholar 

  • Benke AC (1979) A modification of the Hynes method for estimating secondary production with particular significance for multivoltine populations. Limnol Oceanogr 24:168–171

    Article  Google Scholar 

  • Berg B, McClaugherty CA (2003) Plant litter. Decomposition, humus formation, carbon sequestration. Springer, Berlin/Heidelberg

    Google Scholar 

  • Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D’Haeseleer P, Simmons BA, Quirino BF (2014) Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiol Lett 351(2):147–155

    Article  CAS  Google Scholar 

  • Berrin JG, Czjzek M, Kroon PA, Mclauchlan WR, Puigserver A, Williamson G, Juge N (2003) Substrate (aglycone) specificity of human cytosolic β- glucosidase. Biochem J 373:41–48

    Article  CAS  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  Google Scholar 

  • Bogan BW, Schoenike B, Lamar RT, Cullen D (1996a) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386

    CAS  Google Scholar 

  • Bogan BW, Schoenike B, Lamar RT, Cullen D (1996b) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703

    CAS  Google Scholar 

  • Bonde TA, Nielsen TH, Miller M, Sørensen J (2001) Arginine ammonification assay as a rapid index of gross N mineralization in agricultural soils. Biol Fertil Soils 34:179–184

    Article  CAS  Google Scholar 

  • Brzezińska MS, Lalke-Porczyk E, Donderski W, Walczak M (2009) Degradation of chitin in natural environment: role of actinomycetes. Pol J Ecol 57:229–238

    Google Scholar 

  • Brzostek ER, Finzi AC (2011) Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 92(4):892–902

    Article  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Burns RG (1978) Enzyme activity in soil. In: some theoretical and practical considerations. In: Soil enzymes. Academic, New York, pp 1–49

    Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) Enzymes in soil: research and development in measuring activities. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 567–596

    Chapter  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Burton DL, McGill WB (1991) Inductive and repressive effects of carbon and nitrogen on L-histidine ammonia-lyase activity in a black chernozemic soil. Soil Biol Biochem 23:939–946

    Article  CAS  Google Scholar 

  • Cañizares R, Moreno B, Emilio Benitez E (2012) Biochemical characterization with detection and expression of bacterial β-glucosidase encoding genes of a Mediterranean soil under different long-term management practices. Biol Fertil Soils 48:651–663

    Article  CAS  Google Scholar 

  • Cenini V, Fornara D, McMullan G, Ternan N, Carolan R, Crawley MJ, Clément JC, Lavorel S (2016) Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils. Soil Biol Biochem 96:198–206

    Article  CAS  Google Scholar 

  • Colloff M, Wakelin S, Gomez D, Rogers S (2008) Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol Biochem 40:1637–1645

    Article  CAS  Google Scholar 

  • Cooper AB, Morgan HW (1981) Improved fluorimetric method to assay for lipase activity. Soil Boil Biochem 13:307–311

    Article  CAS  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dar GH (2010) Soil microbiology and biochemistry. New India Publishing Agency, Pitam Pura/New Delhi

    Google Scholar 

  • Darrah PR, Harris PJ (1986) A fluorimetric method for measuring the activity of soil enzymes. Plant Soil 92:81–88

    Article  CAS  Google Scholar 

  • Datta R, Vranová V, Pavelka M, Rejšek K, Formánek P (2014) Effect of soil sieving on respiration induced by low-molecular-weight substrates. Int Agrophys 28(1):119–124

    Article  CAS  Google Scholar 

  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  CAS  Google Scholar 

  • Deng S, Popova I (2011) Carbohydrate hydrolases. In: Dick RP (ed) Methods of soil enzymology, vol 9. Soil Science Society of America, Madison, pp 185–207

    Google Scholar 

  • Deng SP, Tabatabai MA (1994) Colorimetric determination of reducing sugars in soils. Soil Biol Biochem 26:473–477

    Article  CAS  Google Scholar 

  • Deng S, Kang H, Freeman C (2011) Microplate fluorimetric assay of soil enzymes. In: Dick RP (ed) Methods of soil enzymology, vol 9. Soil Science Society of America, Madison, pp 311–318

    Google Scholar 

  • Dick RP (1994) Soil enzyme activity as an indicator of soil quality. In: Doran JW, Leman DC, Bezdicek DF, Steward BA (eds) Defining soil quality for a sustainable environment. SSSA, Special Publication 35, Madison, pp 107–124

    Google Scholar 

  • Dick RP (ed) (2011) Methods of soil enzymology. Soil Science Society of America, Madison

    Google Scholar 

  • Dick WA, Tabatabai MA (1992) Significance and potential uses of soil enzymes. In: Metting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 95–225

    Google Scholar 

  • Dilly O, Munch JC, Pfeiffer EM (2007) Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany. J Plant Nutr Soil Sci 170:197–204

    Article  CAS  Google Scholar 

  • Dodor DE, Tabatabai MA (2003) Aminohydrolases in soil as affected by cropping systems. Appl Soil Ecol 24:73–90

    Article  Google Scholar 

  • Dodor DE, Tabatabai MA (2005) Glycosidases in soils as affected by cropping systems. J Plant Nutr Soil Sci 168:749–758

    Article  CAS  Google Scholar 

  • Dodor DE, Tabatabai MA (2007) Arylamidase activity as an index of nitrogen mineralization in soils. Commun Soil Sci Plant Anal 36(15–16):2197–2207

    Article  CAS  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  CAS  Google Scholar 

  • Ebregt A, Boldewijn J (1977) Influence of heavy metals in spruce forest soil on amylase activity, carbon dioxide evolution from starch and soil respiration. Plant Soil 47:137–148

    Article  CAS  Google Scholar 

  • Ebulue MM, Uwakwe AA, Wegwu MO (2017) Soil lipase and dehydrogenases activities in spent engine oil polluted ecosystem. J Bio Innov 6(5):782–789

    CAS  Google Scholar 

  • Eick M, Stöhr C (2009) Proteolysis at the plasma membrane of tobacco roots: biochemical evidence and possible roles. Plant Physiol Biochem 47:1003–1008

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosoidases in soils. Soil Biol Biochem 20:601–606

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2002) β-Glucosaminidase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization. Biol Fertil Soils 36:367–376

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2004) β-Glucosaminidase activity as an index of nitrogen mineralization in soils. Commun Soil Sci Plant Anal 35(7–8):1081–1094

    Article  CAS  Google Scholar 

  • Enowashu E, Poll C, Lamersdorf N, Kandeler E (2009) Microbial enzyme activities under reduced nitrogen deposition in a spruce forest soil. Appl Soil Ecol 43:11–21

    Article  Google Scholar 

  • Feng J, Turner BL, Wei K, Tian J, Chen Z, Lü X, Wang C, Chen L (2018) Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands. Geoderma 327:36–44

    Article  CAS  Google Scholar 

  • Follmer C (2008) Insights into the role and structure of plant ureases. Phytochemistry 69:18–28

    Article  CAS  Google Scholar 

  • Frankenberger TW (1983) Kinetic properties of L-histidine ammonia-lyase activity in soils. Soil Sci Soc Am J 47:71–80

    Article  CAS  Google Scholar 

  • Frankenberger TW, Johanson BJ (1983) Factors affecting invertase activity in soils. Plant Soil 74:313–323

    Article  CAS  Google Scholar 

  • Frankenberger TW, Tabatabai MA (1980) Amidase activity in soils. 1. Method of assay. Soil Sci Soc Am J 44:282–287

    Article  CAS  Google Scholar 

  • Frankenberger TW, Tabatabai MA (1991a) L-Asparaginase activity of soils. Biol Fertil Soils 11:6–12

    Article  CAS  Google Scholar 

  • Frankenberger TW, Tabatabai MA (1991b) L-Glutaminase activity in soils. Soil Biol Biochem 23:869–874

    Article  CAS  Google Scholar 

  • Fraser FC, Hallett PD, Wookey PA, Hartley IP, Hopkins DW (2013) How do enzymes catalysing soil nitrogen transformations respond to changing temperatures? Biol Fertil Soils 49:99–103

    Article  CAS  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Jones SE, Lock MA (1995) The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant Soil 175:147–152

    Article  CAS  Google Scholar 

  • Fu MH, Tabatabai MA (1989) Nitrate reductase activity in soils: effects of trace elements. Soil Biol Biochem 21:943–946

    Article  CAS  Google Scholar 

  • Fuka MM, Engel M, Gattinger A, Bausenwein U, Sommer M, Munch JC, Schloter M (2008a) Factors influencing variability of proteolytic genes and activities in arable soils. Soil Biol Biochem 40:1646–1653

    Article  CAS  Google Scholar 

  • Fuka MM, Engel M, Haesler F, Welzl G, Munch JC, Schloter M (2008b) Diversity of proteolytic community encoding for subtilisin in an arable field: spatial and temporal variability. Biol Fertil Soils 45:185–191

    Article  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms – a review. Soil Biol Biochem 42:2058–2067

    Article  CAS  Google Scholar 

  • Gianfreda L, Bollag JM (1996) Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag LM (eds) Soil biochemistry, vol 9. Marcel Dekker, New York/Basel/Hong Kong, pp 123–193

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin/Heidelberg, pp 258–311

    Google Scholar 

  • Ginésy M, Rusanova-Naydenova D, Rova U (2017) Tuning of the carbon-to-nitrogen ratio for the production of l-arginine by Escherichia coli. Fermentation 3(4):60

    Article  CAS  Google Scholar 

  • Glibert P, Harrison J, Heil C, Seitzinger S (2006) Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry 77:441–463

    Article  CAS  Google Scholar 

  • Godlewski M, Adamczyk B (2007) The ability of plants to secrete proteases by roots. Plant Physiol Biochem 45:657–664

    Article  CAS  Google Scholar 

  • Gómez Jiménez RT, Moliterni E, Rodríguez L, Fernández FJ, Villaseňor J (2011) Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Procedia Environ Sci 9:54–59

    Article  CAS  Google Scholar 

  • Guo H, Chen G, Zhaoping LV, Zhao H, Yang H (2009) Alteration of microbial properties and community structure in soils exposed to napropamide. J Environ Sci 21(4):494–502

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  Google Scholar 

  • Halsall DM, Gibson AH (1991) Nitrogenase activity (C2H2 reduction) in straw-amended wheat belt soils in response to diazotroph inoculation. Soil Biol Biochem 23:987–998

    Article  CAS  Google Scholar 

  • Hanzlikova A, Jandera A (1993) Chitinase and changes of microbial community in soil. Folia Microbiol 38:159–160

    Article  CAS  Google Scholar 

  • Hartemik AE, Lal R, Gerzabek MH, Jama B, McBratney AB, Six J, Tornquist CG (2014) Soil carbon research and global environmental challenges. Peer J Pre Prints 2:e366v1 https://doi.org/10.7287/peerj.preprints.366v1

  • Hiwada K, Ito T, Yokoyama M, Kokubu T (1980) Isolation and characterization of membrane-bound Arylamidases from human placenta and kidney. Eur J Biotechnol 10(1):155–165

    Google Scholar 

  • Hoehn EC (2016) Improved microplate fluorometric soil enzymes assay for β-glucosidase detection. Dissertations and theses in Natural Resources 130, University of Nebraska-Lincoln, USA

    Google Scholar 

  • Holik L, Kučera A, Rejšek K, Vranová V (2017) Seasonal dynamics of arginine ammonification in forest soils of Norway spruce pure stands under different silvicultural practices. Cent Eur For J 63:66–72

    Google Scholar 

  • Hu Y, Zhang G, Li A, Chen J, Ma L (2008) Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl Microbiol Biotechnol 80:823–830

    Article  CAS  Google Scholar 

  • Hungate BA, Hart SC, Selmants PC, Boyle SI, Gehring CA (2007) Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forest. Ecol Appl 17:1352–1365

    Article  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity enzymes, and biochemical reactions. In: Sparks D (ed) Advances in agronomy, vol 102. Academic, San Diego, pp 159–200

    Google Scholar 

  • Jan M, Roberts P, Tonheim S, Jones DL (2009) Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol Biochem 41(11):2272–2282

    Article  CAS  Google Scholar 

  • Jin K, Sleutel S, Buchan D, De Neve S, Cai DX, Gabriels D, Jin JY (2009) Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Till Res 104:115–120

    Article  Google Scholar 

  • Jones DL, Kielland K, Sinclai FL, Dahlgren RA, Newsham KK, Farrar JF, Murphy V (2009) Soil organic nitrogen mineralization across a global latitudinal gradient. Glob Biogeochem Cycles 23:GB1016

    Article  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  CAS  Google Scholar 

  • Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36:1–65

    CAS  Google Scholar 

  • Kandeler E (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Feril Soils 23:299–306

    Article  CAS  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of urease activity using determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

  • Kandeler E, Luxhùi J, Tscherko D, Magid J (1999) Xylanase, invertase and protease at the soil – litter interface of a loamy sand. Soil Biol Biochem 31:1171–1179

    Article  CAS  Google Scholar 

  • Kandeler E, Poll C, Frankenberger Jr. WT, Tabatabai MA (2011) Nitrogen cycle enzymes. In: Dick RP (ed) Methods in soil enzymology. Soil Science Society of America Book Series, 9, pp 211–244

    Google Scholar 

  • Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F (2009) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol Biochem 40:638–648

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Murphy DV, Jones DL (2008) Regulation of amino acid biodegradation in soil as affected by depth. Biol Fertil Soils 44:933–941

    Article  CAS  Google Scholar 

  • Khorsandi N, Nourbakhsh F (2007) Effect of amendment of manure and corn residues on soil N mineralization and enzyme activity. Agron Sustain Dev 27:139–143

    Article  CAS  Google Scholar 

  • Kiss S, Pasca D, Dragan-Bulards M (1998) Enzymology of disturbed soils. Development in soil science, vol 26. Elsevier, Amsterdam

    Google Scholar 

  • Klose S, Tabatabai MA (1999) Urease activity of microbial biomass in soils. Soil Biol Biochem 31:205–211

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Krasek M, Gaze WH, Morris NZ, Wellington EMH (2006) Gene detection, expression and related enzyme activity in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin/Heidelberg, pp 217–255

    Chapter  Google Scholar 

  • Kudryavtseva O, Dunaevsky YE, Kamzolkina O, Belozersky M (2008) Fungal proteolytic enzymes: features of the extracellular proteases of xylotrophic Basidiomycetes. Microbiology 77:643–653

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microb and App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Ladd JN (1985) Soil enzymes. In: Vaughan D, Malcom RE (eds) Soil organic matter and biological activity. Matinus Nijhoff, Dordrecht, pp 175–221

    Chapter  Google Scholar 

  • Ladd JN, Jackson RB (1982) Biochemistry of ammonification. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison|, pp 173–228

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830

    Article  CAS  Google Scholar 

  • Lal R (2016) Soil health and carbon management. Food Energy Secur 5(4). https://doi.org/10.1002/fes3.96

    Article  Google Scholar 

  • Landi L, Renella G, Giagnoni L, Nannipieri P (2011) Activities of proteolytic enzymes. In: Dick RP (ed) Methods of soil enzymology. Soil Science Society of America, Madison, pp 247–273

    Google Scholar 

  • Lin Q, Brookes PC (1999) Arginine ammonification as a method to estimate soil microbial biomass and microbial community structure. Soil Biol Biochem 31:1985–1997

    Article  CAS  Google Scholar 

  • Lu L, Jia ZJ (2013) Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol 15:1795–1809

    Article  CAS  Google Scholar 

  • Lu L, Han WY, Zhang JB, Wu YC, Wang BZ, Lin XG, Zhu JG, Cai ZC, Jia ZJ (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6:1978–1984

    Article  CAS  Google Scholar 

  • Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36:1025–1036

    Article  CAS  Google Scholar 

  • Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscoit F (2005) Patchiness and spatial distribution of laccase genes of ecto-mycorrhizal, saprotrophic and unknown basidiomycetes in the upper horizons of a mixed forest Cambisol. Microb Ecol 50:570–579

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Machuca A, Córdova C, Stolpe NB, Barrera JA, Chávez D, Almendras K, Bonilla AM (2018) In vitro sensitivity of forest soil enzymes to temperature increase in Western Patagonia. J Soil Sci Plant Nutr 18(1):202–219

    CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity – a useful indicator of oil biodegradation. Biotechnol Tech 13(12):859–863

    Article  CAS  Google Scholar 

  • Martens DA (2005) Denitrification. In: Hatfield JL, Powlson DS, Crosenzweig DS, Scow KM, Singer MJ, Sparks DL (eds) Encyclopedia of Soils in the Environment. Academic, Amsterdam, pp 378–382

    Chapter  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • Maunsell B, Adams C, O’Gara F (2006) Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore. Microbiology 152:29–42

    Article  CAS  Google Scholar 

  • McCarty GW, Bremner JM (1992) Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium. Proc Natl Acad Sci U S A 89:453–456

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of mungbean. Am J Exp Agric 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Metcalfe AC, Williamson N, Krasek M, Wellington EMH (2003) Molecular diversity within chitynolytic actinomycetes determined by in situ analysis. Actinomycetologia 17:18–22

    Article  CAS  Google Scholar 

  • Mishra RR, Dangar TK, Rath B, Thatoi HN (2009) Characterization and evaluation of stress and heavy metal tolerance of some predominant Gram negative halotolerant bacteria from mangrove soils of Bhitarkanika, Orissa, India. Afr J Biotechnol 8(10):2224–2231

    CAS  Google Scholar 

  • Mobley HLT, Hausinger RP (1989) Microbial urease: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    CAS  Google Scholar 

  • Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480

    CAS  Google Scholar 

  • Molaei A, Lakzian A, Datta R, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT (2017a) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31(4):499–505

    Article  CAS  Google Scholar 

  • Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017b) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12(7):e0180663

    Article  CAS  Google Scholar 

  • Monreal CM, Bergstrom DW (2000) Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality. Can J Soil Sci 80:419–428

    Article  CAS  Google Scholar 

  • Morais H, Ramos C, Forgacs E, Jakab A, Cserhati T (2004) Enzyme production of Pleurotus ostreatus evaluated by the three-way principal component analysis. Eng Life Sci 4:165–170

    Article  CAS  Google Scholar 

  • Moss GP (2010) Enzyme nomenclature: Recommendations of the nomenclature committee of the Interantional Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes by the reactions they catalyse. www.chem.qmul.ac.uk/iubmb/enzyme (verified 27 May 2011)

  • Mrkonjic Fuka M, Engel M, Hagn A, Munch JC, Sommer M, Schloter M (2009) Changes of diversity pattern of proteolytic Bacteria over time and space in an agricultural soil. Microb Ecol 57:391–401

    Article  Google Scholar 

  • Muruganandam S, Israel DW, Robarge WP (2009) Activities of nitrogen-mineralization enzymes associated with soil aggregate size fractions of three tillage systems. Soil Sci Soc Am J 73:751–759

    Article  CAS  Google Scholar 

  • Myrold D, Bottomley PJ (2008) Nitrogen mineralization and immobilization. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 157–172

    Google Scholar 

  • Naessens M, Vandamme EJ (2003) Multiple forms of microbial enzymes. Biotechnol Lett 25:1119–1124

    Article  CAS  Google Scholar 

  • Nannipieri P (1994) The potential use of soil enzymes as indicatyors of productivity, sustainability and pollution. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Adelaide, pp 238–244

    Google Scholar 

  • Nannipieri P, Eldor P (2009) The chemical and functional characterization of soil N and its biotic component. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  • Nannipieri P, Gianfreda L (1998) Kinetics of enzyme reactions in soil environment. In: Huang PM, Senesi N, Bue J (eds) Structure and surface reactions of soil particles. Wiley, New York, pp 449–479

    Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 293–328

    Chapter  Google Scholar 

  • Nannipieri P, Kandeler E, Rugiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burs RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and application. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nawaz MS, Khan AA, Seng JE, Leakey JE, Siitonen PH, Cerniglia CE (1994) Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Appl Environ Microbiol 60:3343–3348

    CAS  Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, Dordrecht

    Book  Google Scholar 

  • Norton JM (2008) Nitrification in agricultural soils. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America 677, Madison, WI, USA. In: Nitrogen in Agricultural Systems, Agronomy Monograph, vol 49, pp 173–199

    Google Scholar 

  • Norton JM, Schimel JP (2011) Nitrogen mineralization-immobilization turnover. In: Huang PM, Li Y, Summers ME (eds) Handbook of soil science, 2nd edn. CRC Press, Boca Raton, pp 8–18

    Google Scholar 

  • Norton JM, Stark JM (2011) Regulation and measurement of nitrification in terrestrial systems. Methods Enzymol 486:343–368

    Article  CAS  Google Scholar 

  • Orczewska A, Piotrowska A, Lemanowicz J (2012) Soil acid phosphomonoesterase activity and phosphorus forms in ancient and postagricultural black alder [Alnus glutinosa (L.) Gaertn.] woodlands. Acta Soc Bot Pol 81(2):81–86

    Article  CAS  Google Scholar 

  • Page MJ, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65:1220–1236

    Article  CAS  Google Scholar 

  • Pancholy SK, JQ Lynd (1971) Quantification of soil lipase with 4-MUB fluorescence. Agron Abstr, p 83

    Google Scholar 

  • Pancholy SK, Rice EL (1972) Effect of storage conditions on actives of urease, invertase, amylase and dehydrogenase in soil. Soil Sci Soc Am Proc 36:536–537

    Article  CAS  Google Scholar 

  • Pancholy SK, Rice EL (1973) Soil enzymes in relation to old field succession: amylase, cellulase, invertase, dehydrogenase, and urease. Soil Sci Soc Am Proc 37:47–50

    Article  CAS  Google Scholar 

  • Pandey S, Singh DK (2006) Soil dehydrogenase, phosphomonoesterase and arginine deaminase activities in an insecticide treated groundnut (Arachis hypogaea L.) field. Chemosphere 63(5):869–880

    Article  CAS  Google Scholar 

  • Paul EA (ed) (2007) Soil microbiology, ecology and biochemistry. Elsevier, New York

    Google Scholar 

  • Pettit NM, Smith ARJ, Freedman RB, Burns G (1976) Soil urease: activity, stability and kinetic properties. Soil Biol Biochem 8:479–484

    Article  CAS  Google Scholar 

  • Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Lay Kyu K, Ratanakhanokchai K (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58:163–176

    Article  CAS  Google Scholar 

  • Piotrowska-Długosz A (2014) Enzymes and soil fertility. In: Gianfreda L, Rao MA (eds) Enzymes in agricultural sciences. OMICS Group eBooks, Foster City, pp 44–79

    Google Scholar 

  • Piotrowska-Długosz A (2017) The use of enzymes in bioremediation of soil xenobiotics. In: Hashmi M, Kumar V, Varma A (eds) Xenobiotics in the soil environment, Soil biology, vol 49. Springer, Cham, pp 243–265

    Chapter  Google Scholar 

  • Rao MA, Scelza R, Gianfreda L (2014) Soil enzymes. In: Gianfreda L, Rao MA (eds) Enzymes in agricultural sciences. OMICS Group eBooks, Foster City, pp 10–43

    Google Scholar 

  • Rao CS, Grover M, Kundu S, Desai S (2017) Soil enzymes. Encyclopedia of soil science, 3rd edn. https://doi.org/10.1081/E-ESS3-120052906

    Chapter  Google Scholar 

  • Rasool N, Reshi ZA, Shah MA (2014) Effect of butachlor (G) on soil enzyme activity. Eur J Soil Biol 61:94–100

    Article  CAS  Google Scholar 

  • Reichel H, Sisler H, Kaufma D (1991) Inducers, substrates, and inhibitors of a propanildegrading amidase of Fusarium oxysporum. Pestic Biochem Physiol 39:240–250

    Article  CAS  Google Scholar 

  • Rodriguez-Kabana R, Godoy G, Morgan-Jones G, Shelby RA (1983) The determination of soil chitinase activity: conditions for assay and ecological studies. Plant Soil 75:95–106

    Article  CAS  Google Scholar 

  • Ross DJ (1965) A seasonal study of oxygen uptake of some pasture soil and activities of enzymes hydrolysing sucrose and starch. J Soil Sci 16:73–85

    Article  CAS  Google Scholar 

  • Ross DJ (1983) Invertase and amylase activities as influenced by clay minerals, soil-clay fractions and topsoils under grassland. Soil Biol Biochem 15:287–293

    Article  CAS  Google Scholar 

  • Rotanova TV, Melnikov EE, Khalatova AG, Makhovskaya OV, Botos I, Wlodawer A, Gustchina A (2004) Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. Eur J Biochem 271:4865–4871

    Article  CAS  Google Scholar 

  • Russel M, Qian Y, Yao J, Choi MF (2014) Potential of glucose measurement in soil and food sample using low molecular weight O-(2-hydroxyl)propyl-3-trimethylammonium chitosan chloride nanoparticle-glucose oxidase immobilised on a natural fibre membrane. Int J Environ Anal Chem 94(13):1317–1329

    Article  CAS  Google Scholar 

  • Sakurai M, Suzuki K, Onodera M, Shinano T, Osaki M (2007) Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol Biochem 39:2777–2784

    Article  CAS  Google Scholar 

  • Sato F, Omura H, Hayano K (1986) Adenosine deaminase activity in soils. Soil Sci Plant Nutr 32:107–112

    Article  CAS  Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91

    Article  CAS  Google Scholar 

  • Schimel JP, Bennet J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(30):591–602

    Article  Google Scholar 

  • Schinner F, von Mersi W (1990) Xylanase-, CM-cellulase- and invertase activity in soil, an improved method. Soil Biol Biochem 22:511–515

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic, San Diego

    Google Scholar 

  • Scinner F, Őhlinger R, Kandeler E, Margesin R (1995) Methods in soil biology. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Senwo ZN, Tabatabai MA (1996) Aspartase activity of soils. Soil Sci Soc Am J 60:1416–1422

    Article  CAS  Google Scholar 

  • Sherene T (2017) Role of soil enzymes in nutrient transformation: a review. Bio Bull 3(1):109–131

    Google Scholar 

  • Shinkafi SA, Adamu US, Tanyi ST (2014) Production of Laccases by fungi isolated from soil in Sokoto, Nigeria. J Microbiol Res 4(1):24–27

    Google Scholar 

  • Shivanand P, Jayaraman G (2009) Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem 44(10):1088–1094

    Article  CAS  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. The Ecoscan 9(1–2):517–519

    Google Scholar 

  • Šimek M, Jíšová L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem 34:1227–1234

    Article  Google Scholar 

  • Singh DK, Kumar S (2008) Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71:412–418

    Article  CAS  Google Scholar 

  • Singh J, Singh DK (2005) Available nitrogen and arginine deaminase activity in groundnut (Arachis hypogaea L.) fields after imidacloprid, diazinon, and lindane treatments. J Agric Food Chem 53:363–368

    Article  CAS  Google Scholar 

  • Singh BK, Nunan N, Millard P (2009) Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil. FEMS Microbiol Ecol 70:109–117

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus KR, Linkens EA, McClaugherty AC, Rayburn L, Weiland T (1992) Wood decomposition in a first order watershed: mass loss as a function of exoenzyme activity. Soil Biol Biochem 24:743–749

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462(7274):795–798

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Belnap J, Rudgers J, Kuske CR, Martinez N, Sandquist D (2015) Soil microbial responses to nitrogen addition in arid ecosystems. Front Microbiol 6:12

    Article  Google Scholar 

  • Skujins J (1978) History of abiontic soil enzymes research. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 1–49

    Google Scholar 

  • Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261–267

    Article  CAS  Google Scholar 

  • Štursová M, Baldrian P (2011) Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338(1–2):99–10

    Article  CAS  Google Scholar 

  • Suenaga H (2011) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14:13–22

    Article  CAS  Google Scholar 

  • Suresh PV, Kumar A, Sachindra NM (2011) Thermoactive β-N-acetylhexosaminidase production by a soil isolate of Penicillium monoverticillium CFR 2 under solid state fermentation: parameter optimization and application for N-acetyl chitooligosaccharides preparation from chitin. World J Microbiol Biotechnol 27(6):1435–1447

    Article  CAS  Google Scholar 

  • Szajdak L, Gaca W (2010) Nitrate reductase activity in soil under shelterbelt and an adjoining cultivated field. Chem Ecol 26:123–134

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis, part 2 – microbiological and biochemical properties. Soil Science Society of America Inc, Madison, pp 775–833

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Soc Am Proc 34:225–229

    Article  CAS  Google Scholar 

  • Tabatabai MA, Dick WA (2002) Enzymes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 227–248

    Google Scholar 

  • Tabatabai MA, Singh BB (1976) Rhodanase activity of soils. Soil Sci Soc Am J 40:381–385

    Article  CAS  Google Scholar 

  • Tabatabai MA, Ekenler M, Senwo ZN (2010) Significance of enzyme activities in soil nitrogen mineralization. Commun Soil Sci Plant Anal 4:595–605

    Article  CAS  Google Scholar 

  • Tate RL III (2002) Microbiology and enzymology of carbon and nitrogen cycling. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 227–248

    Google Scholar 

  • Thalenfeld B, Epstein I, Grossowicz N (1977) Relationship between culture density and catabolite repression of an inducible aliphatic amidase in a thermophilic bacillus. Biochim Biophys Acta Gen Subj 497:112–121

    Article  CAS  Google Scholar 

  • Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fertil Soils 46:215–225

    Article  CAS  Google Scholar 

  • van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Article  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP (2008) Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4(184). https://doi.org/10.1038/msb.2008.18

    Article  CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vranová V, Rejšek K, Formánek P (2013) Proteolytic activity in soil: a review. Appl Soil Ecol 70:23–32

    Article  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    Article  CAS  Google Scholar 

  • Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh RL (2011) Controls on the temperature sensivity of soil enzymes: a key driver of in situ enzyme activity rates. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, pp 245–258

    Google Scholar 

  • Watanabe K, Sakai J, Hayano K (2003) Bacterial extracellular protease activities infield soils under different fertilizer managements. Can J Microbiol 49:305–312

    Article  CAS  Google Scholar 

  • Webb EC (1992) Enzyme nomenclature. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. Academic, San Diego

    Google Scholar 

  • Weintraub MN, Schimel JP (2005) Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol Biochem 37:1469–1475

    Article  CAS  Google Scholar 

  • Wongkaew P, Homkratoke T (2009) Enhancement of soil microbial metabolic activity in tomato field plots by chitin application. AJAFS (Special Issue):S325–S335

    Google Scholar 

  • Xue D, Yao H, Huang C (2006) Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant Soil 288:319–331

    Article  CAS  Google Scholar 

  • Yadav GS, Datta R, Imran Pathan S, Lal R, Meena RS, Babu S, Das A, Bhowmik S, Datta M, Saha P (2017a) Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in north eastern region of India. Sustainability 9(10):1816

    Article  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das A, Layek J, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yang Z, Liu S, Zheng D, Feng S (2006) Effects of cadmium, zinc and lead on soil enzyme activities. J Environ Sci 18:1135–1141

    Article  Google Scholar 

  • Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J (2013) Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol 19:637–648

    Article  Google Scholar 

  • Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, Lin Q, Hu Y, Li X, He Z, Deng Y, Zhou J (2014) The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J 8:430–440

    Article  CAS  Google Scholar 

  • Zanoelo FF, Polizeli TLTM, Terenzi HF, Jorge JA (2004) β-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240(2):137–143

    Article  CAS  Google Scholar 

  • Zantua MI, Bremner JM (1975) Comparisons of methods of assaying urease activity in soils. Soil Biol Biochem 7:291–295

    Article  CAS  Google Scholar 

  • Zhang YL, Chen LJ, Sun CX, Wu ZJ, Chen ZH, Dong GH (2010) Soil hydrolase activities and kinetic properties as affected by wheat cropping systems of Northeastern China. Plant Soil Environ 56:526–532

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piotrowska-Długosz, A. (2020). Significance of the Enzymes Associated with Soil C and N Transformation. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_12

Download citation

Publish with us

Policies and ethics